Bug Summary

File:build/gcc/cfgloop.cc
Warning:line 291, column 3
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-suse-linux -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name cfgloop.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -resource-dir /usr/lib64/clang/15.0.7 -D IN_GCC -D HAVE_CONFIG_H -I . -I . -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/. -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcpp/include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcody -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber/bid -I ../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libbacktrace -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13 -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/x86_64-suse-linux -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/backward -internal-isystem /usr/lib64/clang/15.0.7/include -internal-isystem /usr/local/include -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../x86_64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-narrowing -Wwrite-strings -Wno-long-long -Wno-variadic-macros -Wno-overlength-strings -fdeprecated-macro -fdebug-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=plist-html -analyzer-config silence-checkers=core.NullDereference -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /buildworker/marxinbox-gcc-clang-static-analyzer/objdir/clang-static-analyzer/2023-03-27-141847-20772-1/report-X_E6CZ.plist -x c++ /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc

1/* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "cfghooks.h"
28#include "gimple-ssa.h"
29#include "diagnostic-core.h"
30#include "cfganal.h"
31#include "cfgloop.h"
32#include "gimple-iterator.h"
33#include "dumpfile.h"
34#include "tree-ssa.h"
35#include "tree-pretty-print.h"
36
37static void flow_loops_cfg_dump (FILE *);
38
39/* Dump loop related CFG information. */
40
41static void
42flow_loops_cfg_dump (FILE *file)
43{
44 basic_block bb;
45
46 if (!file)
47 return;
48
49 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
50 {
51 edge succ;
52 edge_iterator ei;
53
54 fprintf (file, ";; %d succs { ", bb->index);
55 FOR_EACH_EDGE (succ, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(succ)); ei_next (&(ei)))
56 fprintf (file, "%d ", succ->dest->index);
57 fprintf (file, "}\n");
58 }
59}
60
61/* Return nonzero if the nodes of LOOP are a subset of OUTER. */
62
63bool
64flow_loop_nested_p (const class loop *outer, const class loop *loop)
65{
66 unsigned odepth = loop_depth (outer);
67
68 return (loop_depth (loop) > odepth
69 && (*loop->superloops)[odepth] == outer);
70}
71
72/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
73 loops within LOOP. */
74
75class loop *
76superloop_at_depth (class loop *loop, unsigned depth)
77{
78 unsigned ldepth = loop_depth (loop);
79
80 gcc_assert (depth <= ldepth)((void)(!(depth <= ldepth) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 80, __FUNCTION__), 0 : 0))
;
81
82 if (depth == ldepth)
83 return loop;
84
85 return (*loop->superloops)[depth];
86}
87
88/* Returns the list of the latch edges of LOOP. */
89
90static vec<edge>
91get_loop_latch_edges (const class loop *loop)
92{
93 edge_iterator ei;
94 edge e;
95 vec<edge> ret = vNULL;
96
97 FOR_EACH_EDGE (e, ei, loop->header->preds)for ((ei) = ei_start_1 (&((loop->header->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
98 {
99 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
100 ret.safe_push (e);
101 }
102
103 return ret;
104}
105
106/* Dump the loop information specified by LOOP to the stream FILE
107 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
108
109void
110flow_loop_dump (const class loop *loop, FILE *file,
111 void (*loop_dump_aux) (const class loop *, FILE *, int),
112 int verbose)
113{
114 basic_block *bbs;
115 unsigned i;
116 vec<edge> latches;
117 edge e;
118
119 if (! loop || ! loop->header)
120 return;
121
122 fprintf (file, ";;\n;; Loop %d\n", loop->num);
123
124 fprintf (file, ";; header %d, ", loop->header->index);
125 if (loop->latch)
126 fprintf (file, "latch %d\n", loop->latch->index);
127 else
128 {
129 fprintf (file, "multiple latches:");
130 latches = get_loop_latch_edges (loop);
131 FOR_EACH_VEC_ELT (latches, i, e)for (i = 0; (latches).iterate ((i), &(e)); ++(i))
132 fprintf (file, " %d", e->src->index);
133 latches.release ();
134 fprintf (file, "\n");
135 }
136
137 fprintf (file, ";; depth %d, outer %ld\n",
138 loop_depth (loop), (long) (loop_outer (loop)
139 ? loop_outer (loop)->num : -1));
140
141 if (loop->latch)
142 {
143 bool read_profile_p;
144 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
145 if (read_profile_p && !loop->any_estimate)
146 fprintf (file, ";; profile-based iteration count: %" PRIu64"l" "u" "\n",
147 (uint64_t) nit);
148 }
149
150 fprintf (file, ";; nodes:");
151 bbs = get_loop_body (loop);
152 for (i = 0; i < loop->num_nodes; i++)
153 fprintf (file, " %d", bbs[i]->index);
154 free (bbs);
155 fprintf (file, "\n");
156
157 if (loop_dump_aux)
158 loop_dump_aux (loop, file, verbose);
159}
160
161/* Dump the loop information about loops to the stream FILE,
162 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
163
164void
165flow_loops_dump (FILE *file, void (*loop_dump_aux) (const class loop *, FILE *, int), int verbose)
166{
167 if (!current_loops((cfun + 0)->x_current_loops) || ! file)
168 return;
169
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun(cfun + 0)));
171
172 for (auto loop : loops_list (cfun(cfun + 0), LI_INCLUDE_ROOT))
173 {
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
175 }
176
177 if (verbose)
178 flow_loops_cfg_dump (file);
179}
180
181/* Free data allocated for LOOP. */
182
183void
184flow_loop_free (class loop *loop)
185{
186 struct loop_exit *exit, *next;
187
188 vec_free (loop->superloops);
189
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
195 {
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
199 }
200
201 ggc_free (loop->exits);
202 ggc_free (loop);
203}
204
205/* Free all the memory allocated for LOOPS. */
206
207void
208flow_loops_free (struct loops *loops)
209{
210 if (loops->larray)
211 {
212 unsigned i;
213 loop_p loop;
214
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)for (i = 0; vec_safe_iterate ((loops->larray), (i), &(
loop)); ++(i))
217 {
218 if (!loop)
219 continue;
220
221 flow_loop_free (loop);
222 }
223
224 vec_free (loops->larray);
225 }
226}
227
228/* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
230
231int
232flow_loop_nodes_find (basic_block header, class loop *loop)
233{
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
238
239 header->loop_father = loop;
240
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)for ((latch_ei) = ei_start_1 (&((loop->header->preds
))); ei_cond ((latch_ei), &(latch)); ei_next (&(latch_ei
)))
242 {
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
246
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
250
251 while (!stack.is_empty ())
252 {
253 basic_block node;
254 edge e;
255 edge_iterator ei;
256
257 node = stack.pop ();
258
259 FOR_EACH_EDGE (e, ei, node->preds)for ((ei) = ei_start_1 (&((node->preds))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
260 {
261 basic_block ancestor = e->src;
262
263 if (ancestor->loop_father != loop)
264 {
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
268 }
269 }
270 }
271 }
272 stack.release ();
273
274 return num_nodes;
275}
276
277/* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280static void
281establish_preds (class loop *loop, class loop *father)
282{
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
14
Calling 'vec_alloc<loop *, va_gc>'
22
Returning from 'vec_alloc<loop *, va_gc>'
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)for (i = 0; vec_safe_iterate ((father->superloops), (i), &
(ploop)); ++(i))
23
Loop condition is false. Execution continues on line 291
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
24
Called C++ object pointer is null
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295}
296
297/* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. If AFTER is non-null
300 then it's expected it's a pointer into FATHERs inner sibling
301 list and LOOP is added behind AFTER, otherwise it's added in front
302 of FATHERs siblings. */
303
304void
305flow_loop_tree_node_add (class loop *father, class loop *loop,
306 class loop *after)
307{
308 if (after
11.1
'after' is null
11.1
'after' is null
)
12
Taking false branch
309 {
310 loop->next = after->next;
311 after->next = loop;
312 }
313 else
314 {
315 loop->next = father->inner;
316 father->inner = loop;
317 }
318
319 establish_preds (loop, father);
13
Calling 'establish_preds'
320}
321
322/* Remove LOOP from the loop hierarchy tree. */
323
324void
325flow_loop_tree_node_remove (class loop *loop)
326{
327 class loop *prev, *father;
328
329 father = loop_outer (loop);
330
331 /* Remove loop from the list of sons. */
332 if (father->inner == loop)
333 father->inner = loop->next;
334 else
335 {
336 for (prev = father->inner; prev->next != loop; prev = prev->next)
337 continue;
338 prev->next = loop->next;
339 }
340
341 loop->superloops = NULLnullptr;
342}
343
344/* Allocates and returns new loop structure. */
345
346class loop *
347alloc_loop (void)
348{
349 class loop *loop = ggc_cleared_alloc<class loop> ();
350
351 loop->exits = ggc_cleared_alloc<loop_exit> ();
352 loop->exits->next = loop->exits->prev = loop->exits;
353 loop->can_be_parallel = false;
354 loop->constraints = 0;
355 loop->nb_iterations_upper_bound = 0;
356 loop->nb_iterations_likely_upper_bound = 0;
357 loop->nb_iterations_estimate = 0;
358 return loop;
359}
360
361/* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
362 (including the root of the loop tree). */
363
364void
365init_loops_structure (struct function *fn,
366 struct loops *loops, unsigned num_loops)
367{
368 class loop *root;
369
370 memset (loops, 0, sizeof *loops);
371 vec_alloc (loops->larray, num_loops);
372
373 /* Dummy loop containing whole function. */
374 root = alloc_loop ();
375 root->num_nodes = n_basic_blocks_for_fn (fn)((fn)->cfg->x_n_basic_blocks);
376 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn)((fn)->cfg->x_exit_block_ptr);
377 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn)((fn)->cfg->x_entry_block_ptr);
378 ENTRY_BLOCK_PTR_FOR_FN (fn)((fn)->cfg->x_entry_block_ptr)->loop_father = root;
379 EXIT_BLOCK_PTR_FOR_FN (fn)((fn)->cfg->x_exit_block_ptr)->loop_father = root;
380
381 loops->larray->quick_push (root);
382 loops->tree_root = root;
383}
384
385/* Returns whether HEADER is a loop header. */
386
387bool
388bb_loop_header_p (basic_block header)
389{
390 edge_iterator ei;
391 edge e;
392
393 /* If we have an abnormal predecessor, do not consider the
394 loop (not worth the problems). */
395 if (bb_has_abnormal_pred (header))
396 return false;
397
398 /* Look for back edges where a predecessor is dominated
399 by this block. A natural loop has a single entry
400 node (header) that dominates all the nodes in the
401 loop. It also has single back edge to the header
402 from a latch node. */
403 FOR_EACH_EDGE (e, ei, header->preds)for ((ei) = ei_start_1 (&((header->preds))); ei_cond (
(ei), &(e)); ei_next (&(ei)))
404 {
405 basic_block latch = e->src;
406 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr)
407 && dominated_by_p (CDI_DOMINATORS, latch, header))
408 return true;
409 }
410
411 return false;
412}
413
414/* Find all the natural loops in the function and save in LOOPS structure and
415 recalculate loop_father information in basic block structures.
416 If LOOPS is non-NULL then the loop structures for already recorded loops
417 will be re-used and their number will not change. We assume that no
418 stale loops exist in LOOPS.
419 When LOOPS is NULL it is allocated and re-built from scratch.
420 Return the built LOOPS structure. */
421
422struct loops *
423flow_loops_find (struct loops *loops)
424{
425 bool from_scratch = (loops == NULLnullptr);
1
Assuming the condition is false
426 int *rc_order;
427 int b;
428 unsigned i;
429
430 /* Ensure that the dominators are computed. */
431 calculate_dominance_info (CDI_DOMINATORS);
432
433 if (!loops
1.1
'loops' is non-null
1.1
'loops' is non-null
)
2
Taking false branch
434 {
435 loops = ggc_cleared_alloc<struct loops> ();
436 init_loops_structure (cfun(cfun + 0), loops, 1);
437 }
438
439 /* Ensure that loop exits were released. */
440 gcc_assert (loops->exits == NULL)((void)(!(loops->exits == nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 440, __FUNCTION__), 0 : 0))
;
3
Assuming the condition is true
4
'?' condition is false
441
442 /* Taking care of this degenerate case makes the rest of
443 this code simpler. */
444 if (n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks) == NUM_FIXED_BLOCKS(2))
5
Assuming field 'x_n_basic_blocks' is not equal to NUM_FIXED_BLOCKS
6
Taking false branch
445 return loops;
446
447 /* The root loop node contains all basic-blocks. */
448 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks);
449
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun))((int *) xmalloc (sizeof (int) * ((((cfun + 0))->cfg->x_n_basic_blocks
))))
;
453 pre_and_rev_post_order_compute (NULLnullptr, rc_order, false);
454
455 /* Gather all loop headers in reverse completion order and allocate
456 loop structures for loops that are not already present. */
457 auto_vec<loop_p> larray (loops->larray->length ());
458 for (b = 0; b < n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks) - NUM_FIXED_BLOCKS(2); b++)
7
Assuming the condition is false
8
Loop condition is false. Execution continues on line 500
459 {
460 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b])((*(((cfun + 0))->cfg->x_basic_block_info))[(rc_order[b
])])
;
461 if (bb_loop_header_p (header))
462 {
463 class loop *loop;
464
465 /* The current active loop tree has valid loop-fathers for
466 header blocks. */
467 if (!from_scratch
468 && header->loop_father->header == header)
469 {
470 loop = header->loop_father;
471 /* If we found an existing loop remove it from the
472 loop tree. It is going to be inserted again
473 below. */
474 flow_loop_tree_node_remove (loop);
475 }
476 else
477 {
478 /* Otherwise allocate a new loop structure for the loop. */
479 loop = alloc_loop ();
480 /* ??? We could re-use unused loop slots here. */
481 loop->num = loops->larray->length ();
482 vec_safe_push (loops->larray, loop);
483 loop->header = header;
484
485 if (!from_scratch
486 && dump_file && (dump_flags & TDF_DETAILS))
487 fprintf (dump_file, "flow_loops_find: discovered new "
488 "loop %d with header %d\n",
489 loop->num, header->index);
490 }
491 /* Reset latch, we recompute it below. */
492 loop->latch = NULLnullptr;
493 larray.safe_push (loop);
494 }
495
496 /* Make blocks part of the loop root node at start. */
497 header->loop_father = loops->tree_root;
498 }
499
500 free (rc_order);
501
502 /* Now iterate over the loops found, insert them into the loop tree
503 and assign basic-block ownership. */
504 for (i = 0; i < larray.length (); ++i)
9
Assuming the condition is true
10
Loop condition is true. Entering loop body
505 {
506 class loop *loop = larray[i];
507 basic_block header = loop->header;
508 edge_iterator ei;
509 edge e;
510
511 flow_loop_tree_node_add (header->loop_father, loop);
11
Calling 'flow_loop_tree_node_add'
512 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
513
514 /* Look for the latch for this header block, if it has just a
515 single one. */
516 FOR_EACH_EDGE (e, ei, header->preds)for ((ei) = ei_start_1 (&((header->preds))); ei_cond (
(ei), &(e)); ei_next (&(ei)))
517 {
518 basic_block latch = e->src;
519
520 if (flow_bb_inside_loop_p (loop, latch))
521 {
522 if (loop->latch != NULLnullptr)
523 {
524 /* More than one latch edge. */
525 loop->latch = NULLnullptr;
526 break;
527 }
528 loop->latch = latch;
529 }
530 }
531 }
532
533 return loops;
534}
535
536/* qsort helper for sort_sibling_loops. */
537
538static int *sort_sibling_loops_cmp_rpo;
539static int
540sort_sibling_loops_cmp (const void *la_, const void *lb_)
541{
542 const class loop *la = *(const class loop * const *)la_;
543 const class loop *lb = *(const class loop * const *)lb_;
544 return (sort_sibling_loops_cmp_rpo[la->header->index]
545 - sort_sibling_loops_cmp_rpo[lb->header->index]);
546}
547
548/* Sort sibling loops in RPO order. */
549
550void
551sort_sibling_loops (function *fn)
552{
553 /* Match flow_loops_find in the order we sort sibling loops. */
554 sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun))((int *) xmalloc (sizeof (int) * ((((cfun + 0))->cfg->x_last_basic_block
))))
;
555 int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun))((int *) xmalloc (sizeof (int) * ((((cfun + 0))->cfg->x_n_basic_blocks
))))
;
556 pre_and_rev_post_order_compute_fn (fn, NULLnullptr, rc_order, false);
557 for (int i = 0; i < n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks) - NUM_FIXED_BLOCKS(2); ++i)
558 sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
559 free (rc_order);
560
561 auto_vec<loop_p, 3> siblings;
562 for (auto loop : loops_list (fn, LI_INCLUDE_ROOT))
563 if (loop->inner && loop->inner->next)
564 {
565 loop_p sibling = loop->inner;
566 do
567 {
568 siblings.safe_push (sibling);
569 sibling = sibling->next;
570 }
571 while (sibling);
572 siblings.qsort (sort_sibling_loops_cmp)qsort (sort_sibling_loops_cmp);
573 loop_p *siblingp = &loop->inner;
574 for (unsigned i = 0; i < siblings.length (); ++i)
575 {
576 *siblingp = siblings[i];
577 siblingp = &(*siblingp)->next;
578 }
579 *siblingp = NULLnullptr;
580 siblings.truncate (0);
581 }
582
583 free (sort_sibling_loops_cmp_rpo);
584 sort_sibling_loops_cmp_rpo = NULLnullptr;
585}
586
587/* Ratio of frequencies of edges so that one of more latch edges is
588 considered to belong to inner loop with same header. */
589#define HEAVY_EDGE_RATIO8 8
590
591/* Minimum number of samples for that we apply
592 find_subloop_latch_edge_by_profile heuristics. */
593#define HEAVY_EDGE_MIN_SAMPLES10 10
594
595/* If the profile info is available, finds an edge in LATCHES that much more
596 frequent than the remaining edges. Returns such an edge, or NULL if we do
597 not find one.
