File: | build/gcc/fortran/simplify.cc |
Warning: | line 2539, column 3 Value stored to 's_len' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Simplify intrinsic functions at compile-time. |
2 | Copyright (C) 2000-2023 Free Software Foundation, Inc. |
3 | Contributed by Andy Vaught & Katherine Holcomb |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify it under |
8 | the terms of the GNU General Public License as published by the Free |
9 | Software Foundation; either version 3, or (at your option) any later |
10 | version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
15 | for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | #include "config.h" |
22 | #include "system.h" |
23 | #include "coretypes.h" |
24 | #include "tm.h" /* For BITS_PER_UNIT. */ |
25 | #include "gfortran.h" |
26 | #include "arith.h" |
27 | #include "intrinsic.h" |
28 | #include "match.h" |
29 | #include "target-memory.h" |
30 | #include "constructor.h" |
31 | #include "version.h" /* For version_string. */ |
32 | |
33 | /* Prototypes. */ |
34 | |
35 | static int min_max_choose (gfc_expr *, gfc_expr *, int, bool back_val = false); |
36 | |
37 | gfc_expr gfc_bad_expr; |
38 | |
39 | static gfc_expr *simplify_size (gfc_expr *, gfc_expr *, int); |
40 | |
41 | |
42 | /* Note that 'simplification' is not just transforming expressions. |
43 | For functions that are not simplified at compile time, range |
44 | checking is done if possible. |
45 | |
46 | The return convention is that each simplification function returns: |
47 | |
48 | A new expression node corresponding to the simplified arguments. |
49 | The original arguments are destroyed by the caller, and must not |
50 | be a part of the new expression. |
51 | |
52 | NULL pointer indicating that no simplification was possible and |
53 | the original expression should remain intact. |
54 | |
55 | An expression pointer to gfc_bad_expr (a static placeholder) |
56 | indicating that some error has prevented simplification. The |
57 | error is generated within the function and should be propagated |
58 | upwards |
59 | |
60 | By the time a simplification function gets control, it has been |
61 | decided that the function call is really supposed to be the |
62 | intrinsic. No type checking is strictly necessary, since only |
63 | valid types will be passed on. On the other hand, a simplification |
64 | subroutine may have to look at the type of an argument as part of |
65 | its processing. |
66 | |
67 | Array arguments are only passed to these subroutines that implement |
68 | the simplification of transformational intrinsics. |
69 | |
70 | The functions in this file don't have much comment with them, but |
71 | everything is reasonably straight-forward. The Standard, chapter 13 |
72 | is the best comment you'll find for this file anyway. */ |
73 | |
74 | /* Range checks an expression node. If all goes well, returns the |
75 | node, otherwise returns &gfc_bad_expr and frees the node. */ |
76 | |
77 | static gfc_expr * |
78 | range_check (gfc_expr *result, const char *name) |
79 | { |
80 | if (result == NULL__null) |
81 | return &gfc_bad_expr; |
82 | |
83 | if (result->expr_type != EXPR_CONSTANT) |
84 | return result; |
85 | |
86 | switch (gfc_range_check (result)) |
87 | { |
88 | case ARITH_OK: |
89 | return result; |
90 | |
91 | case ARITH_OVERFLOW: |
92 | gfc_error ("Result of %s overflows its kind at %L", name, |
93 | &result->where); |
94 | break; |
95 | |
96 | case ARITH_UNDERFLOW: |
97 | gfc_error ("Result of %s underflows its kind at %L", name, |
98 | &result->where); |
99 | break; |
100 | |
101 | case ARITH_NAN: |
102 | gfc_error ("Result of %s is NaN at %L", name, &result->where); |
103 | break; |
104 | |
105 | default: |
106 | gfc_error ("Result of %s gives range error for its kind at %L", name, |
107 | &result->where); |
108 | break; |
109 | } |
110 | |
111 | gfc_free_expr (result); |
112 | return &gfc_bad_expr; |
113 | } |
114 | |
115 | |
116 | /* A helper function that gets an optional and possibly missing |
117 | kind parameter. Returns the kind, -1 if something went wrong. */ |
118 | |
119 | static int |
120 | get_kind (bt type, gfc_expr *k, const char *name, int default_kind) |
121 | { |
122 | int kind; |
123 | |
124 | if (k == NULL__null) |
125 | return default_kind; |
126 | |
127 | if (k->expr_type != EXPR_CONSTANT) |
128 | { |
129 | gfc_error ("KIND parameter of %s at %L must be an initialization " |
130 | "expression", name, &k->where); |
131 | return -1; |
132 | } |
133 | |
134 | if (gfc_extract_int (k, &kind) |
135 | || gfc_validate_kind (type, kind, true) < 0) |
136 | { |
137 | gfc_error ("Invalid KIND parameter of %s at %L", name, &k->where); |
138 | return -1; |
139 | } |
140 | |
141 | return kind; |
142 | } |
143 | |
144 | |
145 | /* Converts an mpz_t signed variable into an unsigned one, assuming |
146 | two's complement representations and a binary width of bitsize. |
147 | The conversion is a no-op unless x is negative; otherwise, it can |
148 | be accomplished by masking out the high bits. */ |
149 | |
150 | static void |
151 | convert_mpz_to_unsigned (mpz_t x, int bitsize) |
152 | { |
153 | mpz_t mask; |
154 | |
155 | if (mpz_sgn (x)((x)->_mp_size < 0 ? -1 : (x)->_mp_size > 0) < 0) |
156 | { |
157 | /* Confirm that no bits above the signed range are unset if we |
158 | are doing range checking. */ |
159 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
160 | gcc_assert (mpz_scan0 (x, bitsize-1) == ULONG_MAX)((void)(!(__gmpz_scan0 (x, bitsize-1) == (9223372036854775807L *2UL+1UL)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 160, __FUNCTION__), 0 : 0)); |
161 | |
162 | mpz_init_set_ui__gmpz_init_set_ui (mask, 1); |
163 | mpz_mul_2exp__gmpz_mul_2exp (mask, mask, bitsize); |
164 | mpz_sub_ui__gmpz_sub_ui (mask, mask, 1); |
165 | |
166 | mpz_and__gmpz_and (x, x, mask); |
167 | |
168 | mpz_clear__gmpz_clear (mask); |
169 | } |
170 | else |
171 | { |
172 | /* Confirm that no bits above the signed range are set if we |
173 | are doing range checking. */ |
174 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
175 | gcc_assert (mpz_scan1 (x, bitsize-1) == ULONG_MAX)((void)(!(__gmpz_scan1 (x, bitsize-1) == (9223372036854775807L *2UL+1UL)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 175, __FUNCTION__), 0 : 0)); |
176 | } |
177 | } |
178 | |
179 | |
180 | /* Converts an mpz_t unsigned variable into a signed one, assuming |