598
599 We do not use guessed profile here, only the measured one. The guessed
600 profile is usually too flat and unreliable for this (and it is mostly based
601 on the loop structure of the program, so it does not make much sense to
602 derive the loop structure from it). */
603
604static edge
605find_subloop_latch_edge_by_profile (vec<edge> latches)
606{
607 unsigned i;
608 edge e, me = NULLnullptr;
609 profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
610
611 FOR_EACH_VEC_ELT (latches, i, e)for (i = 0; (latches).iterate ((i), &(e)); ++(i))
612 {
613 if (e->count ()> mcount)
614 {
615 me = e;
616 mcount = e->count();
617 }
618 tcount += e->count();
619 }
620
621 if (!tcount.initialized_p () || !(tcount.ipa () > HEAVY_EDGE_MIN_SAMPLES10)
622 || (tcount - mcount) * HEAVY_EDGE_RATIO8 > tcount)
623 return NULLnullptr;
624
625 if (dump_file)
626 fprintf (dump_file,
627 "Found latch edge %d -> %d using profile information.\n",
628 me->src->index, me->dest->index);
629 return me;
630}
631
632/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
633 on the structure of induction variables. Returns this edge, or NULL if we
634 do not find any.
635
636 We are quite conservative, and look just for an obvious simple innermost
637 loop (which is the case where we would lose the most performance by not
638 disambiguating the loop). More precisely, we look for the following
639 situation: The source of the chosen latch edge dominates sources of all
640 the other latch edges. Additionally, the header does not contain a phi node
641 such that the argument from the chosen edge is equal to the argument from
642 another edge. */
643
644static edge
645find_subloop_latch_edge_by_ivs (class loop *loop ATTRIBUTE_UNUSED__attribute__ ((__unused__)), vec<edge> latches)
646{
647 edge e, latch = latches[0];
648 unsigned i;
649 gphi *phi;
650 gphi_iterator psi;
651 tree lop;
652 basic_block bb;
653
654 /* Find the candidate for the latch edge. */
655 for (i = 1; latches.iterate (i, &e); i++)
656 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
657 latch = e;
658
659 /* Verify that it dominates all the latch edges. */
660 FOR_EACH_VEC_ELT (latches, i, e)for (i = 0; (latches).iterate ((i), &(e)); ++(i))
661 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
662 return NULLnullptr;
663
664 /* Check for a phi node that would deny that this is a latch edge of
665 a subloop. */
666 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
667 {
668 phi = psi.phi ();
669 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch)gimple_phi_arg_def (((phi)), ((latch)->dest_idx));
670
671 /* Ignore the values that are not changed inside the subloop. */
672 if (TREE_CODE (lop)((enum tree_code) (lop)->base.code) != SSA_NAME
673 || SSA_NAME_DEF_STMT (lop)(tree_check ((lop), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 673, __FUNCTION__, (SSA_NAME)))->ssa_name.def_stmt
== phi)
674 continue;
675 bb = gimple_bb (SSA_NAME_DEF_STMT (lop)(tree_check ((lop), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 675, __FUNCTION__, (SSA_NAME)))->ssa_name.def_stmt
);
676 if (!bb || !flow_bb_inside_loop_p (loop, bb))
677 continue;
678
679 FOR_EACH_VEC_ELT (latches, i, e)for (i = 0; (latches).iterate ((i), &(e)); ++(i))
680 if (e != latch
681 && PHI_ARG_DEF_FROM_EDGE (phi, e)gimple_phi_arg_def (((phi)), ((e)->dest_idx)) == lop)
682 return NULLnullptr;
683 }
684
685 if (dump_file)
686 fprintf (dump_file,
687 "Found latch edge %d -> %d using iv structure.\n",
688 latch->src->index, latch->dest->index);
689 return latch;
690}
691
692/* If we can determine that one of the several latch edges of LOOP behaves
693 as a latch edge of a separate subloop, returns this edge. Otherwise
694 returns NULL. */
695
696static edge
697find_subloop_latch_edge (class loop *loop)
698{
699 vec<edge> latches = get_loop_latch_edges (loop);
700 edge latch = NULLnullptr;
701
702 if (latches.length () > 1)
703 {
704 latch = find_subloop_latch_edge_by_profile (latches);
705
706 if (!latch
707 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
708 should use cfghook for this, but it is hard to imagine it would
709 be useful elsewhere. */
710 && current_ir_type () == IR_GIMPLE)
711 latch = find_subloop_latch_edge_by_ivs (loop, latches);
712 }
713
714 latches.release ();
715 return latch;
716}
717
718/* Callback for make_forwarder_block. Returns true if the edge E is marked
719 in the set MFB_REIS_SET. */
720
721static hash_set<edge> *mfb_reis_set;
722static bool
723mfb_redirect_edges_in_set (edge e)
724{
725 return mfb_reis_set->contains (e);
726}
727
728/* Creates a subloop of LOOP with latch edge LATCH. */
729
730static void
731form_subloop (class loop *loop, edge latch)
732{
733 edge_iterator ei;
734 edge e, new_entry;
735 class loop *new_loop;
736
737 mfb_reis_set = new hash_set<edge>;
738 FOR_EACH_EDGE (e, ei, loop->header->preds)for ((ei) = ei_start_1 (&((loop->header->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
739 {
740 if (e != latch)
741 mfb_reis_set->add (e);
742 }
743 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
744 NULLnullptr);
745 delete mfb_reis_set;
746
747 loop->header = new_entry->src;
748
749 /* Find the blocks and subloops that belong to the new loop, and add it to
750 the appropriate place in the loop tree. */
751 new_loop = alloc_loop ();
752 new_loop->header = new_entry->dest;
753 new_loop->latch = latch->src;
754 add_loop (new_loop, loop);
755}
756
757/* Make all the latch edges of LOOP to go to a single forwarder block --
758 a new latch of LOOP. */
759
760static void
761merge_latch_edges (class loop *loop)
762{
763 vec<edge> latches = get_loop_latch_edges (loop);
764 edge latch, e;
765 unsigned i;
766
767 gcc_assert (latches.length () > 0)((void)(!(latches.length () > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 767, __FUNCTION__), 0 : 0))
;
768
769 if (latches.length () == 1)
770 loop->latch = latches[0]->src;
771 else
772 {
773 if (dump_file)
774 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
775
776 mfb_reis_set = new hash_set<edge>;
777 FOR_EACH_VEC_ELT (latches, i, e)for (i = 0; (latches).iterate ((i), &(e)); ++(i))
778 mfb_reis_set->add (e);
779 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
780 NULLnullptr);
781 delete mfb_reis_set;
782
783 loop->header = latch->dest;
784 loop->latch = latch->src;
785 }
786
787 latches.release ();
788}
789
790/* LOOP may have several latch edges. Transform it into (possibly several)
791 loops with single latch edge. */
792
793static void
794disambiguate_multiple_latches (class loop *loop)
795{
796 edge e;
797
798 /* We eliminate the multiple latches by splitting the header to the forwarder
799 block F and the rest R, and redirecting the edges. There are two cases:
800
801 1) If there is a latch edge E that corresponds to a subloop (we guess
802 that based on profile -- if it is taken much more often than the
803 remaining edges; and on trees, using the information about induction
804 variables of the loops), we redirect E to R, all the remaining edges to
805 F, then rescan the loops and try again for the outer loop.
806 2) If there is no such edge, we redirect all latch edges to F, and the
807 entry edges to R, thus making F the single latch of the loop. */
808
809 if (dump_file)
810 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
811 loop->num);
812
813 /* During latch merging, we may need to redirect the entry edges to a new
814 block. This would cause problems if the entry edge was the one from the
815 entry block. To avoid having to handle this case specially, split
816 such entry edge. */
817 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr), loop->header);
818 if (e)
819 split_edge (e);
820
821 while (1)
822 {
823 e = find_subloop_latch_edge (loop);
824 if (!e)
825 break;
826
827 form_subloop (loop, e);
828 }
829
830 merge_latch_edges (loop);
831}
832
833/* Split loops with multiple latch edges. */
834
835void
836disambiguate_loops_with_multiple_latches (void)
837{
838 for (auto loop : loops_list (cfun(cfun + 0), 0))
839 {
840 if (!loop->latch)
841 disambiguate_multiple_latches (loop);
842 }
843}
844
845/* Return nonzero if basic block BB belongs to LOOP. */
846bool
847flow_bb_inside_loop_p (const class loop *loop, const_basic_block bb)
848{
849 class loop *source_loop;
850
851 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr)
852 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
853 return 0;
854
855 source_loop = bb->loop_father;
856 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
857}
858
859/* Enumeration predicate for get_loop_body_with_size. */
860static bool
861glb_enum_p (const_basic_block bb, const void *glb_loop)
862{
863 const class loop *const loop = (const class loop *) glb_loop;
864 return (bb != loop->header
865 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
866}
867
868/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
869 order against direction of edges from latch. Specially, if
870 header != latch, latch is the 1-st block. LOOP cannot be the fake
871 loop tree root, and its size must be at most MAX_SIZE. The blocks
872 in the LOOP body are stored to BODY, and the size of the LOOP is
873 returned. */
874
875unsigned
876get_loop_body_with_size (const class loop *loop, basic_block *body,
877 unsigned max_size)
878{
879 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
880 body, max_size, loop);
881}
882
883/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
884 order against direction of edges from latch. Specially, if
885 header != latch, latch is the 1-st block. */
886
887basic_block *
888get_loop_body (const class loop *loop)
889{
890 basic_block *body, bb;
891 unsigned tv = 0;
892
893 gcc_assert (loop->num_nodes)((void)(!(loop->num_nodes) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 893, __FUNCTION__), 0 : 0))
;
894
895 body = XNEWVEC (basic_block, loop->num_nodes)((basic_block *) xmalloc (sizeof (basic_block) * (loop->num_nodes
)))
;
896
897 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
898 {
899 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
900 special-case the fake loop that contains the whole function. */
901 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun))((void)(!(loop->num_nodes == (unsigned) (((cfun + 0))->
cfg->x_n_basic_blocks)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 901, __FUNCTION__), 0 : 0))
;
902 body[tv++] = loop->header;
903 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr);
904 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
905 body[tv++] = bb;
906 }
907 else
908 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
909
910 gcc_assert (tv == loop->num_nodes)((void)(!(tv == loop->num_nodes) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 910, __FUNCTION__), 0 : 0))
;
911 return body;
912}
913
914/* Fills dominance descendants inside LOOP of the basic block BB into
915 array TOVISIT from index *TV. */
916
917static void
918fill_sons_in_loop (const class loop *loop, basic_block bb,
919 basic_block *tovisit, int *tv)
920{
921 basic_block son, postpone = NULLnullptr;
922
923 tovisit[(*tv)++] = bb;
924 for (son = first_dom_son (CDI_DOMINATORS, bb);
925 son;
926 son = next_dom_son (CDI_DOMINATORS, son))
927 {
928 if (!flow_bb_inside_loop_p (loop, son))
929 continue;
930
931 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
932 {
933 postpone = son;
934 continue;
935 }
936 fill_sons_in_loop (loop, son, tovisit, tv);
937 }
938
939 if (postpone)
940 fill_sons_in_loop (loop, postpone, tovisit, tv);
941}
942
943/* Gets body of a LOOP (that must be different from the outermost loop)
944 sorted by dominance relation. Additionally, if a basic block s dominates
945 the latch, then only blocks dominated by s are be after it. */
946
947basic_block *
948get_loop_body_in_dom_order (const class loop *loop)
949{
950 basic_block *tovisit;
951 int tv;
952
953 gcc_assert (loop->num_nodes)((void)(!(loop->num_nodes) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 953, __FUNCTION__), 0 : 0))
;
954
955 tovisit = XNEWVEC (basic_block, loop->num_nodes)((basic_block *) xmalloc (sizeof (basic_block) * (loop->num_nodes
)))
;
956
957 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun))((void)(!(loop->latch != (((cfun + 0))->cfg->x_exit_block_ptr
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 957, __FUNCTION__), 0 : 0))
;
958
959 tv = 0;
960 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
961
962 gcc_assert (tv == (int) loop->num_nodes)((void)(!(tv == (int) loop->num_nodes) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 962, __FUNCTION__), 0 : 0))
;
963
964 return tovisit;
965}
966
967/* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
968
969basic_block *
970get_loop_body_in_custom_order (const class loop *loop,
971 int (*bb_comparator) (const void *, const void *))
972{
973 basic_block *bbs = get_loop_body (loop);
974
975 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator)gcc_qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator
)
;
976
977 return bbs;
978}
979
980/* Same as above, but use gcc_sort_r instead of qsort. */
981
982basic_block *
983get_loop_body_in_custom_order (const class loop *loop, void *data,
984 int (*bb_comparator) (const void *, const void *, void *))
985{
986 basic_block *bbs = get_loop_body (loop);
987
988 gcc_sort_r (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator, data);
989
990 return bbs;
991}
992
993/* Get body of a LOOP in breadth first sort order. */
994
995basic_block *
996get_loop_body_in_bfs_order (const class loop *loop)
997{
998 basic_block *blocks;
999 basic_block bb;
1000 unsigned int i = 1;
1001 unsigned int vc = 0;
1002
1003 gcc_assert (loop->num_nodes)((void)(!(loop->num_nodes) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1003, __FUNCTION__), 0 : 0))
;
1004 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun))((void)(!(loop->latch != (((cfun + 0))->cfg->x_exit_block_ptr
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1004, __FUNCTION__), 0 : 0))
;
1005
1006 blocks = XNEWVEC (basic_block, loop->num_nodes)((basic_block *) xmalloc (sizeof (basic_block) * (loop->num_nodes
)))
;
1007 auto_bitmap visited;
1008 blocks[0] = loop->header;
1009 bitmap_set_bit (visited, loop->header->index);
1010 while (i < loop->num_nodes)
1011 {
1012 edge e;
1013 edge_iterator ei;
1014 gcc_assert (i > vc)((void)(!(i > vc) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1014, __FUNCTION__), 0 : 0))
;
1015 bb = blocks[vc++];
1016
1017 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1018 {
1019 if (flow_bb_inside_loop_p (loop, e->dest))
1020 {
1021 /* This bb is now visited. */
1022 if (bitmap_set_bit (visited, e->dest->index))
1023 blocks[i++] = e->dest;
1024 }
1025 }
1026 }
1027
1028 return blocks;
1029}
1030
1031/* Hash function for struct loop_exit. */
1032
1033hashval_t
1034loop_exit_hasher::hash (loop_exit *exit)
1035{
1036 return htab_hash_pointer (exit->e);
1037}
1038
1039/* Equality function for struct loop_exit. Compares with edge. */
1040
1041bool
1042loop_exit_hasher::equal (loop_exit *exit, edge e)
1043{
1044 return exit->e == e;
1045}
1046
1047/* Frees the list of loop exit descriptions EX. */
1048
1049void
1050loop_exit_hasher::remove (loop_exit *exit)
1051{
1052 loop_exit *next;
1053 for (; exit; exit = next)
1054 {
1055 next = exit->next_e;
1056
1057 exit->next->prev = exit->prev;
1058 exit->prev->next = exit->next;
1059
1060 ggc_free (exit);
1061 }
1062}
1063
1064/* Returns the list of records for E as an exit of a loop. */
1065
1066static struct loop_exit *
1067get_exit_descriptions (edge e)
1068{
1069 return current_loops((cfun + 0)->x_current_loops)->exits->find_with_hash (e, htab_hash_pointer (e));
1070}
1071
1072/* Updates the lists of loop exits in that E appears.
1073 If REMOVED is true, E is being removed, and we
1074 just remove it from the lists of exits.
1075 If NEW_EDGE is true and E is not a loop exit, we
1076 do not try to remove it from loop exit lists. */
1077
1078void
1079rescan_loop_exit (edge e, bool new_edge, bool removed)
1080{
1081 struct loop_exit *exits = NULLnullptr, *exit;
1082 class loop *aloop, *cloop;
1083
1084 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1085 return;
1086
1087 if (!removed
1088 && e->src->loop_father != NULLnullptr
1089 && e->dest->loop_father != NULLnullptr
1090 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1091 {
1092 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1093 for (aloop = e->src->loop_father;
1094 aloop != cloop;
1095 aloop = loop_outer (aloop))
1096 {
1097 exit = ggc_alloc<loop_exit> ();
1098 exit->e = e;
1099
1100 exit->next = aloop->exits->next;
1101 exit->prev = aloop->exits;
1102 exit->next->prev = exit;
1103 exit->prev->next = exit;
1104
1105 exit->next_e = exits;
1106 exits = exit;
1107 }
1108 }
1109
1110 if (!exits && new_edge)
1111 return;
1112
1113 loop_exit **slot
1114 = current_loops((cfun + 0)->x_current_loops)->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1115 exits ? INSERT : NO_INSERT);
1116 if (!slot)
1117 return;
1118
1119 if (exits)
1120 {
1121 if (*slot)
1122 loop_exit_hasher::remove (*slot);
1123 *slot = exits;
1124 }
1125 else
1126 current_loops((cfun + 0)->x_current_loops)->exits->clear_slot (slot);
1127}
1128
1129/* For each loop, record list of exit edges, and start maintaining these
1130 lists. */
1131
1132void
1133record_loop_exits (void)
1134{
1135 basic_block bb;
1136 edge_iterator ei;
1137 edge e;
1138
1139 if (!current_loops((cfun + 0)->x_current_loops))
1140 return;
1141
1142 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1143 return;
1144 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1145
1146 gcc_assert (current_loops->exits == NULL)((void)(!(((cfun + 0)->x_current_loops)->exits == nullptr
) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1146, __FUNCTION__), 0 : 0))
;
1147 current_loops((cfun + 0)->x_current_loops)->exits
1148 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun(cfun + 0)));
1149
1150 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1151 {
1152 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1153 {
1154 rescan_loop_exit (e, true, false);
1155 }
1156 }
1157}
1158
1159/* Dumps information about the exit in *SLOT to FILE.
1160 Callback for htab_traverse. */
1161
1162int
1163dump_recorded_exit (loop_exit **slot, FILE *file)
1164{
1165 struct loop_exit *exit = *slot;
1166 unsigned n = 0;
1167 edge e = exit->e;
1168
1169 for (; exit != NULLnullptr; exit = exit->next_e)
1170 n++;
1171
1172 fprintf (file, "Edge %d->%d exits %u loops\n",
1173 e->src->index, e->dest->index, n);
1174
1175 return 1;
1176}
1177
1178/* Dumps the recorded exits of loops to FILE. */
1179
1180extern void dump_recorded_exits (FILE *);
1181void
1182dump_recorded_exits (FILE *file)
1183{
1184 if (!current_loops((cfun + 0)->x_current_loops)->exits)
1185 return;
1186 current_loops((cfun + 0)->x_current_loops)->exits->traverse<FILE *, dump_recorded_exit> (file);
1187}
1188
1189/* Releases lists of loop exits. */
1190
1191void
1192release_recorded_exits (function *fn)
1193{
1194 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS))((void)(!(loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1194, __FUNCTION__), 0 : 0))
;
1195 loops_for_fn (fn)->exits->empty ();
1196 loops_for_fn (fn)->exits = NULLnullptr;
1197 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1198}
1199
1200/* Returns the list of the exit edges of a LOOP. */
1201
1202auto_vec<edge>
1203get_loop_exit_edges (const class loop *loop, basic_block *body)
1204{
1205 auto_vec<edge> edges;
1206 edge e;
1207 unsigned i;
1208 edge_iterator ei;
1209 struct loop_exit *exit;
1210
1211 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun))((void)(!(loop->latch != (((cfun + 0))->cfg->x_exit_block_ptr
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1211, __FUNCTION__), 0 : 0))
;
1212
1213 /* If we maintain the lists of exits, use them. Otherwise we must
1214 scan the body of the loop. */
1215 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1216 {
1217 for (exit = loop->exits->next; exit->e; exit = exit->next)
1218 edges.safe_push (exit->e);
1219 }
1220 else
1221 {
1222 bool body_from_caller = true;
1223 if (!body)
1224 {
1225 body = get_loop_body (loop);
1226 body_from_caller = false;
1227 }
1228 for (i = 0; i < loop->num_nodes; i++)
1229 FOR_EACH_EDGE (e, ei, body[i]->succs)for ((ei) = ei_start_1 (&((body[i]->succs))); ei_cond (
(ei), &(e)); ei_next (&(ei)))
1230 {
1231 if (!flow_bb_inside_loop_p (loop, e->dest))
1232 edges.safe_push (e);
1233 }
1234 if (!body_from_caller)
1235 free (body);
1236 }
1237
1238 return edges;
1239}
1240
1241/* Counts the number of conditional branches inside LOOP. */
1242
1243unsigned
1244num_loop_branches (const class loop *loop)
1245{
1246 unsigned i, n;
1247 basic_block * body;
1248
1249 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun))((void)(!(loop->latch != (((cfun + 0))->cfg->x_exit_block_ptr
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1249, __FUNCTION__), 0 : 0))
;
1250
1251 body = get_loop_body (loop);
1252 n = 0;
1253 for (i = 0; i < loop->num_nodes; i++)
1254 if (EDGE_COUNT (body[i]->succs)vec_safe_length (body[i]->succs) >= 2)
1255 n++;
1256 free (body);
1257
1258 return n;
1259}
1260
1261/* Adds basic block BB to LOOP. */
1262void
1263add_bb_to_loop (basic_block bb, class loop *loop)
1264{
1265 unsigned i;
1266 loop_p ploop;
1267 edge_iterator ei;
1268 edge e;
1269
1270 gcc_assert (bb->loop_father == NULL)((void)(!(bb->loop_father == nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1270, __FUNCTION__), 0 : 0))
;
1271 bb->loop_father = loop;
1272 loop->num_nodes++;
1273 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)for (i = 0; vec_safe_iterate ((loop->superloops), (i), &
(ploop)); ++(i))
1274 ploop->num_nodes++;
1275
1276 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1277 {
1278 rescan_loop_exit (e, true, false);
1279 }
1280 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1281 {
1282 rescan_loop_exit (e, true, false);
1283 }
1284}
1285
1286/* Remove basic block BB from loops. */
1287void
1288remove_bb_from_loops (basic_block bb)
1289{
1290 unsigned i;
1291 class loop *loop = bb->loop_father;
1292 loop_p ploop;
1293 edge_iterator ei;
1294 edge e;
1295
1296 gcc_assert (loop != NULL)((void)(!(loop != nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1296, __FUNCTION__), 0 : 0))
;
1297 loop->num_nodes--;
1298 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)for (i = 0; vec_safe_iterate ((loop->superloops), (i), &
(ploop)); ++(i))
1299 ploop->num_nodes--;
1300 bb->loop_father = NULLnullptr;
1301
1302 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1303 {
1304 rescan_loop_exit (e, false, true);
1305 }
1306 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1307 {
1308 rescan_loop_exit (e, false, true);
1309 }
1310}
1311
1312/* Finds nearest common ancestor in loop tree for given loops. */
1313class loop *
1314find_common_loop (class loop *loop_s, class loop *loop_d)
1315{
1316 unsigned sdepth, ddepth;
1317
1318 if (!loop_s) return loop_d;
1319 if (!loop_d) return loop_s;
1320
1321 sdepth = loop_depth (loop_s);
1322 ddepth = loop_depth (loop_d);
1323
1324 if (sdepth < ddepth)
1325 loop_d = (*loop_d->superloops)[sdepth];
1326 else if (sdepth > ddepth)
1327 loop_s = (*loop_s->superloops)[ddepth];
1328
1329 while (loop_s != loop_d)
1330 {
1331 loop_s = loop_outer (loop_s);
1332 loop_d = loop_outer (loop_d);
1333 }
1334 return loop_s;
1335}
1336
1337/* Removes LOOP from structures and frees its data. */
1338
1339void
1340delete_loop (class loop *loop)
1341{
1342 /* Remove the loop from structure. */
1343 flow_loop_tree_node_remove (loop);
1344
1345 /* Remove loop from loops array. */
1346 (*current_loops((cfun + 0)->x_current_loops)->larray)[loop->num] = NULLnullptr;
1347
1348 /* Free loop data. */
1349 flow_loop_free (loop);
1350}
1351
1352/* Cancels the LOOP; it must be innermost one. */
1353
1354static void
1355cancel_loop (class loop *loop)
1356{
1357 basic_block *bbs;
1358 unsigned i;
1359 class loop *outer = loop_outer (loop);
1360
1361 gcc_assert (!loop->inner)((void)(!(!loop->inner) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1361, __FUNCTION__), 0 : 0))
;
1362
1363 /* Move blocks up one level (they should be removed as soon as possible). */
1364 bbs = get_loop_body (loop);
1365 for (i = 0; i < loop->num_nodes; i++)
1366 bbs[i]->loop_father = outer;
1367
1368 free (bbs);
1369 delete_loop (loop);
1370}
1371
1372/* Cancels LOOP and all its subloops. */
1373void
1374cancel_loop_tree (class loop *loop)
1375{
1376 while (loop->inner)
1377 cancel_loop_tree (loop->inner);
1378 cancel_loop (loop);
1379}
1380
1381/* Disable warnings about missing quoting in GCC diagnostics for
1382 the verification errors. Their format strings don't follow GCC
1383 diagnostic conventions and the calls are ultimately followed by
1384 a deliberate ICE triggered by a failed assertion. */
1385#if __GNUC__4 >= 10
1386# pragma GCC diagnostic push
1387# pragma GCC diagnostic ignored "-Wformat-diag"
1388#endif
1389
1390/* Checks that information about loops is correct
1391 -- sizes of loops are all right
1392 -- results of get_loop_body really belong to the loop
1393 -- loop header have just single entry edge and single latch edge
1394 -- loop latches have only single successor that is header of their loop
1395 -- irreducible loops are correctly marked
1396 -- the cached loop depth and loop father of each bb is correct
1397 */
1398DEBUG_FUNCTION__attribute__ ((__used__)) void
1399verify_loop_structure (void)
1400{
1401 unsigned *sizes, i, j;
1402 basic_block bb, *bbs;
1403 int err = 0;
1404 edge e;
1405 unsigned num = number_of_loops (cfun(cfun + 0));
1406 struct loop_exit *exit, *mexit;
1407 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1408
1409 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1410 {
1411 error ("loop verification on loop tree that needs fixup");
1412 err = 1;
1413 }
1414
1415 /* We need up-to-date dominators, compute or verify them. */
1416 if (!dom_available)
1417 calculate_dominance_info (CDI_DOMINATORS);
1418 else
1419 verify_dominators (CDI_DOMINATORS);
1420
1421 /* Check the loop tree root. */
1422 if (current_loops((cfun + 0)->x_current_loops)->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr)
1423 || current_loops((cfun + 0)->x_current_loops)->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr)
1424 || (current_loops((cfun + 0)->x_current_loops)->tree_root->num_nodes
1425 != (unsigned) n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks)))
1426 {
1427 error ("corrupt loop tree root");
1428 err = 1;
1429 }
1430
1431 /* Check the headers. */
1432 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1433 if (bb_loop_header_p (bb))
1434 {
1435 if (bb->loop_father->header == NULLnullptr)
1436 {
1437 error ("loop with header %d marked for removal", bb->index);
1438 err = 1;
1439 }
1440 else if (bb->loop_father->header != bb)
1441 {
1442 error ("loop with header %d not in loop tree", bb->index);
1443 err = 1;
1444 }
1445 }
1446 else if (bb->loop_father->header == bb)
1447 {
1448 error ("non-loop with header %d not marked for removal", bb->index);
1449 err = 1;
1450 }
1451
1452 /* Check the recorded loop father and sizes of loops. */
1453 auto_sbitmap visited (last_basic_block_for_fn (cfun)(((cfun + 0))->cfg->x_last_basic_block));
1454 bitmap_clear (visited);
1455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun))((basic_block *) xmalloc (sizeof (basic_block) * ((((cfun + 0
))->cfg->x_n_basic_blocks))))
;
1456 for (auto loop : loops_list (cfun(cfun + 0), LI_FROM_INNERMOST))
1457 {
1458 unsigned n;
1459
1460 if (loop->header == NULLnullptr)
1461 {
1462 error ("removed loop %d in loop tree", loop->num);
1463 err = 1;
1464 continue;
1465 }
1466
1467 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks));
1468 if (loop->num_nodes != n)
1469 {
1470 error ("size of loop %d should be %d, not %d",
1471 loop->num, n, loop->num_nodes);
1472 err = 1;
1473 }
1474
1475 for (j = 0; j < n; j++)
1476 {
1477 bb = bbs[j];
1478
1479 if (!flow_bb_inside_loop_p (loop, bb))
1480 {
1481 error ("bb %d does not belong to loop %d",
1482 bb->index, loop->num);
1483 err = 1;
1484 }
1485
1486 /* Ignore this block if it is in an inner loop. */
1487 if (bitmap_bit_p (visited, bb->index))
1488 continue;
1489 bitmap_set_bit (visited, bb->index);
1490
1491 if (bb->loop_father != loop)
1492 {
1493 error ("bb %d has father loop %d, should be loop %d",
1494 bb->index, bb->loop_father->num, loop->num);
1495 err = 1;
1496 }
1497 }
1498 }
1499 free (bbs);
1500
1501 /* Check headers and latches. */
1502 for (auto loop : loops_list (cfun(cfun + 0), 0))
1503 {
1504 i = loop->num;
1505 if (loop->header == NULLnullptr)
1506 continue;
1507 if (!bb_loop_header_p (loop->header))
1508 {
1509 error ("loop %d%'s header is not a loop header", i);
1510 err = 1;
1511 }
1512 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1513 && EDGE_COUNT (loop->header->preds)vec_safe_length (loop->header->preds) != 2)
1514 {
1515 error ("loop %d%'s header does not have exactly 2 entries", i);
1516 err = 1;
1517 }
1518 if (loop->latch)
1519 {
1520 if (!find_edge (loop->latch, loop->header))
1521 {
1522 error ("loop %d%'s latch does not have an edge to its header", i);
1523 err = 1;
1524 }
1525 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1526 {
1527 error ("loop %d%'s latch is not dominated by its header", i);
1528 err = 1;
1529 }
1530 }
1531 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1532 {
1533 if (!single_succ_p (loop->latch))
1534 {
1535 error ("loop %d%'s latch does not have exactly 1 successor", i);
1536 err = 1;
1537 }
1538 if (single_succ (loop->latch) != loop->header)
1539 {
1540 error ("loop %d%'s latch does not have header as successor", i);
1541 err = 1;
1542 }
1543 if (loop->latch->loop_father != loop)
1544 {
1545 error ("loop %d%'s latch does not belong directly to it", i);
1546 err = 1;
1547 }
1548 }
1549 if (loop->header->loop_father != loop)
1550 {
1551 error ("loop %d%'s header does not belong directly to it", i);
1552 err = 1;
1553 }
1554 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1555 {
1556 edge_iterator ei;
1557 FOR_EACH_EDGE (e, ei, loop->header->preds)for ((ei) = ei_start_1 (&((loop->header->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
1558 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header)
1559 && e->flags & EDGE_IRREDUCIBLE_LOOP)
1560 {
1561 error ("loop %d%'s latch is marked as part of irreducible"
1562 " region", i);
1563 err = 1;
1564 }
1565 }
1566
1567 /* Check cached number of iterations for released SSA names. */
1568 tree ref;
1569 if (loop->nb_iterations
1570 && (ref = walk_tree (&loop->nb_iterations,walk_tree_1 (&loop->nb_iterations, find_released_ssa_name
, nullptr, nullptr, nullptr)
1571 find_released_ssa_name, NULL, NULL)walk_tree_1 (&loop->nb_iterations, find_released_ssa_name
, nullptr, nullptr, nullptr)
))
1572 {
1573 error ("loop %d%'s number of iterations %qE references the"
1574 " released SSA name %qE", i, loop->nb_iterations, ref);
1575 err = 1;
1576 }
1577 }
1578
1579 /* Check irreducible loops. */
1580 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1581 {
1582 auto_edge_flag saved_edge_irr (cfun(cfun + 0));
1583 auto_bb_flag saved_bb_irr (cfun(cfun + 0));
1584 /* Save old info. */
1585 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1586 {
1587 edge_iterator ei;
1588 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1589 bb->flags |= saved_bb_irr;
1590 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1591 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1592 e->flags |= saved_edge_irr;
1593 }
1594
1595 /* Recount it. */
1596 mark_irreducible_loops ();
1597