181 | two's complement representations and a binary width of bitsize. |
182 | If the bitsize-1 bit is set, this is taken as a sign bit and |
183 | the number is converted to the corresponding negative number. */ |
184 | |
185 | void |
186 | gfc_convert_mpz_to_signed (mpz_t x, int bitsize) |
187 | { |
188 | mpz_t mask; |
189 | |
190 | /* Confirm that no bits above the unsigned range are set if we are |
191 | doing range checking. */ |
192 | if (flag_range_checkglobal_options.x_flag_range_check != 0) |
193 | gcc_assert (mpz_scan1 (x, bitsize) == ULONG_MAX)((void)(!(__gmpz_scan1 (x, bitsize) == (9223372036854775807L * 2UL+1UL)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 193, __FUNCTION__), 0 : 0)); |
194 | |
195 | if (mpz_tstbit__gmpz_tstbit (x, bitsize - 1) == 1) |
196 | { |
197 | mpz_init_set_ui__gmpz_init_set_ui (mask, 1); |
198 | mpz_mul_2exp__gmpz_mul_2exp (mask, mask, bitsize); |
199 | mpz_sub_ui__gmpz_sub_ui (mask, mask, 1); |
200 | |
201 | /* We negate the number by hand, zeroing the high bits, that is |
202 | make it the corresponding positive number, and then have it |
203 | negated by GMP, giving the correct representation of the |
204 | negative number. */ |
205 | mpz_com__gmpz_com (x, x); |
206 | mpz_add_ui__gmpz_add_ui (x, x, 1); |
207 | mpz_and__gmpz_and (x, x, mask); |
208 | |
209 | mpz_neg__gmpz_neg (x, x); |
210 | |
211 | mpz_clear__gmpz_clear (mask); |
212 | } |
213 | } |
214 | |
215 | |
216 | /* Test that the expression is a constant array, simplifying if |
217 | we are dealing with a parameter array. */ |
218 | |
219 | static bool |
220 | is_constant_array_expr (gfc_expr *e) |
221 | { |
222 | gfc_constructor *c; |
223 | bool array_OK = true; |
224 | mpz_t size; |
225 | |
226 | if (e == NULL__null) |
227 | return true; |
228 | |
229 | if (e->expr_type == EXPR_VARIABLE && e->rank > 0 |
230 | && e->symtree->n.sym->attr.flavor == FL_PARAMETER) |
231 | gfc_simplify_expr (e, 1); |
232 | |
233 | if (e->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (e)) |
234 | return false; |
235 | |
236 | /* A non-zero-sized constant array shall have a non-empty constructor. */ |
237 | if (e->rank > 0 && e->shape != NULL__null && e->value.constructor == NULL__null) |
238 | { |
239 | mpz_init_set_ui__gmpz_init_set_ui (size, 1); |
240 | for (int j = 0; j < e->rank; j++) |
241 | mpz_mul__gmpz_mul (size, size, e->shape[j]); |
242 | bool not_size0 = (mpz_cmp_si (size, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (size)->_mp_size < 0 ? -1 : (size)->_mp_size > 0) : __gmpz_cmp_ui (size,(static_cast<unsigned long> (0)) )) : __gmpz_cmp_si (size,0)) != 0); |
243 | mpz_clear__gmpz_clear (size); |
244 | if (not_size0) |
245 | return false; |
246 | } |
247 | |
248 | for (c = gfc_constructor_first (e->value.constructor); |
249 | c; c = gfc_constructor_next (c)) |
250 | if (c->expr->expr_type != EXPR_CONSTANT |
251 | && c->expr->expr_type != EXPR_STRUCTURE) |
252 | { |
253 | array_OK = false; |
254 | break; |
255 | } |
256 | |
257 | /* Check and expand the constructor. */ |
258 | if (!array_OK && gfc_init_expr_flag && e->rank == 1) |
259 | { |
260 | array_OK = gfc_reduce_init_expr (e); |
261 | /* gfc_reduce_init_expr resets the flag. */ |
262 | gfc_init_expr_flag = true; |
263 | } |
264 | else |
265 | return array_OK; |
266 | |
267 | /* Recheck to make sure that any EXPR_ARRAYs have gone. */ |
268 | for (c = gfc_constructor_first (e->value.constructor); |
269 | c; c = gfc_constructor_next (c)) |
270 | if (c->expr->expr_type != EXPR_CONSTANT |
271 | && c->expr->expr_type != EXPR_STRUCTURE) |
272 | return false; |
273 | |
274 | /* Make sure that the array has a valid shape. */ |
275 | if (e->shape == NULL__null && e->rank == 1) |
276 | { |
277 | if (!gfc_array_size(e, &size)) |
278 | return false; |
279 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
280 | mpz_init_set__gmpz_init_set (e->shape[0], size); |
281 | mpz_clear__gmpz_clear (size); |
282 | } |
283 | |
284 | return array_OK; |
285 | } |
286 | |
287 | /* Test for a size zero array. */ |
288 | bool |
289 | gfc_is_size_zero_array (gfc_expr *array) |
290 | { |
291 | |
292 | if (array->rank == 0) |
293 | return false; |
294 | |
295 | if (array->expr_type == EXPR_VARIABLE && array->rank > 0 |
296 | && array->symtree->n.sym->attr.flavor == FL_PARAMETER |
297 | && array->shape != NULL__null) |
298 | { |
299 | for (int i = 0; i < array->rank; i++) |
300 | if (mpz_cmp_si (array->shape[i], 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (array->shape[i])->_mp_size < 0 ? -1 : (array->shape [i])->_mp_size > 0) : __gmpz_cmp_ui (array->shape[i] ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (array ->shape[i],0)) <= 0) |
301 | return true; |
302 | |
303 | return false; |
304 | } |
305 | |
306 | if (array->expr_type == EXPR_ARRAY) |
307 | return array->value.constructor == NULL__null; |
308 | |
309 | return false; |
310 | } |
311 | |
312 | |
313 | /* Initialize a transformational result expression with a given value. */ |
314 | |
315 | static void |
316 | init_result_expr (gfc_expr *e, int init, gfc_expr *array) |
317 | { |
318 | if (e && e->expr_type == EXPR_ARRAY) |
319 | { |
320 | gfc_constructor *ctor = gfc_constructor_first (e->value.constructor); |
321 | while (ctor) |
322 | { |
323 | init_result_expr (ctor->expr, init, array); |
324 | ctor = gfc_constructor_next (ctor); |
325 | } |
326 | } |
327 | else if (e && e->expr_type == EXPR_CONSTANT) |
328 | { |
329 | int i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
330 | HOST_WIDE_INTlong length; |
331 | gfc_char_t *string; |
332 | |
333 | switch (e->ts.type) |
334 | { |
335 | case BT_LOGICAL: |
336 | e->value.logical = (init ? 1 : 0); |
337 | break; |
338 | |
339 | case BT_INTEGER: |
340 | if (init == INT_MIN(-2147483647 -1)) |
341 | mpz_set__gmpz_set (e->value.integer, gfc_integer_kinds[i].min_int); |
342 | else if (init == INT_MAX2147483647) |
343 | mpz_set__gmpz_set (e->value.integer, gfc_integer_kinds[i].huge); |
344 | else |
345 | mpz_set_si__gmpz_set_si (e->value.integer, init); |
346 | break; |
347 | |
348 | case BT_REAL: |
349 | if (init == INT_MIN(-2147483647 -1)) |
350 | { |
351 | mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (gfc_real_kinds[i].huge); mpfr_set4 (e->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
352 | mpfr_neg (e->value.real, e->value.real, GFC_RND_MODEMPFR_RNDN); |
353 | } |
354 | else if (init == INT_MAX2147483647) |