1598 /* Compare. */
1599 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1600 {
1601 edge_iterator ei;
1602
1603 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1604 && !(bb->flags & saved_bb_irr))
1605 {
1606 error ("basic block %d should be marked irreducible", bb->index);
1607 err = 1;
1608 }
1609 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1610 && (bb->flags & saved_bb_irr))
1611 {
1612 error ("basic block %d should not be marked irreducible", bb->index);
1613 err = 1;
1614 }
1615 bb->flags &= ~saved_bb_irr;
1616 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1617 {
1618 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1619 && !(e->flags & saved_edge_irr))
1620 {
1621 error ("edge from %d to %d should be marked irreducible",
1622 e->src->index, e->dest->index);
1623 err = 1;
1624 }
1625 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1626 && (e->flags & saved_edge_irr))
1627 {
1628 error ("edge from %d to %d should not be marked irreducible",
1629 e->src->index, e->dest->index);
1630 err = 1;
1631 }
1632 e->flags &= ~saved_edge_irr;
1633 }
1634 }
1635 }
1636
1637 /* Check the recorded loop exits. */
1638 for (auto loop : loops_list (cfun(cfun + 0), 0))
1639 {
1640 if (!loop->exits || loop->exits->e != NULLnullptr)
1641 {
1642 error ("corrupted head of the exits list of loop %d",
1643 loop->num);
1644 err = 1;
1645 }
1646 else
1647 {
1648 /* Check that the list forms a cycle, and all elements except
1649 for the head are nonnull. */
1650 for (mexit = loop->exits, exit = mexit->next, i = 0;
1651 exit->e && exit != mexit;
1652 exit = exit->next)
1653 {
1654 if (i++ & 1)
1655 mexit = mexit->next;
1656 }
1657
1658 if (exit != loop->exits)
1659 {
1660 error ("corrupted exits list of loop %d", loop->num);
1661 err = 1;
1662 }
1663 }
1664
1665 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1666 {
1667 if (loop->exits->next != loop->exits)
1668 {
1669 error ("nonempty exits list of loop %d, but exits are not recorded",
1670 loop->num);
1671 err = 1;
1672 }
1673 }
1674 }
1675
1676 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1677 {
1678 unsigned n_exits = 0, eloops;
1679
1680 sizes = XCNEWVEC (unsigned, num)((unsigned *) xcalloc ((num), sizeof (unsigned)));
1681 memset (sizes, 0, sizeof (unsigned) * num);
1682 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1683 {
1684 edge_iterator ei;
1685 if (bb->loop_father == current_loops((cfun + 0)->x_current_loops)->tree_root)
1686 continue;
1687 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1688 {
1689 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1690 continue;
1691
1692 n_exits++;
1693 exit = get_exit_descriptions (e);
1694 if (!exit)
1695 {
1696 error ("exit %d->%d not recorded",
1697 e->src->index, e->dest->index);
1698 err = 1;
1699 }
1700 eloops = 0;
1701 for (; exit; exit = exit->next_e)
1702 eloops++;
1703
1704 for (class loop *loop = bb->loop_father;
1705 loop != e->dest->loop_father
1706 /* When a loop exit is also an entry edge which
1707 can happen when avoiding CFG manipulations
1708 then the last loop exited is the outer loop
1709 of the loop entered. */
1710 && loop != loop_outer (e->dest->loop_father);
1711 loop = loop_outer (loop))
1712 {
1713 eloops--;
1714 sizes[loop->num]++;
1715 }
1716
1717 if (eloops != 0)
1718 {
1719 error ("wrong list of exited loops for edge %d->%d",
1720 e->src->index, e->dest->index);
1721 err = 1;
1722 }
1723 }
1724 }
1725
1726 if (n_exits != current_loops((cfun + 0)->x_current_loops)->exits->elements ())
1727 {
1728 error ("too many loop exits recorded");
1729 err = 1;
1730 }
1731
1732 for (auto loop : loops_list (cfun(cfun + 0), 0))
1733 {
1734 eloops = 0;
1735 for (exit = loop->exits->next; exit->e; exit = exit->next)
1736 eloops++;
1737 if (eloops != sizes[loop->num])
1738 {
1739 error ("%d exits recorded for loop %d (having %d exits)",
1740 eloops, loop->num, sizes[loop->num]);
1741 err = 1;
1742 }
1743 }
1744
1745 free (sizes);
1746 }
1747
1748 gcc_assert (!err)((void)(!(!err) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1748, __FUNCTION__), 0 : 0))
;
1749
1750 if (!dom_available)
1751 free_dominance_info (CDI_DOMINATORS);
1752}
1753
1754#if __GNUC__4 >= 10
1755# pragma GCC diagnostic pop
1756#endif
1757
1758/* Returns latch edge of LOOP. */
1759edge
1760loop_latch_edge (const class loop *loop)
1761{
1762 return find_edge (loop->latch, loop->header);
1763}
1764
1765/* Returns preheader edge of LOOP. */
1766edge
1767loop_preheader_edge (const class loop *loop)
1768{
1769 edge e;
1770 edge_iterator ei;
1771
1772 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)((void)(!(loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS) &&
! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES))
? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1773, __FUNCTION__), 0 : 0))
1773 && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES))((void)(!(loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS) &&
! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES))
? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1773, __FUNCTION__), 0 : 0))
;
1774
1775 FOR_EACH_EDGE (e, ei, loop->header->preds)for ((ei) = ei_start_1 (&((loop->header->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
1776 if (e->src != loop->latch)
1777 break;
1778
1779 if (! e)
1780 {
1781 gcc_assert (! loop_outer (loop))((void)(!(! loop_outer (loop)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 1781, __FUNCTION__), 0 : 0))
;
1782 return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr));
1783 }
1784
1785 return e;
1786}
1787
1788/* Returns true if E is an exit of LOOP. */
1789
1790bool
1791loop_exit_edge_p (const class loop *loop, const_edge e)
1792{
1793 return (flow_bb_inside_loop_p (loop, e->src)
1794 && !flow_bb_inside_loop_p (loop, e->dest));
1795}
1796
1797/* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1798 or more than one exit. If loops do not have the exits recorded, NULL
1799 is returned always. */
1800
1801edge
1802single_exit (const class loop *loop)
1803{
1804 struct loop_exit *exit = loop->exits->next;
1805
1806 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1807 return NULLnullptr;
1808
1809 if (exit->e && exit->next == loop->exits)
1810 return exit->e;
1811 else
1812 return NULLnullptr;
1813}
1814
1815/* Returns true when BB has an incoming edge exiting LOOP. */
1816
1817bool
1818loop_exits_to_bb_p (class loop *loop, basic_block bb)
1819{
1820 edge e;
1821 edge_iterator ei;
1822
1823 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1824 if (loop_exit_edge_p (loop, e))
1825 return true;
1826
1827 return false;
1828}
1829
1830/* Returns true when BB has an outgoing edge exiting LOOP. */
1831
1832bool
1833loop_exits_from_bb_p (class loop *loop, basic_block bb)
1834{
1835 edge e;
1836 edge_iterator ei;
1837
1838 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1839 if (loop_exit_edge_p (loop, e))
1840 return true;
1841
1842 return false;
1843}
1844
1845/* Return location corresponding to the loop control condition if possible. */
1846
1847dump_user_location_t
1848get_loop_location (class loop *loop)
1849{
1850 rtx_insn *insn = NULLnullptr;
1851 class niter_desc *desc = NULLnullptr;
1852 edge exit;
1853
1854 /* For a for or while loop, we would like to return the location
1855 of the for or while statement, if possible. To do this, look
1856 for the branch guarding the loop back-edge. */
1857
1858 /* If this is a simple loop with an in_edge, then the loop control
1859 branch is typically at the end of its source. */
1860 desc = get_simple_loop_desc (loop);
1861 if (desc->in_edge)
1862 {
1863 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)for ((insn) = (desc->in_edge->src)->il.x.rtl->end_
; (insn) && (insn) != PREV_INSN ((desc->in_edge->
src)->il.x.head_); (insn) = PREV_INSN (insn))
1864 {
1865 if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
&& INSN_HAS_LOCATION (insn))
1866 return insn;
1867 }
1868 }
1869 /* If loop has a single exit, then the loop control branch
1870 must be at the end of its source. */
1871 if ((exit = single_exit (loop)))
1872 {
1873 FOR_BB_INSNS_REVERSE (exit->src, insn)for ((insn) = (exit->src)->il.x.rtl->end_; (insn) &&
(insn) != PREV_INSN ((exit->src)->il.x.head_); (insn) =
PREV_INSN (insn))
1874 {
1875 if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
&& INSN_HAS_LOCATION (insn))
1876 return insn;
1877 }
1878 }
1879 /* Next check the latch, to see if it is non-empty. */
1880 FOR_BB_INSNS_REVERSE (loop->latch, insn)for ((insn) = (loop->latch)->il.x.rtl->end_; (insn) &&
(insn) != PREV_INSN ((loop->latch)->il.x.head_); (insn
) = PREV_INSN (insn))
1881 {
1882 if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
&& INSN_HAS_LOCATION (insn))
1883 return insn;
1884 }
1885 /* Finally, if none of the above identifies the loop control branch,
1886 return the first location in the loop header. */
1887 FOR_BB_INSNS (loop->header, insn)for ((insn) = (loop->header)->il.x.head_; (insn) &&
(insn) != NEXT_INSN ((loop->header)->il.x.rtl->end_
); (insn) = NEXT_INSN (insn))
1888 {
1889 if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
&& INSN_HAS_LOCATION (insn))
1890 return insn;
1891 }
1892 /* If all else fails, simply return the current function location. */
1893 return dump_user_location_t::from_function_decl (current_function_decl);
1894}
1895
1896/* Records that every statement in LOOP is executed I_BOUND times.
1897 REALISTIC is true if I_BOUND is expected to be close to the real number
1898 of iterations. UPPER is true if we are sure the loop iterates at most
1899 I_BOUND times. */
1900
1901void
1902record_niter_bound (class loop *loop, const widest_int &i_bound,
1903 bool realistic, bool upper)
1904{
1905 /* Update the bounds only when there is no previous estimation, or when the
1906 current estimation is smaller. */
1907 if (upper
1908 && (!loop->any_upper_bound
1909 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1910 {
1911 loop->any_upper_bound = true;
1912 loop->nb_iterations_upper_bound = i_bound;
1913 if (!loop->any_likely_upper_bound)
1914 {
1915 loop->any_likely_upper_bound = true;
1916 loop->nb_iterations_likely_upper_bound = i_bound;
1917 }
1918 }
1919 if (realistic
1920 && (!loop->any_estimate
1921 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1922 {
1923 loop->any_estimate = true;
1924 loop->nb_iterations_estimate = i_bound;
1925 }
1926 if (!realistic
1927 && (!loop->any_likely_upper_bound
1928 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1929 {
1930 loop->any_likely_upper_bound = true;
1931 loop->nb_iterations_likely_upper_bound = i_bound;
1932 }
1933
1934 /* If an upper bound is smaller than the realistic estimate of the
1935 number of iterations, use the upper bound instead. */
1936 if (loop->any_upper_bound
1937 && loop->any_estimate
1938 && wi::ltu_p (loop->nb_iterations_upper_bound,
1939 loop->nb_iterations_estimate))
1940 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1941 if (loop->any_upper_bound
1942 && loop->any_likely_upper_bound
1943 && wi::ltu_p (loop->nb_iterations_upper_bound,
1944 loop->nb_iterations_likely_upper_bound))
1945 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1946}
1947
1948/* Similar to get_estimated_loop_iterations, but returns the estimate only
1949 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1950 on the number of iterations of LOOP could not be derived, returns -1. */
1951
1952HOST_WIDE_INTlong
1953get_estimated_loop_iterations_int (class loop *loop)
1954{
1955 widest_int nit;
1956 HOST_WIDE_INTlong hwi_nit;
1957
1958 if (!get_estimated_loop_iterations (loop, &nit))
1959 return -1;
1960
1961 if (!wi::fits_shwi_p (nit))
1962 return -1;
1963 hwi_nit = nit.to_shwi ();
1964
1965 return hwi_nit < 0 ? -1 : hwi_nit;
1966}
1967
1968/* Returns an upper bound on the number of executions of statements
1969 in the LOOP. For statements before the loop exit, this exceeds
1970 the number of execution of the latch by one. */
1971
1972HOST_WIDE_INTlong
1973max_stmt_executions_int (class loop *loop)
1974{
1975 HOST_WIDE_INTlong nit = get_max_loop_iterations_int (loop);
1976 HOST_WIDE_INTlong snit;
1977
1978 if (nit == -1)
1979 return -1;
1980
1981 snit = (HOST_WIDE_INTlong) ((unsigned HOST_WIDE_INTlong) nit + 1);
1982
1983 /* If the computation overflows, return -1. */
1984 return snit < 0 ? -1 : snit;
1985}
1986
1987/* Returns an likely upper bound on the number of executions of statements
1988 in the LOOP. For statements before the loop exit, this exceeds
1989 the number of execution of the latch by one. */
1990
1991HOST_WIDE_INTlong
1992likely_max_stmt_executions_int (class loop *loop)
1993{
1994 HOST_WIDE_INTlong nit = get_likely_max_loop_iterations_int (loop);
1995 HOST_WIDE_INTlong snit;
1996
1997 if (nit == -1)
1998 return -1;
1999
2000 snit = (HOST_WIDE_INTlong) ((unsigned HOST_WIDE_INTlong) nit + 1);
2001
2002 /* If the computation overflows, return -1. */
2003 return snit < 0 ? -1 : snit;
2004}
2005
2006/* Sets NIT to the estimated number of executions of the latch of the
2007 LOOP. If we have no reliable estimate, the function returns false, otherwise
2008 returns true. */
2009
2010bool
2011get_estimated_loop_iterations (class loop *loop, widest_int *nit)
2012{
2013 /* Even if the bound is not recorded, possibly we can derrive one from
2014 profile. */
2015 if (!loop->any_estimate)
2016 {
2017 if (loop->header->count.reliable_p ())
2018 {
2019 *nit = gcov_type_to_wide_int
2020 (expected_loop_iterations_unbounded (loop) + 1);
2021 return true;
2022 }
2023 return false;
2024 }
2025
2026 *nit = loop->nb_iterations_estimate;
2027 return true;
2028}
2029
2030/* Sets NIT to an upper bound for the maximum number of executions of the
2031 latch of the LOOP. If we have no reliable estimate, the function returns
2032 false, otherwise returns true. */
2033
2034bool
2035get_max_loop_iterations (const class loop *loop, widest_int *nit)
2036{
2037 if (!loop->any_upper_bound)
2038 return false;
2039
2040 *nit = loop->nb_iterations_upper_bound;
2041 return true;
2042}
2043
2044/* Similar to get_max_loop_iterations, but returns the estimate only
2045 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2046 on the number of iterations of LOOP could not be derived, returns -1. */
2047
2048HOST_WIDE_INTlong
2049get_max_loop_iterations_int (const class loop *loop)
2050{
2051 widest_int nit;
2052 HOST_WIDE_INTlong hwi_nit;
2053
2054 if (!get_max_loop_iterations (loop, &nit))
2055 return -1;
2056
2057 if (!wi::fits_shwi_p (nit))
2058 return -1;
2059 hwi_nit = nit.to_shwi ();
2060
2061 return hwi_nit < 0 ? -1 : hwi_nit;
2062}
2063
2064/* Sets NIT to an upper bound for the maximum number of executions of the
2065 latch of the LOOP. If we have no reliable estimate, the function returns
2066 false, otherwise returns true. */
2067
2068bool
2069get_likely_max_loop_iterations (class loop *loop, widest_int *nit)
2070{
2071 if (!loop->any_likely_upper_bound)
2072 return false;
2073
2074 *nit = loop->nb_iterations_likely_upper_bound;
2075 return true;
2076}
2077
2078/* Similar to get_max_loop_iterations, but returns the estimate only
2079 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2080 on the number of iterations of LOOP could not be derived, returns -1. */
2081
2082HOST_WIDE_INTlong
2083get_likely_max_loop_iterations_int (class loop *loop)
2084{
2085 widest_int nit;
2086 HOST_WIDE_INTlong hwi_nit;
2087
2088 if (!get_likely_max_loop_iterations (loop, &nit))
2089 return -1;
2090
2091 if (!wi::fits_shwi_p (nit))
2092 return -1;
2093 hwi_nit = nit.to_shwi ();
2094
2095 return hwi_nit < 0 ? -1 : hwi_nit;
2096}
2097
2098/* Returns the loop depth of the loop BB belongs to. */
2099
2100int
2101bb_loop_depth (const_basic_block bb)
2102{
2103 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2104}
2105
2106/* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
2107
2108void
2109mark_loop_for_removal (loop_p loop)
2110{
2111 if (loop->header == NULLnullptr)
2112 return;
2113 loop->former_header = loop->header;