355 | mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (gfc_real_kinds[i].huge); mpfr_set4 (e->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
356 | else |
357 | mpfr_set_si (e->value.real, init, GFC_RND_MODEMPFR_RNDN); |
358 | break; |
359 | |
360 | case BT_COMPLEX: |
361 | mpc_set_si (e->value.complex, init, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
362 | break; |
363 | |
364 | case BT_CHARACTER: |
365 | if (init == INT_MIN(-2147483647 -1)) |
366 | { |
367 | gfc_expr *len = gfc_simplify_len (array, NULL__null); |
368 | gfc_extract_hwi (len, &length); |
369 | string = gfc_get_wide_string (length + 1)((gfc_char_t *) xcalloc ((length + 1), sizeof (gfc_char_t))); |
370 | gfc_wide_memset (string, 0, length); |
371 | } |
372 | else if (init == INT_MAX2147483647) |
373 | { |
374 | gfc_expr *len = gfc_simplify_len (array, NULL__null); |
375 | gfc_extract_hwi (len, &length); |
376 | string = gfc_get_wide_string (length + 1)((gfc_char_t *) xcalloc ((length + 1), sizeof (gfc_char_t))); |
377 | gfc_wide_memset (string, 255, length); |
378 | } |
379 | else |
380 | { |
381 | length = 0; |
382 | string = gfc_get_wide_string (1)((gfc_char_t *) xcalloc ((1), sizeof (gfc_char_t))); |
383 | } |
384 | |
385 | string[length] = '\0'; |
386 | e->value.character.length = length; |
387 | e->value.character.string = string; |
388 | break; |
389 | |
390 | default: |
391 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 391, __FUNCTION__)); |
392 | } |
393 | } |
394 | else |
395 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 395, __FUNCTION__)); |
396 | } |
397 | |
398 | |
399 | /* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul; |
400 | if conj_a is true, the matrix_a is complex conjugated. */ |
401 | |
402 | static gfc_expr * |
403 | compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a, |
404 | gfc_expr *matrix_b, int stride_b, int offset_b, |
405 | bool conj_a) |
406 | { |
407 | gfc_expr *result, *a, *b, *c; |
408 | |
409 | /* Set result to an INTEGER(1) 0 for numeric types and .false. for |
410 | LOGICAL. Mixed-mode math in the loop will promote result to the |
411 | correct type and kind. */ |
412 | if (matrix_a->ts.type == BT_LOGICAL) |
413 | result = gfc_get_logical_expr (gfc_default_logical_kind, NULL__null, false); |
414 | else |
415 | result = gfc_get_int_expr (1, NULL__null, 0); |
416 | result->where = matrix_a->where; |
417 | |
418 | a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a); |
419 | b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b); |
420 | while (a && b) |
421 | { |
422 | /* Copying of expressions is required as operands are free'd |
423 | by the gfc_arith routines. */ |
424 | switch (result->ts.type) |
425 | { |
426 | case BT_LOGICAL: |
427 | result = gfc_or (result, |
428 | gfc_and (gfc_copy_expr (a), |
429 | gfc_copy_expr (b))); |
430 | break; |
431 | |
432 | case BT_INTEGER: |
433 | case BT_REAL: |
434 | case BT_COMPLEX: |
435 | if (conj_a && a->ts.type == BT_COMPLEX) |
436 | c = gfc_simplify_conjg (a); |
437 | else |
438 | c = gfc_copy_expr (a); |
439 | result = gfc_add (result, gfc_multiply (c, gfc_copy_expr (b))); |
440 | break; |
441 | |
442 | default: |
443 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 443, __FUNCTION__)); |
444 | } |
445 | |
446 | offset_a += stride_a; |
447 | a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a); |
448 | |
449 | offset_b += stride_b; |
450 | b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b); |
451 | } |
452 | |
453 | return result; |
454 | } |
455 | |
456 | |
457 | /* Build a result expression for transformational intrinsics, |
458 | depending on DIM. */ |
459 | |
460 | static gfc_expr * |
461 | transformational_result (gfc_expr *array, gfc_expr *dim, bt type, |
462 | int kind, locus* where) |
463 | { |
464 | gfc_expr *result; |
465 | int i, nelem; |
466 | |
467 | if (!dim || array->rank == 1) |
468 | return gfc_get_constant_expr (type, kind, where); |
469 | |
470 | result = gfc_get_array_expr (type, kind, where); |
471 | result->shape = gfc_copy_shape_excluding (array->shape, array->rank, dim); |
472 | result->rank = array->rank - 1; |
473 | |
474 | /* gfc_array_size() would count the number of elements in the constructor, |
475 | we have not built those yet. */ |
476 | nelem = 1; |
477 | for (i = 0; i < result->rank; ++i) |
478 | nelem *= mpz_get_ui__gmpz_get_ui (result->shape[i]); |
479 | |
480 | for (i = 0; i < nelem; ++i) |
481 | { |
482 | gfc_constructor_append_expr (&result->value.constructor, |
483 | gfc_get_constant_expr (type, kind, where), |
484 | NULL__null); |
485 | } |
486 | |
487 | return result; |
488 | } |
489 | |
490 | |
491 | typedef gfc_expr* (*transformational_op)(gfc_expr*, gfc_expr*); |
492 | |
493 | /* Wrapper function, implements 'op1 += 1'. Only called if MASK |
494 | of COUNT intrinsic is .TRUE.. |
495 | |
496 | Interface and implementation mimics arith functions as |
497 | gfc_add, gfc_multiply, etc. */ |
498 | |
499 | static gfc_expr * |
500 | gfc_count (gfc_expr *op1, gfc_expr *op2) |
501 | { |
502 | gfc_expr *result; |
503 | |
504 | gcc_assert (op1->ts.type == BT_INTEGER)((void)(!(op1->ts.type == BT_INTEGER) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 504, __FUNCTION__), 0 : 0)); |
505 | gcc_assert (op2->ts.type == BT_LOGICAL)((void)(!(op2->ts.type == BT_LOGICAL) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 505, __FUNCTION__), 0 : 0)); |
506 | gcc_assert (op2->value.logical)((void)(!(op2->value.logical) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 506, __FUNCTION__), 0 : 0)); |
507 | |
508 | result = gfc_copy_expr (op1); |
509 | mpz_add_ui__gmpz_add_ui (result->value.integer, result->value.integer, 1); |
510 | |
511 | gfc_free_expr (op1); |
512 | gfc_free_expr (op2); |
513 | return result; |
514 | } |
515 | |
516 | |
517 | /* Transforms an ARRAY with operation OP, according to MASK, to a |
518 | scalar RESULT. E.g. called if |
519 | |
520 | REAL, PARAMETER :: array(n, m) = ... |
521 | REAL, PARAMETER :: s = SUM(array) |
522 | |
523 | where OP == gfc_add(). */ |
524 | |
525 | static gfc_expr * |
526 | simplify_transformation_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask, |
527 | transformational_op op) |
528 | { |
529 | gfc_expr *a, *m; |
530 | gfc_constructor *array_ctor, *mask_ctor; |
531 | |
532 | /* Shortcut for constant .FALSE. MASK. */ |
533 | if (mask |
534 | && mask->expr_type == EXPR_CONSTANT |
535 | && !mask->value.logical) |
536 | return result; |
537 | |
538 | array_ctor = gfc_constructor_first (array->value.constructor); |
539 | mask_ctor = NULL__null; |
540 | if (mask && mask->expr_type == EXPR_ARRAY) |
541 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
542 | |
543 | while (array_ctor) |
544 | { |
545 | a = array_ctor->expr; |
546 | array_ctor = gfc_constructor_next (array_ctor); |
547 | |
548 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
549 | if (mask_ctor) |
550 | { |
551 | m = mask_ctor->expr; |
552 | mask_ctor = gfc_constructor_next (mask_ctor); |
553 | if (!m->value.logical) |
554 | continue; |
555 | } |
556 | |
557 | result = op (result, gfc_copy_expr (a)); |
558 | if (!result) |
559 | return result; |
560 | } |
561 | |
562 | return result; |
563 | } |
564 | |
565 | /* Transforms an ARRAY with operation OP, according to MASK, to an |
566 | array RESULT. E.g. called if |
567 | |
568 | REAL, PARAMETER :: array(n, m) = ... |
569 | REAL, PARAMETER :: s(n) = PROD(array, DIM=1) |
570 | |
571 | where OP == gfc_multiply(). |
572 | The result might be post processed using post_op. */ |
573 | |
574 | static gfc_expr * |
575 | simplify_transformation_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *dim, |
576 | gfc_expr *mask, transformational_op op, |
577 | transformational_op post_op) |
578 | { |
579 | mpz_t size; |
580 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
581 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
582 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
583 | |
584 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
585 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
586 | tmpstride[GFC_MAX_DIMENSIONS15]; |
587 | |
588 | /* Shortcut for constant .FALSE. MASK. */ |
589 | if (mask |
590 | && mask->expr_type == EXPR_CONSTANT |
591 | && !mask->value.logical) |
592 | return result; |
593 | |
594 | /* Build an indexed table for array element expressions to minimize |
595 | linked-list traversal. Masked elements are set to NULL. */ |
596 | gfc_array_size (array, &size); |
597 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
598 | mpz_clear__gmpz_clear (size); |
599 | |
600 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
601 | |
602 | array_ctor = gfc_constructor_first (array->value.constructor); |
603 | mask_ctor = NULL__null; |
604 | if (mask && mask->expr_type == EXPR_ARRAY) |
605 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
606 | |
607 | for (i = 0; i < arraysize; ++i) |
608 | { |
609 | arrayvec[i] = array_ctor->expr; |
610 | array_ctor = gfc_constructor_next (array_ctor); |
611 | |
612 | if (mask_ctor) |
613 | { |
614 | if (!mask_ctor->expr->value.logical) |
615 | arrayvec[i] = NULL__null; |
616 | |
617 | mask_ctor = gfc_constructor_next (mask_ctor); |
618 | } |
619 | } |
620 | |
621 | /* Same for the result expression. */ |
622 | gfc_array_size (result, &size); |
623 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
624 | mpz_clear__gmpz_clear (size); |
625 | |
626 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
627 | result_ctor = gfc_constructor_first (result->value.constructor); |
628 | for (i = 0; i < resultsize; ++i) |
629 | { |
630 | resultvec[i] = result_ctor->expr; |
631 | result_ctor = gfc_constructor_next (result_ctor); |
632 | } |
633 | |
634 | gfc_extract_int (dim, &dim_index); |
635 | dim_index -= 1; /* zero-base index */ |
636 | dim_extent = 0; |
637 | dim_stride = 0; |
638 | |
639 | for (i = 0, n = 0; i < array->rank; ++i) |
640 | { |
641 | count[i] = 0; |
642 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
643 | if (i == dim_index) |
644 | { |
645 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
646 | dim_stride = tmpstride[i]; |
647 | continue; |
648 | } |
649 | |
650 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
651 | sstride[n] = tmpstride[i]; |
652 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
653 | n += 1; |
654 | } |
655 | |
656 | done = resultsize <= 0; |
657 | base = arrayvec; |
658 | dest = resultvec; |
659 | while (!done) |
660 | { |
661 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
662 | if (*src) |
663 | *dest = op (*dest, gfc_copy_expr (*src)); |
664 | |
665 | if (post_op) |
666 | *dest = post_op (*dest, *dest); |
667 | |
668 | count[0]++; |
669 | base += sstride[0]; |
670 | dest += dstride[0]; |
671 | |
672 | n = 0; |
673 | while (!done && count[n] == extent[n]) |
674 | { |
675 | count[n] = 0; |
676 | base -= sstride[n] * extent[n]; |
677 | dest -= dstride[n] * extent[n]; |
678 | |
679 | n++; |
680 | if (n < result->rank) |
681 | { |
682 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
683 | times, we'd warn for the last iteration, because the |
684 | array index will have already been incremented to the |
685 | array sizes, and we can't tell that this must make |
686 | the test against result->rank false, because ranks |
687 | must not exceed GFC_MAX_DIMENSIONS. */ |
688 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
689 | count[n]++; |
690 | base += sstride[n]; |
691 | dest += dstride[n]; |
692 | GCC_DIAGNOSTIC_POP |
693 | } |
694 | else |
695 | done = true; |
696 | } |
697 | } |
698 | |
699 | /* Place updated expression in result constructor. */ |
700 | result_ctor = gfc_constructor_first (result->value.constructor); |
701 | for (i = 0; i < resultsize; ++i) |
702 | { |
703 | result_ctor->expr = resultvec[i]; |
704 | result_ctor = gfc_constructor_next (result_ctor); |
705 | } |
706 | |
707 | free (arrayvec); |
708 | free (resultvec); |
709 | return result; |
710 | } |
711 | |
712 | |
713 | static gfc_expr * |
714 | simplify_transformation (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, |
715 | int init_val, transformational_op op) |
716 | { |
717 | gfc_expr *result; |
718 | bool size_zero; |
719 | |
720 | size_zero = gfc_is_size_zero_array (array); |
721 | |
722 | if (!(is_constant_array_expr (array) || size_zero) |
723 | || array->shape == NULL__null |
724 | || !gfc_is_constant_expr (dim)) |
725 | return NULL__null; |
726 | |
727 | if (mask |
728 | && !is_constant_array_expr (mask) |
729 | && mask->expr_type != EXPR_CONSTANT) |
730 | return NULL__null; |
731 | |
732 | result = transformational_result (array, dim, array->ts.type, |
733 | array->ts.kind, &array->where); |
734 | init_result_expr (result, init_val, array); |
735 | |
736 | if (size_zero) |
737 | return result; |
738 | |
739 | return !dim || array->rank == 1 ? |