2114 loop->header = NULLnullptr;
2115 loop->latch = NULLnullptr;
2116 loops_state_set (LOOPS_NEED_FIXUP);
2117}
2118
2119/* Starting from loop tree ROOT, walk loop tree as the visiting
2120 order specified by FLAGS. The supported visiting orders
2121 are:
2122 - LI_ONLY_INNERMOST
2123 - LI_FROM_INNERMOST
2124 - Preorder (if neither of above is specified) */
2125
2126void
2127loops_list::walk_loop_tree (class loop *root, unsigned flags)
2128{
2129 bool only_innermost_p = flags & LI_ONLY_INNERMOST;
2130 bool from_innermost_p = flags & LI_FROM_INNERMOST;
2131 bool preorder_p = !(only_innermost_p || from_innermost_p);
2132
2133 /* Early handle root without any inner loops, make later
2134 processing simpler, that is all loops processed in the
2135 following while loop are impossible to be root. */
2136 if (!root->inner)
2137 {
2138 if (flags & LI_INCLUDE_ROOT)
2139 this->to_visit.quick_push (root->num);
2140 return;
2141 }
2142 else if (preorder_p && flags & LI_INCLUDE_ROOT)
2143 this->to_visit.quick_push (root->num);
2144
2145 class loop *aloop;
2146 for (aloop = root->inner;
2147 aloop->inner != NULLnullptr;
2148 aloop = aloop->inner)
2149 {
2150 if (preorder_p)
2151 this->to_visit.quick_push (aloop->num);
2152 continue;
2153 }
2154
2155 while (1)
2156 {
2157 gcc_assert (aloop != root)((void)(!(aloop != root) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloop.cc"
, 2157, __FUNCTION__), 0 : 0))
;
2158 if (from_innermost_p || aloop->inner == NULLnullptr)
2159 this->to_visit.quick_push (aloop->num);
2160
2161 if (aloop->next)
2162 {
2163 for (aloop = aloop->next;
2164 aloop->inner != NULLnullptr;
2165 aloop = aloop->inner)
2166 {
2167 if (preorder_p)
2168 this->to_visit.quick_push (aloop->num);
2169 continue;
2170 }
2171 }
2172 else if (loop_outer (aloop) == root)
2173 break;
2174 else
2175 aloop = loop_outer (aloop);
2176 }
2177
2178 /* When visiting from innermost, we need to consider root here
2179 since the previous while loop doesn't handle it. */
2180 if (from_innermost_p && flags & LI_INCLUDE_ROOT)
2181 this->to_visit.quick_push (root->num);
2182}
2183

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h

1/* Vector API for GNU compiler.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30extern void ggc_free (void *);
31extern size_t ggc_round_alloc_size (size_t requested_size);
32extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34/* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180*/
181
182/* Support function for statistics. */
183extern void dump_vec_loc_statistics (void);
184
185/* Hashtable mapping vec addresses to descriptors. */
186extern htab_t vec_mem_usage_hash;
187
188/* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191struct vec_prefix
192{
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.cc. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218};
219
220/* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224inline unsigned
225vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227{
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve)((4) > (reserve) ? (4) : (reserve));
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233}
234
235template<typename, typename, typename> struct vec;
236
237/* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242struct vl_embed { };
243struct vl_ptr { };
244
245
246/* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253/* Allocator type for heap vectors. */
254struct va_heap
255{
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266};
267
268
269/* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274template<typename T>
275inline void
276va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278{
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc)((void)(!(alloc) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 282, __FUNCTION__), 0 : 0))
;
283
284 if (GATHER_STATISTICS0 && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS0)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295}
296
297
298#if GCC_VERSION(4 * 1000 + 2) >= 4007
299#pragma GCC diagnostic push
300#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
301#endif
302
303/* Free the heap space allocated for vector V. */
304
305template<typename T>
306void
307va_heap::release (vec<T, va_heap, vl_embed> *&v)
308{
309 size_t elt_size = sizeof (T);
310 if (v == NULLnullptr)
311 return;
312
313 if (GATHER_STATISTICS0)
314 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
315 v->allocated (), true);
316 ::free (v);
317 v = NULLnullptr;
318}
319
320#if GCC_VERSION(4 * 1000 + 2) >= 4007
321#pragma GCC diagnostic pop
322#endif
323
324/* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
326
327struct va_gc
328{
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v);
341};
342
343
344/* Free GC memory used by V and reset V to NULL. */
345
346template<typename T, typename A>
347inline void
348va_gc::release (vec<T, A, vl_embed> *&v)
349{
350 if (v)
351 ::ggc_free (v);
352 v = NULLnullptr;
353}
354
355
356/* Allocator for GC memory. Ensure there are at least RESERVE free
357 slots in V. If EXACT is true, grow exactly, else grow
358 exponentially. As a special case, if the vector had not been
359 allocated and RESERVE is 0, no vector will be created. */
360
361template<typename T, typename A>
362void
363va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
364 MEM_STAT_DECL)
365{
366 unsigned alloc
367 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
368 if (!alloc)
369 {
370 ::ggc_free (v);
371 v = NULLnullptr;
372 return;
373 }
374
375 /* Calculate the amount of space we want. */
376 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
377
378 /* Ask the allocator how much space it will really give us. */
379 size = ::ggc_round_alloc_size (size);
380
381 /* Adjust the number of slots accordingly. */
382 size_t vec_offset = sizeof (vec_prefix);
383 size_t elt_size = sizeof (T);
384 alloc = (size - vec_offset) / elt_size;
385
386 /* And finally, recalculate the amount of space we ask for. */
387 size = vec_offset + alloc * elt_size;
388
389 unsigned nelem = v ? v->length () : 0;
390 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
391 PASS_MEM_STAT));
392 v->embedded_init (alloc, nelem);
393}
394
395
396/* Allocator type for GC vectors. This is for vectors of types
397 atomics w.r.t. collection, so allocation and deallocation is
398 completely inherited from va_gc. */
399struct va_gc_atomic : va_gc
400{
401};
402
403
404/* Generic vector template. Default values for A and L indicate the
405 most commonly used strategies.
406
407 FIXME - Ideally, they would all be vl_ptr to encourage using regular
408 instances for vectors, but the existing GTY machinery is limited
409 in that it can only deal with GC objects that are pointers
410 themselves.
411
412 This means that vector operations that need to deal with
413 potentially NULL pointers, must be provided as free
414 functions (see the vec_safe_* functions above). */
415template<typename T,
416 typename A = va_heap,
417 typename L = typename A::default_layout>
418struct GTY((user)) vec
419{
420};
421
422/* Allow C++11 range-based 'for' to work directly on vec<T>*. */
423template<typename T, typename A, typename L>
424T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
425template<typename T, typename A, typename L>
426T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
427template<typename T, typename A, typename L>
428const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
429template<typename T, typename A, typename L>
430const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }
431
432/* Generic vec<> debug helpers.
433
434 These need to be instantiated for each vec<TYPE> used throughout
435 the compiler like this:
436
437 DEFINE_DEBUG_VEC (TYPE)
438
439 The reason we have a debug_helper() is because GDB can't
440 disambiguate a plain call to debug(some_vec), and it must be called
441 like debug<TYPE>(some_vec). */
442
443template<typename T>
444void
445debug_helper (vec<T> &ref)
446{
447 unsigned i;
448 for (i = 0; i < ref.length (); ++i)
449 {
450 fprintf (stderrstderr, "[%d] = ", i);
451 debug_slim (ref[i]);
452 fputc ('\n', stderrstderr);
453 }
454}
455
456/* We need a separate va_gc variant here because default template
457 argument for functions cannot be used in c++-98. Once this
458 restriction is removed, those variant should be folded with the
459 above debug_helper. */
460
461template<typename T>
462void
463debug_helper (vec<T, va_gc> &ref)
464{
465 unsigned i;
466 for (i = 0; i < ref.length (); ++i)
467 {
468 fprintf (stderrstderr, "[%d] = ", i);
469 debug_slim (ref[i]);
470 fputc ('\n', stderrstderr);
471 }
472}
473
474/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
475 functions for a type T. */
476
477#define DEFINE_DEBUG_VEC(T)template void debug_helper (vec<T> &); template void
debug_helper (vec<T, va_gc> &); __attribute__ ((__used__
)) void debug (vec<T> &ref) { debug_helper <T>
(ref); } __attribute__ ((__used__)) void debug (vec<T>
*ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"
); } __attribute__ ((__used__)) void debug (vec<T, va_gc>
&ref) { debug_helper <T> (ref); } __attribute__ ((
__used__)) void debug (vec<T, va_gc> *ptr) { if (ptr) debug
(*ptr); else fprintf (stderr, "<nil>\n"); }
\
478 template void debug_helper (vec<T> &); \
479 template void debug_helper (vec<T, va_gc> &); \
480 /* Define the vec<T> debug functions. */ \
481 DEBUG_FUNCTION__attribute__ ((__used__)) void \
482 debug (vec<T> &ref) \
483 { \
484 debug_helper <T> (ref); \
485 } \
486 DEBUG_FUNCTION__attribute__ ((__used__)) void \
487 debug (vec<T> *ptr) \
488 { \
489 if (ptr) \
490 debug (*ptr); \
491 else \
492 fprintf (stderrstderr, "<nil>\n"); \
493 } \
494 /* Define the vec<T, va_gc> debug functions. */ \
495 DEBUG_FUNCTION__attribute__ ((__used__)) void \
496 debug (vec<T, va_gc> &ref) \
497 { \
498 debug_helper <T> (ref); \
499 } \
500 DEBUG_FUNCTION__attribute__ ((__used__)) void \
501 debug (vec<T, va_gc> *ptr) \
502 { \
503 if (ptr) \
504 debug (*ptr); \
505 else \
506 fprintf (stderrstderr, "<nil>\n"); \
507 }
508
509/* Default-construct N elements in DST. */
510
511template <typename T>
512inline void
513vec_default_construct (T *dst, unsigned n)
514{
515#ifdef BROKEN_VALUE_INITIALIZATION
516 /* Versions of GCC before 4.4 sometimes leave certain objects
517 uninitialized when value initialized, though if the type has
518 user defined default ctor, that ctor is invoked. As a workaround
519 perform clearing first and then the value initialization, which
520 fixes the case when value initialization doesn't initialize due to
521 the bugs and should initialize to all zeros, but still allows
522 vectors for types with user defined default ctor that initializes
523 some or all elements to non-zero. If T has no user defined
524 default ctor and some non-static data members have user defined
525 default ctors that initialize to non-zero the workaround will
526 still not work properly; in that case we just need to provide
527 user defined default ctor. */
528 memset (dst, '\0', sizeof (T) * n);
529#endif
530 for ( ; n; ++dst, --n)
531 ::new (static_cast<void*>(dst)) T ();
532}
533
534/* Copy-construct N elements in DST from *SRC. */
535
536template <typename T>
537inline void
538vec_copy_construct (T *dst, const T *src, unsigned n)
539{
540 for ( ; n; ++dst, ++src, --n)
541 ::new (static_cast<void*>(dst)) T (*src);
542}
543
544/* Type to provide zero-initialized values for vec<T, A, L>. This is
545 used to provide nil initializers for vec instances. Since vec must
546 be a trivially copyable type that can be copied by memcpy and zeroed
547 out by memset, it must have defaulted default and copy ctor and copy
548 assignment. To initialize a vec either use value initialization
549 (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't
550 needed for file-scope and function-local static vectors, which are
551 zero-initialized by default. */
552struct vnull { };
553constexpr vnull vNULL{ };
554
555
556/* Embeddable vector. These vectors are suitable to be embedded
557 in other data structures so that they can be pre-allocated in a
558 contiguous memory block.
559
560 Embeddable vectors are implemented using the trailing array idiom,
561 thus they are not resizeable without changing the address of the
562 vector object itself. This means you cannot have variables or
563 fields of embeddable vector type -- always use a pointer to a
564 vector. The one exception is the final field of a structure, which
565 could be a vector type.
566
567 You will have to use the embedded_size & embedded_init calls to
568 create such objects, and they will not be resizeable (so the 'safe'
569 allocation variants are not available).
570
571 Properties:
572
573 - The whole vector and control data are allocated in a single
574 contiguous block. It uses the trailing-vector idiom, so
575 allocation must reserve enough space for all the elements
576 in the vector plus its control data.
577 - The vector cannot be re-allocated.
578 - The vector cannot grow nor shrink.
579 - No indirections needed for access/manipulation.
580 - It requires 2 words of storage (prior to vector allocation). */
581
582template<typename T, typename A>
583struct GTY((user)) vec<T, A, vl_embed>
584{
585public:
586 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
587 unsigned length (void) const { return m_vecpfx.m_num; }
588 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
589 T *address (void) { return reinterpret_cast <T *> (this + 1); }
590 const T *address (void) const
591 { return reinterpret_cast <const T *> (this + 1); }
592 T *begin () { return address (); }
593 const T *begin () const { return address (); }
594 T *end () { return address () + length (); }
595 const T *end () const { return address () + length (); }
596 const T &operator[] (unsigned) const;
597 T &operator[] (unsigned);
598 T &last (void);
599 bool space (unsigned) const;
600 bool iterate (unsigned, T *) const;
601 bool iterate (unsigned, T **) const;
602 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
603 void splice (const vec &);
604 void splice (const vec *src);
605 T *quick_push (const T &);
606 T &pop (void);
607 void truncate (unsigned);
608 void quick_insert (unsigned, const T &);
609 void ordered_remove (unsigned);
610 void unordered_remove (unsigned);
611 void block_remove (unsigned, unsigned);
612 void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *));
613 void sort (int (*) (const void *, const void *, void *), void *);
614 void stablesort (int (*) (const void *, const void *, void *), void *);
615 T *bsearch (const void *key, int (*compar) (const void *, const void *));
616 T *bsearch (const void *key,
617 int (*compar)(const void *, const void *, void *), void *);
618 unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const;
619 bool contains (const T &search) const;
620 static size_t embedded_size (unsigned);
621 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
622 void quick_grow (unsigned len);
623 void quick_grow_cleared (unsigned len);
624
625 /* vec class can access our internal data and functions. */
626 template <typename, typename, typename> friend struct vec;
627
628 /* The allocator types also need access to our internals. */
629 friend struct va_gc;
630 friend struct va_gc_atomic;
631 friend struct va_heap;
632
633 /* FIXME - This field should be private, but we need to cater to
634 compilers that have stricter notions of PODness for types. */
635 /* Align m_vecpfx to simplify address (). */
636 alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx;
637};
638
639
640/* Convenience wrapper functions to use when dealing with pointers to
641 embedded vectors. Some functionality for these vectors must be
642 provided via free functions for these reasons:
643
644 1- The pointer may be NULL (e.g., before initial allocation).
645
646 2- When the vector needs to grow, it must be reallocated, so
647 the pointer will change its value.
648
649 Because of limitations with the current GC machinery, all vectors
650 in GC memory *must* be pointers. */
651
652
653/* If V contains no room for NELEMS elements, return false. Otherwise,
654 return true. */
655template<typename T, typename A>
656inline bool
657vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
658{
659 return v ? v->space (nelems) : nelems == 0;
660}
661
662
663/* If V is NULL, return 0. Otherwise, return V->length(). */
664template<typename T, typename A>
665inline unsigned
666vec_safe_length (const vec<T, A, vl_embed> *v)
667{
668 return v ? v->length () : 0;
669}
670
671
672/* If V is NULL, return NULL. Otherwise, return V->address(). */
673template<typename T, typename A>
674inline T *
675vec_safe_address (vec<T, A, vl_embed> *v)
676{
677 return v ? v->address () : NULLnullptr;
678}
679
680
681/* If V is NULL, return true. Otherwise, return V->is_empty(). */
682template<typename T, typename A>
683inline bool
684vec_safe_is_empty (vec<T, A, vl_embed> *v)
685{
686 return v ? v->is_empty () : true;
687}
688
689/* If V does not have space for NELEMS elements, call
690 V->reserve(NELEMS, EXACT). */
691template<typename T, typename A>
692inline bool
693vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
694 CXX_MEM_STAT_INFO)
695{
696 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
17
Assuming 'nelems' is 0
18
'?' condition is false
697 if (extend
18.1
'extend' is false
18.1
'extend' is false
)
19
Taking false branch
698 A::reserve (v, nelems, exact PASS_MEM_STAT);
699 return extend;
20
Returning without writing to 'v'
700}
701
702template<typename T, typename A>
703inline bool
704vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
705 CXX_MEM_STAT_INFO)
706{
707 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
708}
709
710
711/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
712 is 0, V is initialized to NULL. */
713
714template<typename T, typename A>
715inline void
716vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
717{
718 v = NULLnullptr;
15
Null pointer value stored to field 'superloops'
719 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
16
Calling 'vec_safe_reserve<loop *, va_gc>'
21
Returning from 'vec_safe_reserve<loop *, va_gc>'
720}
721
722
723/* Free the GC memory allocated by vector V and set it to NULL. */
724
725template<typename T, typename A>
726inline void
727vec_free (vec<T, A, vl_embed> *&v)
728{
729 A::release (v);
730}
731
732
733/* Grow V to length LEN. Allocate it, if necessary. */
734template<typename T, typename A>
735inline void
736vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
737 bool exact = false CXX_MEM_STAT_INFO)
738{
739 unsigned oldlen = vec_safe_length (v);
740 gcc_checking_assert (len >= oldlen)((void)(!(len >= oldlen) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 740, __FUNCTION__), 0 : 0))
;
741 vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
742 v->quick_grow (len);
743}
744
745
746/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
747template<typename T, typename A>
748inline void
749vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
750 bool exact = false CXX_MEM_STAT_INFO)
751{
752 unsigned oldlen = vec_safe_length (v);
753 vec_safe_grow (v, len, exact PASS_MEM_STAT);
754 vec_default_construct (v->address () + oldlen, len - oldlen);
755}
756
757
758/* Assume V is not NULL. */
759
760template<typename T>
761inline void
762vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
763 unsigned len, bool exact = false CXX_MEM_STAT_INFO)
764{
765 v->safe_grow_cleared (len, exact PASS_MEM_STAT);
766}
767
768/* If V does not have space for NELEMS elements, call
769 V->reserve(NELEMS, EXACT). */
770
771template<typename T>
772inline bool
773vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
774 CXX_MEM_STAT_INFO)
775{
776 return v->reserve (nelems, exact);
777}
778
779
780/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
781template<typename T, typename A>
782inline bool
783vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
784{
785 if (v)
786 return v->iterate (ix, ptr);
787 else
788 {
789 *ptr = 0;
790 return false;
791 }
792}
793
794template<typename T, typename A>
795inline bool
796vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
797{
798 if (v)
799 return v->iterate (ix, ptr);
800 else
801 {
802 *ptr = 0;
803 return false;
804 }
805}
806
807
808/* If V has no room for one more element, reallocate it. Then call
809 V->quick_push(OBJ). */
810template<typename T, typename A>
811inline T *
812vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
813{
814 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
815 return v->quick_push (obj);
816}
817
818
819/* if V has no room for one more element, reallocate it. Then call
820 V->quick_insert(IX, OBJ). */
821template<typename T, typename A>
822inline void
823vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
824 CXX_MEM_STAT_INFO)
825{
826 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
827 v->quick_insert (ix, obj);
828}
829
830
831/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
832template<typename T, typename A>
833inline void
834vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
835{
836 if (v)
837 v->truncate (size);
838}
839
840
841/* If SRC is not NULL, return a pointer to a copy of it. */
842template<typename T, typename A>
843inline vec<T, A, vl_embed> *
844vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
845{
846 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULLnullptr;
847}
848
849/* Copy the elements from SRC to the end of DST as if by memcpy.
850 Reallocate DST, if necessary. */
851template<typename T, typename A>
852inline void
853vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
854 CXX_MEM_STAT_INFO)
855{
856 unsigned src_len = vec_safe_length (src);
857 if (src_len)
858 {
859 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
860 PASS_MEM_STAT);
861 dst->splice (*src);
862 }
863}
864
865/* Return true if SEARCH is an element of V. Note that this is O(N) in the
866 size of the vector and so should be used with care. */
867
868template<typename T, typename A>
869inline bool
870vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
871{
872 return v ? v->contains (search) : false;
873}
874
875/* Index into vector. Return the IX'th element. IX must be in the
876 domain of the vector. */
877
878template<typename T, typename A>
879inline const T &
880vec<T, A, vl_embed>::operator[] (unsigned ix) const
881{
882 gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 882, __FUNCTION__), 0 : 0))
;
883 return address ()[ix];
884}
885
886template<typename T, typename A>
887inline T &
888vec<T, A, vl_embed>::operator[] (unsigned ix)
889{
890 gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 890, __FUNCTION__), 0 : 0))
;
891 return address ()[ix];
892}
893
894
895/* Get the final element of the vector, which must not be empty. */
896
897template<typename T, typename A>
898inline T &
899vec<T, A, vl_embed>::last (void)
900{
901 gcc_checking_assert (m_vecpfx.m_num > 0)((void)(!(m_vecpfx.m_num > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 901, __FUNCTION__), 0 : 0))
;
902 return (*this)[m_vecpfx.m_num - 1];
903}
904
905
906/* If this vector has space for NELEMS additional entries, return
907 true. You usually only need to use this if you are doing your
908 own vector reallocation, for instance on an embedded vector. This
909 returns true in exactly the same circumstances that vec::reserve
910 will. */
911
912template<typename T, typename A>
913inline bool
914vec<T, A, vl_embed>::space (unsigned nelems) const
915{
916 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
917}
918
919
920/* Return iteration condition and update *PTR to (a copy of) the IX'th
921 element of this vector. Use this to iterate over the elements of a
922 vector as follows,
923
924 for (ix = 0; v->iterate (ix, &val); ix++)
925 continue; */
926
927template<typename T, typename A>
928inline bool
929vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
930{
931 if (ix < m_vecpfx.m_num)
932 {
933 *ptr = address ()[ix];
934 return true;
935 }
936 else
937 {
938 *ptr = 0;
939 return false;
940 }
941}
942
943
944/* Return iteration condition and update *PTR to point to the
945 IX'th element of this vector. Use this to iterate over the
946 elements of a vector as follows,
947
948 for (ix = 0; v->iterate (ix, &ptr); ix++)
949 continue;
950
951 This variant is for vectors of objects. */
952
953template<typename T, typename A>
954inline bool
955vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
956{
957 if (ix < m_vecpfx.m_num)
958 {
959 *ptr = CONST_CAST (T *, &address ()[ix])(const_cast<T *> ((&address ()[ix])));
960 return true;
961 }
962 else
963 {
964 *ptr = 0;
965 return false;
966 }
967}
968
969
970/* Return a pointer to a copy of this vector. */
971
972template<typename T, typename A>
973inline vec<T, A, vl_embed> *
974vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECLvoid) const
975{
976 vec<T, A, vl_embed> *new_vec = NULLnullptr;
977 unsigned len = length ();
978 if (len)
979 {
980 vec_alloc (new_vec, len PASS_MEM_STAT);
981 new_vec->embedded_init (len, len);
982 vec_copy_construct (new_vec->address (), address (), len);
983 }
984 return new_vec;
985}
986
987
988/* Copy the elements from SRC to the end of this vector as if by memcpy.
989 The vector must have sufficient headroom available. */
990
991template<typename T, typename A>
992inline void
993vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
994{
995 unsigned len = src.length ();
996 if (len)
997 {
998 gcc_checking_assert (space (len))((void)(!(space (len)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 998, __FUNCTION__), 0 : 0))
;
999 vec_copy_construct (end (), src.address (), len);
1000 m_vecpfx.m_num += len;
1001 }
1002}
1003
1004template<typename T, typename A>
1005inline void
1006vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
1007{
1008 if (src)
1009 splice (*src);
1010}
1011
1012
1013/* Push OBJ (a new element) onto the end of the vector. There must be
1014 sufficient space in the vector. Return a pointer to the slot
1015 where OBJ was inserted. */
1016
1017template<typename T, typename A>
1018inline T *
1019vec<T, A, vl_embed>::quick_push (const T &obj)
1020{
1021 gcc_checking_assert (space (1))((void)(!(space (1)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1021, __FUNCTION__), 0 : 0))
;
1022 T *slot = &address ()[m_vecpfx.m_num++];
1023 *slot = obj;
1024 return slot;
1025}
1026
1027
1028/* Pop and return the last element off the end of the vector. */
1029
1030template<typename T, typename A>
1031inline T &
1032vec<T, A, vl_embed>::pop (void)
1033{
1034 gcc_checking_assert (length () > 0)((void)(!(length () > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1034, __FUNCTION__), 0 : 0))
;
1035 return address ()[--m_vecpfx.m_num];
1036}
1037
1038
1039/* Set the length of the vector to SIZE. The new length must be less
1040 than or equal to the current length. This is an O(1) operation. */
1041
1042template<typename T, typename A>
1043inline void
1044vec<T, A, vl_embed>::truncate (unsigned size)
1045{
1046 gcc_checking_assert (length () >= size)((void)(!(length () >= size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1046, __FUNCTION__), 0 : 0))
;
1047 m_vecpfx.m_num = size;
1048}
1049
1050
1051/* Insert an element, OBJ, at the IXth position of this vector. There
1052 must be sufficient space. */
1053
1054template<typename T, typename A>
1055inline void
1056vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1057{
1058 gcc_checking_assert (length () < allocated ())((void)(!(length () < allocated ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1058, __FUNCTION__), 0 : 0))
;
1059 gcc_checking_assert (ix <= length ())((void)(!(ix <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1059, __FUNCTION__), 0 : 0))
;
1060 T *slot = &address ()[ix];
1061 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1062 *slot = obj;
1063}
1064
1065
1066/* Remove an element from the IXth position of this vector. Ordering of
1067 remaining elements is preserved. This is an O(N) operation due to
1068 memmove. */
1069
1070template<typename T, typename A>
1071inline void
1072vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1073{
1074 gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1074, __FUNCTION__), 0 : 0))
;
1075 T *slot = &address ()[ix];
1076 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1077}
1078
1079
1080/* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1081 remaining elements is preserved. This is an O(N) operation. */
1082
1083#define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \{ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (start); read_index < (end); ++read_index) { elem_ptr =
&(vec)[read_index]; bool remove_p = (cond); if (remove_p
) continue; if (read_index != write_index) (vec)[write_index]
= (vec)[read_index]; write_index++; } if (read_index - write_index
> 0) (vec).block_remove (write_index, read_index - write_index
); }
1084 elem_ptr, start, end, cond){ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (start); read_index < (end); ++read_index) { elem_ptr =
&(vec)[read_index]; bool remove_p = (cond); if (remove_p
) continue; if (read_index != write_index) (vec)[write_index]
= (vec)[read_index]; write_index++; } if (read_index - write_index
> 0) (vec).block_remove (write_index, read_index - write_index
); }
\
1085 { \
1086 gcc_assert ((end) <= (vec).length ())((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1086, __FUNCTION__), 0 : 0))
; \
1087 for (read_index = write_index = (start); read_index < (end); \
1088 ++read_index) \
1089 { \
1090 elem_ptr = &(vec)[read_index]; \
1091 bool remove_p = (cond); \
1092 if (remove_p) \
1093 continue; \
1094 \
1095 if (read_index != write_index) \
1096 (vec)[write_index] = (vec)[read_index]; \
1097 \
1098 write_index++; \
1099 } \
1100 \
1101 if (read_index - write_index > 0) \
1102 (vec).block_remove (write_index, read_index - write_index); \
1103 }
1104
1105
1106/* Remove elements from VEC for which COND holds. Ordering of remaining
1107 elements is preserved. This is an O(N) operation. */
1108
1109#define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1110 cond){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
\
1111 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1112 elem_ptr, 0, (vec).length (), (cond)){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1113
1114/* Remove an element from the IXth position of this vector. Ordering of
1115 remaining elements is destroyed. This is an O(1) operation. */
1116
1117template<typename T, typename A>
1118inline void
1119vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1120{
1121 gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1121, __FUNCTION__), 0 : 0))
;
1122 T *p = address ();
1123 p[ix] = p[--m_vecpfx.m_num];
1124}
1125
1126
1127/* Remove LEN elements starting at the IXth. Ordering is retained.
1128 This is an O(N) operation due to memmove. */
1129
1130template<typename T, typename A>
1131inline void
1132vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1133{
1134 gcc_checking_assert (ix + len <= length ())((void)(!(ix + len <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1134, __FUNCTION__), 0 : 0))
;
1135 T *slot = &address ()[ix];
1136 m_vecpfx.m_num -= len;
1137 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1138}
1139
1140
1141/* Sort the contents of this vector with qsort. CMP is the comparison
1142 function to pass to qsort. */
1143
1144template<typename T, typename A>
1145inline void
1146vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *))
1147{
1148 if (length () > 1)
1149 gcc_qsort (address (), length (), sizeof (T), cmp);
1150}
1151
1152/* Sort the contents of this vector with qsort. CMP is the comparison
1153 function to pass to qsort. */
1154
1155template<typename T, typename A>
1156inline void
1157vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1158 void *data)
1159{
1160 if (length () > 1)
1161 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1162}
1163
1164/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
1165 comparison function to pass to qsort. */
1166
1167template<typename T, typename A>
1168inline void
1169vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *,
1170 void *), void *data)
1171{
1172 if (length () > 1)
1173 gcc_stablesort_r (address (), length (), sizeof (T), cmp, data);
1174}
1175
1176/* Search the contents of the sorted vector with a binary search.
1177 CMP is the comparison function to pass to bsearch. */
1178
1179template<typename T, typename A>
1180inline T *
1181vec<T, A, vl_embed>::bsearch (const void *key,
1182 int (*compar) (const void *, const void *))
1183{
1184 const void *base = this->address ();
1185 size_t nmemb = this->length ();
1186 size_t size = sizeof (T);
1187 /* The following is a copy of glibc stdlib-bsearch.h. */
1188 size_t l, u, idx;
1189 const void *p;
1190 int comparison;
1191
1192 l = 0;
1193 u = nmemb;
1194 while (l < u)
1195 {
1196 idx = (l + u) / 2;
1197 p = (const void *) (((const char *) base) + (idx * size));
1198 comparison = (*compar) (key, p);
1199 if (comparison < 0)
1200 u = idx;
1201 else if (comparison > 0)
1202 l = idx + 1;
1203 else
1204 return (T *)const_cast<void *>(p);
1205 }
1206
1207 return NULLnullptr;
1208}
1209
1210/* Search the contents of the sorted vector with a binary search.
1211 CMP is the comparison function to pass to bsearch. */
1212
1213template<typename T, typename A>
1214inline T *
1215vec<T, A, vl_embed>::bsearch (const void *key,
1216 int (*compar) (const void *, const void *,
1217 void *), void *data)
1218{
1219 const void *base = this->address ();
1220 size_t nmemb = this->length ();
1221 size_t size = sizeof (T);
1222 /* The following is a copy of glibc stdlib-bsearch.h. */
1223 size_t l, u, idx;
1224 const void *p;
1225 int comparison;
1226
1227 l = 0;
1228 u = nmemb;
1229 while (l < u)
1230 {
1231 idx = (l + u) / 2;
1232 p = (const void *) (((const char *) base) + (idx * size));
1233 comparison = (*compar) (key, p, data);
1234 if (comparison < 0)
1235 u = idx;
1236 else if (comparison > 0)
1237 l = idx + 1;
1238 else
1239 return (T *)const_cast<void *>(p);
1240 }
1241
1242 return NULLnullptr;
1243}
1244
1245/* Return true if SEARCH is an element of V. Note that this is O(N) in the
1246 size of the vector and so should be used with care. */
1247
1248template<typename T, typename A>
1249inline bool
1250vec<T, A, vl_embed>::contains (const T &search) const
1251{
1252 unsigned int len = length ();
1253 const T *p = address ();
1254 for (unsigned int i = 0; i < len; i++)
1255 {
1256 const T *slot = &p[i];
1257 if (*slot == search)
1258 return true;
1259 }
1260
1261 return false;
1262}
1263
1264/* Find and return the first position in which OBJ could be inserted
1265 without changing the ordering of this vector. LESSTHAN is a
1266 function that returns true if the first argument is strictly less
1267 than the second. */
1268
1269template<typename T, typename A>
1270unsigned
1271vec<T, A, vl_embed>::lower_bound (const T &obj,
1272 bool (*lessthan)(const T &, const T &))
1273 const
1274{
1275 unsigned int len = length ();
1276 unsigned int half, middle;
1277 unsigned int first = 0;
1278 while (len > 0)
1279 {
1280 half = len / 2;
1281 middle = first;
1282 middle += half;
1283 const T &middle_elem = address ()[middle];
1284 if (lessthan (middle_elem, obj))
1285 {
1286 first = middle;
1287 ++first;
1288 len = len - half - 1;
1289 }
1290 else
1291 len = half;
1292 }
1293 return first;
1294}
1295
1296
1297/* Return the number of bytes needed to embed an instance of an
1298 embeddable vec inside another data structure.