740 | simplify_transformation_to_scalar (result, array, mask, op) : |
741 | simplify_transformation_to_array (result, array, dim, mask, op, NULL__null); |
742 | } |
743 | |
744 | |
745 | /********************** Simplification functions *****************************/ |
746 | |
747 | gfc_expr * |
748 | gfc_simplify_abs (gfc_expr *e) |
749 | { |
750 | gfc_expr *result; |
751 | |
752 | if (e->expr_type != EXPR_CONSTANT) |
753 | return NULL__null; |
754 | |
755 | switch (e->ts.type) |
756 | { |
757 | case BT_INTEGER: |
758 | result = gfc_get_constant_expr (BT_INTEGER, e->ts.kind, &e->where); |
759 | mpz_abs__gmpz_abs (result->value.integer, e->value.integer); |
760 | return range_check (result, "IABS"); |
761 | |
762 | case BT_REAL: |
763 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
764 | mpfr_abs (result->value.real, e->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,e->value.real,MPFR_RNDN,1); |
765 | return range_check (result, "ABS"); |
766 | |
767 | case BT_COMPLEX: |
768 | gfc_set_model_kind (e->ts.kind); |
769 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
770 | mpc_abs (result->value.real, e->value.complex, GFC_RND_MODEMPFR_RNDN); |
771 | return range_check (result, "CABS"); |
772 | |
773 | default: |
774 | gfc_internal_error ("gfc_simplify_abs(): Bad type"); |
775 | } |
776 | } |
777 | |
778 | |
779 | static gfc_expr * |
780 | simplify_achar_char (gfc_expr *e, gfc_expr *k, const char *name, bool ascii) |
781 | { |
782 | gfc_expr *result; |
783 | int kind; |
784 | bool too_large = false; |
785 | |
786 | if (e->expr_type != EXPR_CONSTANT) |
787 | return NULL__null; |
788 | |
789 | kind = get_kind (BT_CHARACTER, k, name, gfc_default_character_kind); |
790 | if (kind == -1) |
791 | return &gfc_bad_expr; |
792 | |
793 | if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) < 0) |
794 | { |
795 | gfc_error ("Argument of %s function at %L is negative", name, |
796 | &e->where); |
797 | return &gfc_bad_expr; |
798 | } |
799 | |
800 | if (ascii && warn_surprisingglobal_options.x_warn_surprising && mpz_cmp_si (e->value.integer, 127)(__builtin_constant_p ((127) >= 0) && (127) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long> ( 127))) && ((static_cast<unsigned long> (127))) == 0 ? ((e->value.integer)->_mp_size < 0 ? -1 : (e-> value.integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value .integer,(static_cast<unsigned long> (127)))) : __gmpz_cmp_si (e->value.integer,127)) > 0) |
801 | gfc_warning (OPT_Wsurprising, |
802 | "Argument of %s function at %L outside of range [0,127]", |
803 | name, &e->where); |
804 | |
805 | if (kind == 1 && mpz_cmp_si (e->value.integer, 255)(__builtin_constant_p ((255) >= 0) && (255) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long> ( 255))) && ((static_cast<unsigned long> (255))) == 0 ? ((e->value.integer)->_mp_size < 0 ? -1 : (e-> value.integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value .integer,(static_cast<unsigned long> (255)))) : __gmpz_cmp_si (e->value.integer,255)) > 0) |
806 | too_large = true; |
807 | else if (kind == 4) |
808 | { |
809 | mpz_t t; |
810 | mpz_init_set_ui__gmpz_init_set_ui (t, 2); |
811 | mpz_pow_ui__gmpz_pow_ui (t, t, 32); |
812 | mpz_sub_ui__gmpz_sub_ui (t, t, 1); |
813 | if (mpz_cmp__gmpz_cmp (e->value.integer, t) > 0) |
814 | too_large = true; |
815 | mpz_clear__gmpz_clear (t); |
816 | } |
817 | |
818 | if (too_large) |
819 | { |
820 | gfc_error ("Argument of %s function at %L is too large for the " |
821 | "collating sequence of kind %d", name, &e->where, kind); |
822 | return &gfc_bad_expr; |
823 | } |
824 | |
825 | result = gfc_get_character_expr (kind, &e->where, NULL__null, 1); |
826 | result->value.character.string[0] = mpz_get_ui__gmpz_get_ui (e->value.integer); |
827 | |
828 | return result; |
829 | } |
830 | |
831 | |
832 | |
833 | /* We use the processor's collating sequence, because all |
834 | systems that gfortran currently works on are ASCII. */ |
835 | |
836 | gfc_expr * |
837 | gfc_simplify_achar (gfc_expr *e, gfc_expr *k) |
838 | { |
839 | return simplify_achar_char (e, k, "ACHAR", true); |
840 | } |
841 | |
842 | |
843 | gfc_expr * |
844 | gfc_simplify_acos (gfc_expr *x) |
845 | { |
846 | gfc_expr *result; |
847 | |
848 | if (x->expr_type != EXPR_CONSTANT) |
849 | return NULL__null; |
850 | |
851 | switch (x->ts.type) |
852 | { |
853 | case BT_REAL: |
854 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
855 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
856 | { |
857 | gfc_error ("Argument of ACOS at %L must be between -1 and 1", |
858 | &x->where); |
859 | return &gfc_bad_expr; |
860 | } |
861 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
862 | mpfr_acos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
863 | break; |
864 | |
865 | case BT_COMPLEX: |
866 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
867 | mpc_acos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
868 | break; |
869 | |
870 | default: |
871 | gfc_internal_error ("in gfc_simplify_acos(): Bad type"); |
872 | } |
873 | |
874 | return range_check (result, "ACOS"); |
875 | } |
876 | |
877 | gfc_expr * |
878 | gfc_simplify_acosh (gfc_expr *x) |
879 | { |
880 | gfc_expr *result; |
881 | |
882 | if (x->expr_type != EXPR_CONSTANT) |
883 | return NULL__null; |
884 | |
885 | switch (x->ts.type) |
886 | { |
887 | case BT_REAL: |
888 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) < 0) |
889 | { |
890 | gfc_error ("Argument of ACOSH at %L must not be less than 1", |
891 | &x->where); |
892 | return &gfc_bad_expr; |
893 | } |
894 | |
895 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
896 | mpfr_acosh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
897 | break; |
898 | |
899 | case BT_COMPLEX: |
900 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
901 | mpc_acosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
902 | break; |
903 | |
904 | default: |
905 | gfc_internal_error ("in gfc_simplify_acosh(): Bad type"); |
906 | } |
907 | |
908 | return range_check (result, "ACOSH"); |
909 | } |
910 | |
911 | gfc_expr * |
912 | gfc_simplify_adjustl (gfc_expr *e) |
913 | { |
914 | gfc_expr *result; |
915 | int count, i, len; |
916 | gfc_char_t ch; |
917 | |
918 | if (e->expr_type != EXPR_CONSTANT) |
919 | return NULL__null; |
920 | |
921 | len = e->value.character.length; |
922 | |
923 | for (count = 0, i = 0; i < len; ++i) |
924 | { |
925 | ch = e->value.character.string[i]; |
926 | if (ch != ' ') |
927 | break; |
928 | ++count; |
929 | } |
930 | |
931 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, len); |
932 | for (i = 0; i < len - count; ++i) |
933 | result->value.character.string[i] = e->value.character.string[count + i]; |
934 | |
935 | return result; |
936 | } |
937 | |
938 | |
939 | gfc_expr * |
940 | gfc_simplify_adjustr (gfc_expr *e) |
941 | { |
942 | gfc_expr *result; |
943 | int count, i, len; |
944 | gfc_char_t ch; |
945 | |
946 | if (e->expr_type != EXPR_CONSTANT) |
947 | return NULL__null; |
948 | |
949 | len = e->value.character.length; |
950 | |
951 | for (count = 0, i = len - 1; i >= 0; --i) |
952 | { |
953 | ch = e->value.character.string[i]; |
954 | if (ch != ' ') |
955 | break; |
956 | ++count; |
957 | } |
958 | |
959 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, len); |
960 | for (i = 0; i < count; ++i) |
961 | result->value.character.string[i] = ' '; |
962 | |
963 | for (i = count; i < len; ++i) |
964 | result->value.character.string[i] = e->value.character.string[i - count]; |
965 | |
966 | return result; |
967 | } |
968 | |
969 | |
970 | gfc_expr * |
971 | gfc_simplify_aimag (gfc_expr *e) |
972 | { |
973 | gfc_expr *result; |
974 | |
975 | if (e->expr_type != EXPR_CONSTANT) |
976 | return NULL__null; |
977 | |
978 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
979 | mpfr_set (result->value.real, mpc_imagref (e->value.complex), GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (((e->value.complex)-> im)); mpfr_set4(result->value.real,_p,MPFR_RNDN,((_p)-> _mpfr_sign)); }); |
980 | |
981 | return range_check (result, "AIMAG"); |
982 | } |
983 | |
984 | |
985 | gfc_expr * |
986 | gfc_simplify_aint (gfc_expr *e, gfc_expr *k) |
987 | { |
988 | gfc_expr *rtrunc, *result; |
989 | int kind; |
990 | |
991 | kind = get_kind (BT_REAL, k, "AINT", e->ts.kind); |
992 | if (kind == -1) |
993 | return &gfc_bad_expr; |
994 | |
995 | if (e->expr_type != EXPR_CONSTANT) |
996 | return NULL__null; |
997 | |
998 | rtrunc = gfc_copy_expr (e); |
999 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
1000 | |
1001 | result = gfc_real2real (rtrunc, kind); |
1002 | |
1003 | gfc_free_expr (rtrunc); |
1004 | |
1005 | return range_check (result, "AINT"); |
1006 | } |
1007 | |
1008 | |
1009 | gfc_expr * |
1010 | gfc_simplify_all (gfc_expr *mask, gfc_expr *dim) |
1011 | { |
1012 | return simplify_transformation (mask, dim, NULL__null, true, gfc_and); |
1013 | } |
1014 | |
1015 | |
1016 | gfc_expr * |
1017 | gfc_simplify_dint (gfc_expr *e) |
1018 | { |
1019 | gfc_expr *rtrunc, *result; |
1020 | |
1021 | if (e->expr_type != EXPR_CONSTANT) |
1022 | return NULL__null; |
1023 | |
1024 | rtrunc = gfc_copy_expr (e); |
1025 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
1026 | |
1027 | result = gfc_real2real (rtrunc, gfc_default_double_kind); |
1028 | |
1029 | gfc_free_expr (rtrunc); |
1030 | |
1031 | return range_check (result, "DINT"); |
1032 | } |
1033 | |
1034 | |
1035 | gfc_expr * |
1036 | gfc_simplify_dreal (gfc_expr *e) |
1037 | { |
1038 | gfc_expr *result = NULL__null; |
1039 | |
1040 | if (e->expr_type != EXPR_CONSTANT) |
1041 | return NULL__null; |
1042 | |
1043 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
1044 | mpc_real (result->value.real, e->value.complex, GFC_RND_MODEMPFR_RNDN); |
1045 | |
1046 | return range_check (result, "DREAL"); |
1047 | } |
1048 | |
1049 | |
1050 | gfc_expr * |
1051 | gfc_simplify_anint (gfc_expr *e, gfc_expr *k) |
1052 | { |
1053 | gfc_expr *result; |
1054 | int kind; |
1055 | |
1056 | kind = get_kind (BT_REAL, k, "ANINT", e->ts.kind); |
1057 | if (kind == -1) |
1058 | return &gfc_bad_expr; |
1059 | |
1060 | if (e->expr_type != EXPR_CONSTANT) |
1061 | return NULL__null; |
1062 | |
1063 | result = gfc_get_constant_expr (e->ts.type, kind, &e->where); |
1064 | mpfr_round (result->value.real, e->value.real)mpfr_rint((result->value.real), (e->value.real), MPFR_RNDNA ); |
1065 | |
1066 | return range_check (result, "ANINT"); |
1067 | } |
1068 | |
1069 | |
1070 | gfc_expr * |
1071 | gfc_simplify_and (gfc_expr *x, gfc_expr *y) |
1072 | { |
1073 | gfc_expr *result; |
1074 | int kind; |
1075 | |
1076 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1077 | return NULL__null; |
1078 | |
1079 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
1080 | |
1081 | switch (x->ts.type) |
1082 | { |
1083 | case BT_INTEGER: |
1084 | result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where); |
1085 | mpz_and__gmpz_and (result->value.integer, x->value.integer, y->value.integer); |
1086 | return range_check (result, "AND"); |
1087 | |
1088 | case BT_LOGICAL: |
1089 | return gfc_get_logical_expr (kind, &x->where, |
1090 | x->value.logical && y->value.logical); |
1091 | |
1092 | default: |
1093 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 1093, __FUNCTION__)); |
1094 | } |
1095 | } |
1096 | |
1097 | |
1098 | gfc_expr * |
1099 | gfc_simplify_any (gfc_expr *mask, gfc_expr *dim) |
1100 | { |
1101 | return simplify_transformation (mask, dim, NULL__null, false, gfc_or); |
1102 | } |
1103 | |
1104 | |
1105 | gfc_expr * |
1106 | gfc_simplify_dnint (gfc_expr *e) |
1107 | { |
1108 | gfc_expr *result; |
1109 | |
1110 | if (e->expr_type != EXPR_CONSTANT) |
1111 | return NULL__null; |
1112 | |
1113 | result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &e->where); |
1114 | mpfr_round (result->value.real, e->value.real)mpfr_rint((result->value.real), (e->value.real), MPFR_RNDNA ); |
1115 | |
1116 | return range_check (result, "DNINT"); |
1117 | } |
1118 | |
1119 | |
1120 | gfc_expr * |
1121 | gfc_simplify_asin (gfc_expr *x) |
1122 | { |
1123 | gfc_expr *result; |
1124 | |
1125 | if (x->expr_type != EXPR_CONSTANT) |
1126 | return NULL__null; |
1127 | |
1128 | switch (x->ts.type) |
1129 | { |
1130 | case BT_REAL: |
1131 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1132 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1133 | { |
1134 | gfc_error ("Argument of ASIN at %L must be between -1 and 1", |
1135 | &x->where); |
1136 | return &gfc_bad_expr; |
1137 | } |
1138 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1139 | mpfr_asin (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1140 | break; |
1141 | |
1142 | case BT_COMPLEX: |
1143 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1144 | mpc_asin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1145 | break; |