1299
1300 Use these methods to determine the required size and initialization
1301 of a vector V of type T embedded within another structure (as the
1302 final member):
1303
1304 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1305 void v->embedded_init (unsigned alloc, unsigned num);
1306
1307 These allow the caller to perform the memory allocation. */
1308
1309template<typename T, typename A>
1310inline size_t
1311vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1312{
1313 struct alignas (T) U { char data[sizeof (T)]; };
1314 typedef vec<U, A, vl_embed> vec_embedded;
1315 typedef typename std::conditional<std::is_standard_layout<T>::value,
1316 vec, vec_embedded>::type vec_stdlayout;
1317 static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
1318 static_assert (alignof (vec_stdlayout) == alignof (vec), "");
1319 return sizeof (vec_stdlayout) + alloc * sizeof (T);
1320}
1321
1322
1323/* Initialize the vector to contain room for ALLOC elements and
1324 NUM active elements. */
1325
1326template<typename T, typename A>
1327inline void
1328vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1329{
1330 m_vecpfx.m_alloc = alloc;
1331 m_vecpfx.m_using_auto_storage = aut;
1332 m_vecpfx.m_num = num;
1333}
1334
1335
1336/* Grow the vector to a specific length. LEN must be as long or longer than
1337 the current length. The new elements are uninitialized. */
1338
1339template<typename T, typename A>
1340inline void
1341vec<T, A, vl_embed>::quick_grow (unsigned len)
1342{
1343 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc)((void)(!(length () <= len && len <= m_vecpfx.m_alloc
) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1343, __FUNCTION__), 0 : 0))
;
1344 m_vecpfx.m_num = len;
1345}
1346
1347
1348/* Grow the vector to a specific length. LEN must be as long or longer than
1349 the current length. The new elements are initialized to zero. */
1350
1351template<typename T, typename A>
1352inline void
1353vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1354{
1355 unsigned oldlen = length ();
1356 size_t growby = len - oldlen;
1357 quick_grow (len);
1358 if (growby != 0)
1359 vec_default_construct (address () + oldlen, growby);
1360}
1361
1362/* Garbage collection support for vec<T, A, vl_embed>. */
1363
1364template<typename T>
1365void
1366gt_ggc_mx (vec<T, va_gc> *v)
1367{
1368 extern void gt_ggc_mx (T &);
1369 for (unsigned i = 0; i < v->length (); i++)
1370 gt_ggc_mx ((*v)[i]);
1371}
1372
1373template<typename T>
1374void
1375gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED__attribute__ ((__unused__)))
1376{
1377 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1378 be traversed. */
1379}
1380
1381
1382/* PCH support for vec<T, A, vl_embed>. */
1383
1384template<typename T, typename A>
1385void
1386gt_pch_nx (vec<T, A, vl_embed> *v)
1387{
1388 extern void gt_pch_nx (T &);
1389 for (unsigned i = 0; i < v->length (); i++)
1390 gt_pch_nx ((*v)[i]);
1391}
1392
1393template<typename T, typename A>
1394void
1395gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1396{
1397 for (unsigned i = 0; i < v->length (); i++)
1398 op (&((*v)[i]), NULLnullptr, cookie);
1399}
1400
1401template<typename T, typename A>
1402void
1403gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1404{
1405 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1406 for (unsigned i = 0; i < v->length (); i++)
1407 gt_pch_nx (&((*v)[i]), op, cookie);
1408}
1409
1410
1411/* Space efficient vector. These vectors can grow dynamically and are
1412 allocated together with their control data. They are suited to be
1413 included in data structures. Prior to initial allocation, they
1414 only take a single word of storage.
1415
1416 These vectors are implemented as a pointer to an embeddable vector.
1417 The semantics allow for this pointer to be NULL to represent empty
1418 vectors. This way, empty vectors occupy minimal space in the
1419 structure containing them.
1420
1421 Properties:
1422
1423 - The whole vector and control data are allocated in a single
1424 contiguous block.
1425 - The whole vector may be re-allocated.
1426 - Vector data may grow and shrink.
1427 - Access and manipulation requires a pointer test and
1428 indirection.
1429 - It requires 1 word of storage (prior to vector allocation).
1430
1431
1432 Limitations:
1433
1434 These vectors must be PODs because they are stored in unions.
1435 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1436 As long as we use C++03, we cannot have constructors nor
1437 destructors in classes that are stored in unions. */
1438
1439template<typename T, size_t N = 0>
1440class auto_vec;
1441
1442template<typename T>
1443struct vec<T, va_heap, vl_ptr>
1444{
1445public:
1446 /* Default ctors to ensure triviality. Use value-initialization
1447 (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized
1448 instance. */
1449 vec () = default;
1450 vec (const vec &) = default;
1451 /* Initialization from the generic vNULL. */
1452 vec (vnull): m_vec () { }
1453 /* Same as default ctor: vec storage must be released manually. */
1454 ~vec () = default;
1455
1456 /* Defaulted same as copy ctor. */
1457 vec& operator= (const vec &) = default;
1458
1459 /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec()
1460 instead. */
1461 template <size_t N>
1462 vec (auto_vec<T, N> &) = delete;
1463
1464 template <size_t N>
1465 void operator= (auto_vec<T, N> &) = delete;
1466
1467 /* Memory allocation and deallocation for the embedded vector.
1468 Needed because we cannot have proper ctors/dtors defined. */
1469 void create (unsigned nelems CXX_MEM_STAT_INFO);
1470 void release (void);
1471
1472 /* Vector operations. */
1473 bool exists (void) const
1474 { return m_vec != NULLnullptr; }
1475
1476 bool is_empty (void) const
1477 { return m_vec ? m_vec->is_empty () : true; }
1478
1479 unsigned allocated (void) const
1480 { return m_vec ? m_vec->allocated () : 0; }
1481
1482 unsigned length (void) const
1483 { return m_vec ? m_vec->length () : 0; }
1484
1485 T *address (void)
1486 { return m_vec ? m_vec->address () : NULLnullptr; }
1487
1488 const T *address (void) const
1489 { return m_vec ? m_vec->address () : NULLnullptr; }
1490
1491 T *begin () { return address (); }
1492 const T *begin () const { return address (); }
1493 T *end () { return begin () + length (); }
1494 const T *end () const { return begin () + length (); }
1495 const T &operator[] (unsigned ix) const
1496 { return (*m_vec)[ix]; }
1497
1498 bool operator!=(const vec &other) const
1499 { return !(*this == other); }
1500
1501 bool operator==(const vec &other) const
1502 { return address () == other.address (); }
1503
1504 T &operator[] (unsigned ix)
1505 { return (*m_vec)[ix]; }
1506
1507 T &last (void)
1508 { return m_vec->last (); }
1509
1510 bool space (int nelems) const
1511 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1512
1513 bool iterate (unsigned ix, T *p) const;
1514 bool iterate (unsigned ix, T **p) const;
1515 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1516 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1517 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1518 void splice (const vec &);
1519 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1520 T *quick_push (const T &);
1521 T *safe_push (const T &CXX_MEM_STAT_INFO);
1522 T &pop (void);
1523 void truncate (unsigned);
1524 void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
1525 void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
1526 void quick_grow (unsigned);
1527 void quick_grow_cleared (unsigned);
1528 void quick_insert (unsigned, const T &);
1529 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1530 void ordered_remove (unsigned);
1531 void unordered_remove (unsigned);
1532 void block_remove (unsigned, unsigned);
1533 void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *));
1534 void sort (int (*) (const void *, const void *, void *), void *);
1535 void stablesort (int (*) (const void *, const void *, void *), void *);
1536 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1537 T *bsearch (const void *key,
1538 int (*compar)(const void *, const void *, void *), void *);
1539 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1540 bool contains (const T &search) const;
1541 void reverse (void);
1542
1543 bool using_auto_storage () const;
1544
1545 /* FIXME - This field should be private, but we need to cater to
1546 compilers that have stricter notions of PODness for types. */
1547 vec<T, va_heap, vl_embed> *m_vec;
1548};
1549
1550
1551/* auto_vec is a subclass of vec that automatically manages creating and
1552 releasing the internal vector. If N is non zero then it has N elements of
1553 internal storage. The default is no internal storage, and you probably only
1554 want to ask for internal storage for vectors on the stack because if the
1555 size of the vector is larger than the internal storage that space is wasted.
1556 */
1557template<typename T, size_t N /* = 0 */>
1558class auto_vec : public vec<T, va_heap>
1559{
1560public:
1561 auto_vec ()
1562 {
1563 m_auto.embedded_init (N, 0, 1);
1564 /* ??? Instead of initializing m_vec from &m_auto directly use an
1565 expression that avoids refering to a specific member of 'this'
1566 to derail the -Wstringop-overflow diagnostic code, avoiding
1567 the impression that data accesses are supposed to be to the
1568 m_auto member storage. */
1569 size_t off = (char *) &m_auto - (char *) this;
1570 this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
1571 }
1572
1573 auto_vec (size_t s CXX_MEM_STAT_INFO)
1574 {
1575 if (s > N)
1576 {
1577 this->create (s PASS_MEM_STAT);
1578 return;
1579 }
1580
1581 m_auto.embedded_init (N, 0, 1);
1582 /* ??? See above. */
1583 size_t off = (char *) &m_auto - (char *) this;
1584 this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
1585 }
1586
1587 ~auto_vec ()
1588 {
1589 this->release ();
1590 }
1591
1592 /* Explicitly convert to the base class. There is no conversion
1593 from a const auto_vec because a copy of the returned vec can
1594 be used to modify *THIS.
1595 This is a legacy function not to be used in new code. */
1596 vec<T, va_heap> to_vec_legacy () {
1597 return *static_cast<vec<T, va_heap> *>(this);
1598 }
1599
1600private:
1601 vec<T, va_heap, vl_embed> m_auto;
1602 unsigned char m_data[sizeof (T) * N];
1603};
1604
1605/* auto_vec is a sub class of vec whose storage is released when it is
1606 destroyed. */
1607template<typename T>
1608class auto_vec<T, 0> : public vec<T, va_heap>
1609{
1610public:
1611 auto_vec () { this->m_vec = NULLnullptr; }
1612 auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
1613 ~auto_vec () { this->release (); }
1614
1615 auto_vec (vec<T, va_heap>&& r)
1616 {
1617 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1617, __FUNCTION__), 0 : 0))
;
1618 this->m_vec = r.m_vec;
1619 r.m_vec = NULLnullptr;
1620 }
1621
1622 auto_vec (auto_vec<T> &&r)
1623 {
1624 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1624, __FUNCTION__), 0 : 0))
;
1625 this->m_vec = r.m_vec;
1626 r.m_vec = NULLnullptr;
1627 }
1628
1629 auto_vec& operator= (vec<T, va_heap>&& r)
1630 {
1631 if (this == &r)
1632 return *this;
1633
1634 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1634, __FUNCTION__), 0 : 0))
;
1635 this->release ();
1636 this->m_vec = r.m_vec;
1637 r.m_vec = NULLnullptr;
1638 return *this;
1639 }
1640
1641 auto_vec& operator= (auto_vec<T> &&r)
1642 {
1643 if (this == &r)
1644 return *this;
1645
1646 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1646, __FUNCTION__), 0 : 0))
;
1647 this->release ();
1648 this->m_vec = r.m_vec;
1649 r.m_vec = NULLnullptr;
1650 return *this;
1651 }
1652
1653 /* Explicitly convert to the base class. There is no conversion
1654 from a const auto_vec because a copy of the returned vec can
1655 be used to modify *THIS.
1656 This is a legacy function not to be used in new code. */
1657 vec<T, va_heap> to_vec_legacy () {
1658 return *static_cast<vec<T, va_heap> *>(this);
1659 }
1660
1661 // You probably don't want to copy a vector, so these are deleted to prevent
1662 // unintentional use. If you really need a copy of the vectors contents you
1663 // can use copy ().
1664 auto_vec(const auto_vec &) = delete;
1665 auto_vec &operator= (const auto_vec &) = delete;
1666};
1667
1668
1669/* Allocate heap memory for pointer V and create the internal vector
1670 with space for NELEMS elements. If NELEMS is 0, the internal
1671 vector is initialized to empty. */
1672
1673template<typename T>
1674inline void
1675vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1676{
1677 v = new vec<T>;
1678 v->create (nelems PASS_MEM_STAT);
1679}
1680
1681
1682/* A subclass of auto_vec <char *> that frees all of its elements on
1683 deletion. */
1684
1685class auto_string_vec : public auto_vec <char *>
1686{
1687 public:
1688 ~auto_string_vec ();
1689};
1690
1691/* A subclass of auto_vec <T *> that deletes all of its elements on
1692 destruction.
1693
1694 This is a crude way for a vec to "own" the objects it points to
1695 and clean up automatically.
1696
1697 For example, no attempt is made to delete elements when an item
1698 within the vec is overwritten.
1699
1700 We can't rely on gnu::unique_ptr within a container,
1701 since we can't rely on move semantics in C++98. */
1702
1703template <typename T>
1704class auto_delete_vec : public auto_vec <T *>
1705{
1706 public:
1707 auto_delete_vec () {}
1708 auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
1709
1710 ~auto_delete_vec ();
1711
1712private:
1713 DISABLE_COPY_AND_ASSIGN(auto_delete_vec)auto_delete_vec (const auto_delete_vec&) = delete; void operator
= (const auto_delete_vec &) = delete
;
1714};
1715
1716/* Conditionally allocate heap memory for VEC and its internal vector. */
1717
1718template<typename T>
1719inline void
1720vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1721{
1722 if (!vec)
1723 vec_alloc (vec, nelems PASS_MEM_STAT);
1724}
1725
1726
1727/* Free the heap memory allocated by vector V and set it to NULL. */
1728
1729template<typename T>
1730inline void
1731vec_free (vec<T> *&v)
1732{
1733 if (v == NULLnullptr)
1734 return;
1735
1736 v->release ();
1737 delete v;
1738 v = NULLnullptr;
1739}
1740
1741
1742/* Return iteration condition and update PTR to point to the IX'th
1743 element of this vector. Use this to iterate over the elements of a
1744 vector as follows,
1745
1746 for (ix = 0; v.iterate (ix, &ptr); ix++)
1747 continue; */
1748
1749template<typename T>
1750inline bool
1751vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1752{
1753 if (m_vec)
1754 return m_vec->iterate (ix, ptr);
1755 else
1756 {
1757 *ptr = 0;
1758 return false;
1759 }
1760}
1761
1762
1763/* Return iteration condition and update *PTR to point to the
1764 IX'th element of this vector. Use this to iterate over the
1765 elements of a vector as follows,
1766
1767 for (ix = 0; v->iterate (ix, &ptr); ix++)
1768 continue;
1769
1770 This variant is for vectors of objects. */
1771
1772template<typename T>
1773inline bool
1774vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1775{
1776 if (m_vec)
1777 return m_vec->iterate (ix, ptr);
1778 else
1779 {
1780 *ptr = 0;
1781 return false;
1782 }
1783}
1784
1785
1786/* Convenience macro for forward iteration. */
1787#define FOR_EACH_VEC_ELT(V, I, P)for (I = 0; (V).iterate ((I), &(P)); ++(I)) \
1788 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1789
1790#define FOR_EACH_VEC_SAFE_ELT(V, I, P)for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) \
1791 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1792
1793/* Likewise, but start from FROM rather than 0. */
1794#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) \
1795 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1796
1797/* Convenience macro for reverse iteration. */
1798#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)for (I = (V).length () - 1; (V).iterate ((I), &(P)); (I)--
)
\
1799 for (I = (V).length () - 1; \
1800 (V).iterate ((I), &(P)); \
1801 (I)--)
1802
1803#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)for (I = vec_safe_length (V) - 1; vec_safe_iterate ((V), (I),
&(P)); (I)--)
\
1804 for (I = vec_safe_length (V) - 1; \
1805 vec_safe_iterate ((V), (I), &(P)); \
1806 (I)--)
1807
1808/* auto_string_vec's dtor, freeing all contained strings, automatically
1809 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1810
1811inline
1812auto_string_vec::~auto_string_vec ()
1813{
1814 int i;
1815 char *str;
1816 FOR_EACH_VEC_ELT (*this, i, str)for (i = 0; (*this).iterate ((i), &(str)); ++(i))
1817 free (str);
1818}
1819
1820/* auto_delete_vec's dtor, deleting all contained items, automatically
1821 chaining up to ~auto_vec <T*>, which frees the internal buffer. */
1822
1823template <typename T>
1824inline
1825auto_delete_vec<T>::~auto_delete_vec ()
1826{
1827 int i;
1828 T *item;
1829 FOR_EACH_VEC_ELT (*this, i, item)for (i = 0; (*this).iterate ((i), &(item)); ++(i))
1830 delete item;
1831}
1832
1833
1834/* Return a copy of this vector. */
1835
1836template<typename T>
1837inline vec<T, va_heap, vl_ptr>
1838vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECLvoid) const
1839{
1840 vec<T, va_heap, vl_ptr> new_vec{ };
1841 if (length ())
1842 new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
1843 return new_vec;
1844}
1845
1846
1847/* Ensure that the vector has at least RESERVE slots available (if
1848 EXACT is false), or exactly RESERVE slots available (if EXACT is
1849 true).