1146 | |
1147 | default: |
1148 | gfc_internal_error ("in gfc_simplify_asin(): Bad type"); |
1149 | } |
1150 | |
1151 | return range_check (result, "ASIN"); |
1152 | } |
1153 | |
1154 | |
1155 | /* Convert radians to degrees, i.e., x * 180 / pi. */ |
1156 | |
1157 | static void |
1158 | rad2deg (mpfr_t x) |
1159 | { |
1160 | mpfr_t tmp; |
1161 | |
1162 | mpfr_init (tmp); |
1163 | mpfr_const_pi (tmp, GFC_RND_MODEMPFR_RNDN); |
1164 | mpfr_mul_ui (x, x, 180, GFC_RND_MODEMPFR_RNDN); |
1165 | mpfr_div (x, x, tmp, GFC_RND_MODEMPFR_RNDN); |
1166 | mpfr_clear (tmp); |
1167 | } |
1168 | |
1169 | |
1170 | /* Simplify ACOSD(X) where the returned value has units of degree. */ |
1171 | |
1172 | gfc_expr * |
1173 | gfc_simplify_acosd (gfc_expr *x) |
1174 | { |
1175 | gfc_expr *result; |
1176 | |
1177 | if (x->expr_type != EXPR_CONSTANT) |
1178 | return NULL__null; |
1179 | |
1180 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1181 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1182 | { |
1183 | gfc_error ("Argument of ACOSD at %L must be between -1 and 1", |
1184 | &x->where); |
1185 | return &gfc_bad_expr; |
1186 | } |
1187 | |
1188 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1189 | mpfr_acos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1190 | rad2deg (result->value.real); |
1191 | |
1192 | return range_check (result, "ACOSD"); |
1193 | } |
1194 | |
1195 | |
1196 | /* Simplify asind (x) where the returned value has units of degree. */ |
1197 | |
1198 | gfc_expr * |
1199 | gfc_simplify_asind (gfc_expr *x) |
1200 | { |
1201 | gfc_expr *result; |
1202 | |
1203 | if (x->expr_type != EXPR_CONSTANT) |
1204 | return NULL__null; |
1205 | |
1206 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) > 0 |
1207 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) < 0) |
1208 | { |
1209 | gfc_error ("Argument of ASIND at %L must be between -1 and 1", |
1210 | &x->where); |
1211 | return &gfc_bad_expr; |
1212 | } |
1213 | |
1214 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1215 | mpfr_asin (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1216 | rad2deg (result->value.real); |
1217 | |
1218 | return range_check (result, "ASIND"); |
1219 | } |
1220 | |
1221 | |
1222 | /* Simplify atand (x) where the returned value has units of degree. */ |
1223 | |
1224 | gfc_expr * |
1225 | gfc_simplify_atand (gfc_expr *x) |
1226 | { |
1227 | gfc_expr *result; |
1228 | |
1229 | if (x->expr_type != EXPR_CONSTANT) |
1230 | return NULL__null; |
1231 | |
1232 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1233 | mpfr_atan (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1234 | rad2deg (result->value.real); |
1235 | |
1236 | return range_check (result, "ATAND"); |
1237 | } |
1238 | |
1239 | |
1240 | gfc_expr * |
1241 | gfc_simplify_asinh (gfc_expr *x) |
1242 | { |
1243 | gfc_expr *result; |
1244 | |
1245 | if (x->expr_type != EXPR_CONSTANT) |
1246 | return NULL__null; |
1247 | |
1248 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1249 | |
1250 | switch (x->ts.type) |
1251 | { |
1252 | case BT_REAL: |
1253 | mpfr_asinh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1254 | break; |
1255 | |
1256 | case BT_COMPLEX: |
1257 | mpc_asinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1258 | break; |
1259 | |
1260 | default: |
1261 | gfc_internal_error ("in gfc_simplify_asinh(): Bad type"); |
1262 | } |
1263 | |
1264 | return range_check (result, "ASINH"); |
1265 | } |
1266 | |
1267 | |
1268 | gfc_expr * |
1269 | gfc_simplify_atan (gfc_expr *x) |
1270 | { |
1271 | gfc_expr *result; |
1272 | |
1273 | if (x->expr_type != EXPR_CONSTANT) |
1274 | return NULL__null; |
1275 | |
1276 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1277 | |
1278 | switch (x->ts.type) |
1279 | { |
1280 | case BT_REAL: |
1281 | mpfr_atan (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1282 | break; |
1283 | |
1284 | case BT_COMPLEX: |
1285 | mpc_atan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1286 | break; |
1287 | |
1288 | default: |
1289 | gfc_internal_error ("in gfc_simplify_atan(): Bad type"); |
1290 | } |
1291 | |
1292 | return range_check (result, "ATAN"); |
1293 | } |
1294 | |
1295 | |
1296 | gfc_expr * |
1297 | gfc_simplify_atanh (gfc_expr *x) |
1298 | { |
1299 | gfc_expr *result; |
1300 | |
1301 | if (x->expr_type != EXPR_CONSTANT) |
1302 | return NULL__null; |
1303 | |
1304 | switch (x->ts.type) |
1305 | { |
1306 | case BT_REAL: |
1307 | if (mpfr_cmp_si (x->value.real, 1)mpfr_cmp_si_2exp((x->value.real),(1),0) >= 0 |
1308 | || mpfr_cmp_si (x->value.real, -1)mpfr_cmp_si_2exp((x->value.real),(-1),0) <= 0) |
1309 | { |
1310 | gfc_error ("Argument of ATANH at %L must be inside the range -1 " |
1311 | "to 1", &x->where); |
1312 | return &gfc_bad_expr; |
1313 | } |
1314 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1315 | mpfr_atanh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1316 | break; |
1317 | |
1318 | case BT_COMPLEX: |
1319 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1320 | mpc_atanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1321 | break; |
1322 | |
1323 | default: |
1324 | gfc_internal_error ("in gfc_simplify_atanh(): Bad type"); |
1325 | } |
1326 | |
1327 | return range_check (result, "ATANH"); |
1328 | } |
1329 | |
1330 | |
1331 | gfc_expr * |
1332 | gfc_simplify_atan2 (gfc_expr *y, gfc_expr *x) |
1333 | { |
1334 | gfc_expr *result; |
1335 | |
1336 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1337 | return NULL__null; |
1338 | |
1339 | if (mpfr_zero_p (y->value.real)(((mpfr_srcptr) (0 ? (y->value.real) : (mpfr_srcptr) (y-> value.real)))->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) && mpfr_zero_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
1340 | { |
1341 | gfc_error ("If first argument of ATAN2 at %L is zero, then the " |
1342 | "second argument must not be zero", &y->where); |
1343 | return &gfc_bad_expr; |
1344 | } |
1345 | |
1346 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1347 | mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1348 | |
1349 | return range_check (result, "ATAN2"); |
1350 | } |
1351 | |
1352 | |
1353 | gfc_expr * |
1354 | gfc_simplify_bessel_j0 (gfc_expr *x) |
1355 | { |
1356 | gfc_expr *result; |
1357 | |
1358 | if (x->expr_type != EXPR_CONSTANT) |
1359 | return NULL__null; |
1360 | |
1361 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1362 | mpfr_j0 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1363 | |