1850
1851 This may create additional headroom if EXACT is false.
1852
1853 Note that this can cause the embedded vector to be reallocated.
1854 Returns true iff reallocation actually occurred. */
1855
1856template<typename T>
1857inline bool
1858vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1859{
1860 if (space (nelems))
1861 return false;
1862
1863 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1864 this is necessary because it doesn't have enough information to know the
1865 embedded vector is in auto storage, and so should not be freed. */
1866 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1867 unsigned int oldsize = 0;
1868 bool handle_auto_vec = m_vec && using_auto_storage ();
1869 if (handle_auto_vec)
1870 {
1871 m_vec = NULLnullptr;
1872 oldsize = oldvec->length ();
1873 nelems += oldsize;
1874 }
1875
1876 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1877 if (handle_auto_vec)
1878 {
1879 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1880 m_vec->m_vecpfx.m_num = oldsize;
1881 }
1882
1883 return true;
1884}
1885
1886
1887/* Ensure that this vector has exactly NELEMS slots available. This
1888 will not create additional headroom. Note this can cause the
1889 embedded vector to be reallocated. Returns true iff reallocation
1890 actually occurred. */
1891
1892template<typename T>
1893inline bool
1894vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1895{
1896 return reserve (nelems, true PASS_MEM_STAT);
1897}
1898
1899
1900/* Create the internal vector and reserve NELEMS for it. This is
1901 exactly like vec::reserve, but the internal vector is
1902 unconditionally allocated from scratch. The old one, if it
1903 existed, is lost. */
1904
1905template<typename T>
1906inline void
1907vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1908{
1909 m_vec = NULLnullptr;
1910 if (nelems > 0)
1911 reserve_exact (nelems PASS_MEM_STAT);
1912}
1913
1914
1915/* Free the memory occupied by the embedded vector. */
1916
1917template<typename T>
1918inline void
1919vec<T, va_heap, vl_ptr>::release (void)
1920{
1921 if (!m_vec)
1922 return;
1923
1924 if (using_auto_storage ())
1925 {
1926 m_vec->m_vecpfx.m_num = 0;
1927 return;
1928 }
1929
1930 va_heap::release (m_vec);
1931}
1932
1933/* Copy the elements from SRC to the end of this vector as if by memcpy.
1934 SRC and this vector must be allocated with the same memory
1935 allocation mechanism. This vector is assumed to have sufficient
1936 headroom available. */
1937
1938template<typename T>
1939inline void
1940vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1941{
1942 if (src.length ())
1943 m_vec->splice (*(src.m_vec));
1944}
1945
1946
1947/* Copy the elements in SRC to the end of this vector as if by memcpy.
1948 SRC and this vector must be allocated with the same mechanism.
1949 If there is not enough headroom in this vector, it will be reallocated
1950 as needed. */
1951
1952template<typename T>
1953inline void
1954vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1955 MEM_STAT_DECL)
1956{
1957 if (src.length ())
1958 {
1959 reserve_exact (src.length ());
1960 splice (src);
1961 }
1962}
1963
1964
1965/* Push OBJ (a new element) onto the end of the vector. There must be
1966 sufficient space in the vector. Return a pointer to the slot
1967 where OBJ was inserted. */
1968
1969template<typename T>
1970inline T *
1971vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1972{
1973 return m_vec->quick_push (obj);
1974}
1975
1976
1977/* Push a new element OBJ onto the end of this vector. Reallocates
1978 the embedded vector, if needed. Return a pointer to the slot where
1979 OBJ was inserted. */
1980
1981template<typename T>
1982inline T *
1983vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1984{
1985 reserve (1, false PASS_MEM_STAT);
1986 return quick_push (obj);
1987}
1988
1989
1990/* Pop and return the last element off the end of the vector. */
1991
1992template<typename T>
1993inline T &
1994vec<T, va_heap, vl_ptr>::pop (void)
1995{
1996 return m_vec->pop ();
1997}
1998
1999
2000/* Set the length of the vector to LEN. The new length must be less
2001 than or equal to the current length. This is an O(1) operation. */
2002
2003template<typename T>
2004inline void
2005vec<T, va_heap, vl_ptr>::truncate (unsigned size)
2006{
2007 if (m_vec)
2008 m_vec->truncate (size);
2009 else
2010 gcc_checking_assert (size == 0)((void)(!(size == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2010, __FUNCTION__), 0 : 0))
;
2011}
2012
2013
2014/* Grow the vector to a specific length. LEN must be as long or
2015 longer than the current length. The new elements are
2016 uninitialized. Reallocate the internal vector, if needed. */
2017
2018template<typename T>
2019inline void
2020vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
2021{
2022 unsigned oldlen = length ();
2023 gcc_checking_assert (oldlen <= len)((void)(!(oldlen <= len) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2023, __FUNCTION__), 0 : 0))
;
2024 reserve (len - oldlen, exact PASS_MEM_STAT);
2025 if (m_vec)
2026 m_vec->quick_grow (len);
2027 else
2028 gcc_checking_assert (len == 0)((void)(!(len == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2028, __FUNCTION__), 0 : 0))
;
2029}
2030
2031
2032/* Grow the embedded vector to a specific length. LEN must be as
2033 long or longer than the current length. The new elements are
2034 initialized to zero. Reallocate the internal vector, if needed. */
2035
2036template<typename T>
2037inline void
2038vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
2039 MEM_STAT_DECL)
2040{
2041 unsigned oldlen = length ();
2042 size_t growby = len - oldlen;
2043 safe_grow (len, exact PASS_MEM_STAT);
2044 if (growby != 0)
2045 vec_default_construct (address () + oldlen, growby);
2046}
2047
2048
2049/* Same as vec::safe_grow but without reallocation of the internal vector.
2050 If the vector cannot be extended, a runtime assertion will be triggered. */
2051
2052template<typename T>
2053inline void
2054vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
2055{
2056 gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2056, __FUNCTION__), 0 : 0))
;
2057 m_vec->quick_grow (len);
2058}
2059
2060
2061/* Same as vec::quick_grow_cleared but without reallocation of the
2062 internal vector. If the vector cannot be extended, a runtime
2063 assertion will be triggered. */
2064
2065template<typename T>
2066inline void
2067vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
2068{
2069 gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2069, __FUNCTION__), 0 : 0))
;
2070 m_vec->quick_grow_cleared (len);
2071}
2072
2073
2074/* Insert an element, OBJ, at the IXth position of this vector. There
2075 must be sufficient space. */
2076
2077template<typename T>
2078inline void
2079vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
2080{
2081 m_vec->quick_insert (ix, obj);
2082}
2083
2084
2085/* Insert an element, OBJ, at the IXth position of the vector.
2086 Reallocate the embedded vector, if necessary. */
2087
2088template<typename T>
2089inline void
2090vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
2091{
2092 reserve (1, false PASS_MEM_STAT);
2093 quick_insert (ix, obj);
2094}
2095
2096
2097/* Remove an element from the IXth position of this vector. Ordering of
2098 remaining elements is preserved. This is an O(N) operation due to
2099 a memmove. */
2100
2101template<typename T>
2102inline void
2103vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
2104{
2105 m_vec->ordered_remove (ix);
2106}
2107
2108
2109/* Remove an element from the IXth position of this vector. Ordering
2110 of remaining elements is destroyed. This is an O(1) operation. */
2111
2112template<typename T>
2113inline void
2114vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
2115{
2116 m_vec->unordered_remove (ix);
2117}
2118
2119
2120/* Remove LEN elements starting at the IXth. Ordering is retained.
2121 This is an O(N) operation due to memmove. */
2122
2123template<typename T>
2124inline void
2125vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
2126{
2127 m_vec->block_remove (ix, len);
2128}
2129
2130
2131/* Sort the contents of this vector with qsort. CMP is the comparison
2132 function to pass to qsort. */
2133
2134template<typename T>
2135inline void
2136vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *))
2137{
2138 if (m_vec)
2139 m_vec->qsort (cmp)qsort (cmp);
2140}
2141
2142/* Sort the contents of this vector with qsort. CMP is the comparison
2143 function to pass to qsort. */
2144
2145template<typename T>
2146inline void
2147vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
2148 void *), void *data)
2149{
2150 if (m_vec)
2151 m_vec->sort (cmp, data);
2152}
2153
2154/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
2155 comparison function to pass to qsort. */
2156
2157template<typename T>
2158inline void
2159vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *,
2160 void *), void *data)
2161{
2162 if (m_vec)
2163 m_vec->stablesort (cmp, data);
2164}
2165
2166/* Search the contents of the sorted vector with a binary search.
2167 CMP is the comparison function to pass to bsearch. */
2168
2169template<typename T>
2170inline T *
2171vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2172 int (*cmp) (const void *, const void *))
2173{
2174 if (m_vec)
2175 return m_vec->bsearch (key, cmp);
2176 return NULLnullptr;
2177}
2178
2179/* Search the contents of the sorted vector with a binary search.
2180 CMP is the comparison function to pass to bsearch. */
2181
2182template<typename T>
2183inline T *
2184vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2185 int (*cmp) (const void *, const void *,
2186 void *), void *data)
2187{
2188 if (m_vec)
2189 return m_vec->bsearch (key, cmp, data);
2190 return NULLnullptr;
2191}
2192
2193
2194/* Find and return the first position in which OBJ could be inserted
2195 without changing the ordering of this vector. LESSTHAN is a
2196 function that returns true if the first argument is strictly less
2197 than the second. */
2198
2199template<typename T>
2200inline unsigned
2201vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2202 bool (*lessthan)(const T &, const T &))
2203 const
2204{
2205 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2206}
2207
2208/* Return true if SEARCH is an element of V. Note that this is O(N) in the
2209 size of the vector and so should be used with care. */
2210
2211template<typename T>
2212inline bool
2213vec<T, va_heap, vl_ptr>::contains (const T &search) const
2214{
2215 return m_vec ? m_vec->contains (search) : false;
2216}
2217
2218/* Reverse content of the vector. */
2219
2220template<typename T>
2221inline void
2222vec<T, va_heap, vl_ptr>::reverse (void)
2223{
2224 unsigned l = length ();
2225 T *ptr = address ();
2226
2227 for (unsigned i = 0; i < l / 2; i++)
2228 std::swap (ptr[i], ptr[l - i - 1]);
2229}
2230
2231template<typename T>
2232inline bool
2233vec<T, va_heap, vl_ptr>::using_auto_storage () const
2234{
2235 return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false;
2236}
2237
2238/* Release VEC and call release of all element vectors. */
2239
2240template<typename T>
2241inline void
2242release_vec_vec (vec<vec<T> > &vec)
2243{
2244 for (unsigned i = 0; i < vec.length (); i++)
2245 vec[i].release ();
2246
2247 vec.release ();
2248}
2249
2250// Provide a subset of the std::span functionality. (We can't use std::span
2251// itself because it's a C++20 feature.)
2252//
2253// In addition, provide an invalid value that is distinct from all valid
2254// sequences (including the empty sequence). This can be used to return
2255// failure without having to use std::optional.
2256//
2257// There is no operator bool because it would be ambiguous whether it is
2258// testing for a valid value or an empty sequence.
2259template<typename T>
2260class array_slice
2261{
2262 template<typename OtherT> friend class array_slice;
2263
2264public:
2265 using value_type = T;
2266 using iterator = T *;
2267 using const_iterator = const T *;
2268
2269 array_slice () : m_base (nullptr), m_size (0) {}
2270
2271 template<typename OtherT>
2272 array_slice (array_slice<OtherT> other)
2273 : m_base (other.m_base), m_size (other.m_size) {}
2274
2275 array_slice (iterator base, unsigned int size)
2276 : m_base (base), m_size (size) {}
2277
2278 template<size_t N>
2279 array_slice (T (&array)[N]) : m_base (array), m_size (N) {}
2280
2281 template<typename OtherT>
2282 array_slice (const vec<OtherT> &v)
2283 : m_base (v.address ()), m_size (v.length ()) {}
2284
2285 template<typename OtherT>
2286 array_slice (vec<OtherT> &v)
2287 : m_base (v.address ()), m_size (v.length ()) {}
2288
2289 template<typename OtherT>
2290 array_slice (const vec<OtherT, va_gc> *v)
2291 : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
2292
2293 template<typename OtherT>
2294 array_slice (vec<OtherT, va_gc> *v)
2295 : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
2296
2297 iterator begin () { return m_base; }
2298 iterator end () { return m_base + m_size; }
2299
2300 const_iterator begin () const { return m_base; }
2301 const_iterator end () const { return m_base + m_size; }
2302
2303 value_type &front ();
2304 value_type &back ();
2305 value_type &operator[] (unsigned int i);
2306
2307 const value_type &front () const;
2308 const value_type &back () const;
2309 const value_type &operator[] (unsigned int i) const;
2310
2311 size_t size () const { return m_size; }
2312 size_t size_bytes () const { return m_size * sizeof (T); }
2313 bool empty () const { return m_size == 0; }
2314
2315 // An invalid array_slice that represents a failed operation. This is
2316 // distinct from an empty slice, which is a valid result in some contexts.
2317 static array_slice invalid () { return { nullptr, ~0U }; }
2318
2319 // True if the array is valid, false if it is an array like INVALID.
2320 bool is_valid () const { return m_base || m_size == 0; }
2321
2322private:
2323 iterator m_base;
2324 unsigned int m_size;
2325};
2326
2327template<typename T>
2328inline typename array_slice<T>::value_type &
2329array_slice<T>::front ()
2330{
2331 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2331, __FUNCTION__), 0 : 0))
;
2332 return m_base[0];
2333}
2334
2335template<typename T>
2336inline const typename array_slice<T>::value_type &
2337array_slice<T>::front () const
2338{
2339 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2339, __FUNCTION__), 0 : 0))
;
2340 return m_base[0];
2341}
2342
2343template<typename T>
2344inline typename array_slice<T>::value_type &
2345array_slice<T>::back ()
2346{
2347 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2347, __FUNCTION__), 0 : 0))
;
2348 return m_base[m_size - 1];
2349}
2350
2351template<typename T>
2352inline const typename array_slice<T>::value_type &
2353array_slice<T>::back () const
2354{
2355 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2355, __FUNCTION__), 0 : 0))
;
2356 return m_base[m_size - 1];
2357}
2358
2359template<typename T>
2360inline typename array_slice<T>::value_type &
2361array_slice<T>::operator[] (unsigned int i)
2362{
2363 gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2363, __FUNCTION__), 0 : 0))
;
2364 return m_base[i];
2365}
2366
2367template<typename T>
2368inline const typename array_slice<T>::value_type &
2369array_slice<T>::operator[] (unsigned int i) const
2370{
2371 gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2371, __FUNCTION__), 0 : 0))
;
2372 return m_base[i];
2373}
2374
2375template<typename T>
2376array_slice<T>
2377make_array_slice (T *base, unsigned int size)
2378{
2379 return array_slice<T> (base, size);
2380}
2381
2382#if (GCC_VERSION(4 * 1000 + 2) >= 3000)
2383# pragma GCC poison m_vec m_vecpfx m_vecdata
2384#endif
2385
2386#endif // GCC_VEC_H