1364 | return range_check (result, "BESSEL_J0"); |
1365 | } |
1366 | |
1367 | |
1368 | gfc_expr * |
1369 | gfc_simplify_bessel_j1 (gfc_expr *x) |
1370 | { |
1371 | gfc_expr *result; |
1372 | |
1373 | if (x->expr_type != EXPR_CONSTANT) |
1374 | return NULL__null; |
1375 | |
1376 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1377 | mpfr_j1 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1378 | |
1379 | return range_check (result, "BESSEL_J1"); |
1380 | } |
1381 | |
1382 | |
1383 | gfc_expr * |
1384 | gfc_simplify_bessel_jn (gfc_expr *order, gfc_expr *x) |
1385 | { |
1386 | gfc_expr *result; |
1387 | long n; |
1388 | |
1389 | if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT) |
1390 | return NULL__null; |
1391 | |
1392 | n = mpz_get_si__gmpz_get_si (order->value.integer); |
1393 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1394 | mpfr_jn (result->value.real, n, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1395 | |
1396 | return range_check (result, "BESSEL_JN"); |
1397 | } |
1398 | |
1399 | |
1400 | /* Simplify transformational form of JN and YN. */ |
1401 | |
1402 | static gfc_expr * |
1403 | gfc_simplify_bessel_n2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x, |
1404 | bool jn) |
1405 | { |
1406 | gfc_expr *result; |
1407 | gfc_expr *e; |
1408 | long n1, n2; |
1409 | int i; |
1410 | mpfr_t x2rev, last1, last2; |
1411 | |
1412 | if (x->expr_type != EXPR_CONSTANT || order1->expr_type != EXPR_CONSTANT |
1413 | || order2->expr_type != EXPR_CONSTANT) |
1414 | return NULL__null; |
1415 | |
1416 | n1 = mpz_get_si__gmpz_get_si (order1->value.integer); |
1417 | n2 = mpz_get_si__gmpz_get_si (order2->value.integer); |
1418 | result = gfc_get_array_expr (x->ts.type, x->ts.kind, &x->where); |
1419 | result->rank = 1; |
1420 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
1421 | mpz_init_set_ui__gmpz_init_set_ui (result->shape[0], MAX (n2-n1+1, 0)((n2-n1+1) > (0) ? (n2-n1+1) : (0))); |
1422 | |
1423 | if (n2 < n1) |
1424 | return result; |
1425 | |
1426 | /* Special case: x == 0; it is J0(0.0) == 1, JN(N > 0, 0.0) == 0; and |
1427 | YN(N, 0.0) = -Inf. */ |
1428 | |
1429 | if (mpfr_cmp_ui (x->value.real, 0.0)mpfr_cmp_ui_2exp((x->value.real),(0.0),0) == 0) |
1430 | { |
1431 | if (!jn && flag_range_checkglobal_options.x_flag_range_check) |
1432 | { |
1433 | gfc_error ("Result of BESSEL_YN is -INF at %L", &result->where); |
1434 | gfc_free_expr (result); |
1435 | return &gfc_bad_expr; |
1436 | } |
1437 | |
1438 | if (jn && n1 == 0) |
1439 | { |
1440 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1441 | mpfr_set_ui (e->value.real, 1, GFC_RND_MODEMPFR_RNDN); |
1442 | gfc_constructor_append_expr (&result->value.constructor, e, |
1443 | &x->where); |
1444 | n1++; |
1445 | } |
1446 | |
1447 | for (i = n1; i <= n2; i++) |
1448 | { |
1449 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1450 | if (jn) |
1451 | mpfr_set_ui (e->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
1452 | else |
1453 | mpfr_set_inf (e->value.real, -1); |
1454 | gfc_constructor_append_expr (&result->value.constructor, e, |
1455 | &x->where); |
1456 | } |
1457 | |
1458 | return result; |
1459 | } |
1460 | |
1461 | /* Use the faster but more verbose recurrence algorithm. Bessel functions |
1462 | are stable for downward recursion and Neumann functions are stable |
1463 | for upward recursion. It is |
1464 | x2rev = 2.0/x, |
1465 | J(N-1, x) = x2rev * N * J(N, x) - J(N+1, x), |
1466 | Y(N+1, x) = x2rev * N * Y(N, x) - Y(N-1, x). |
1467 | Cf. http://dlmf.nist.gov/10.74#iv and http://dlmf.nist.gov/10.6#E1 */ |
1468 | |
1469 | gfc_set_model_kind (x->ts.kind); |
1470 | |
1471 | /* Get first recursion anchor. */ |
1472 | |
1473 | mpfr_init (last1); |
1474 | if (jn) |
1475 | mpfr_jn (last1, n2, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1476 | else |
1477 | mpfr_yn (last1, n1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1478 | |
1479 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1480 | mpfr_set (e->value.real, last1, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (last1); mpfr_set4(e->value .real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
1481 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1482 | { |
1483 | mpfr_clear (last1); |
1484 | gfc_free_expr (e); |
1485 | gfc_free_expr (result); |
1486 | return &gfc_bad_expr; |
1487 | } |
1488 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1489 | |
1490 | if (n1 == n2) |
1491 | { |
1492 | mpfr_clear (last1); |
1493 | return result; |
1494 | } |
1495 | |
1496 | /* Get second recursion anchor. */ |
1497 | |
1498 | mpfr_init (last2); |
1499 | if (jn) |
1500 | mpfr_jn (last2, n2-1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1501 | else |
1502 | mpfr_yn (last2, n1+1, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1503 | |
1504 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1505 | mpfr_set (e->value.real, last2, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (last2); mpfr_set4(e->value .real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
1506 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1507 | { |
1508 | mpfr_clear (last1); |
1509 | mpfr_clear (last2); |
1510 | gfc_free_expr (e); |
1511 | gfc_free_expr (result); |
1512 | return &gfc_bad_expr; |
1513 | } |
1514 | if (jn) |
1515 | gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, -2); |
1516 | else |
1517 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1518 | |
1519 | if (n1 + 1 == n2) |
1520 | { |
1521 | mpfr_clear (last1); |
1522 | mpfr_clear (last2); |
1523 | return result; |
1524 | } |
1525 | |
1526 | /* Start actual recursion. */ |
1527 | |
1528 | mpfr_init (x2rev); |
1529 | mpfr_ui_div (x2rev, 2, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1530 | |
1531 | for (i = 2; i <= n2-n1; i++) |
1532 | { |
1533 | e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1534 | |
1535 | /* Special case: For YN, if the previous N gave -INF, set |
1536 | also N+1 to -INF. */ |
1537 | if (!jn && !flag_range_checkglobal_options.x_flag_range_check && mpfr_inf_p (last2)(((mpfr_srcptr) (0 ? (last2) : (mpfr_srcptr) (last2)))->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1))))) |
1538 | { |
1539 | mpfr_set_inf (e->value.real, -1); |
1540 | gfc_constructor_append_expr (&result->value.constructor, e, |
1541 | &x->where); |
1542 | continue; |
1543 | } |
1544 | |
1545 | mpfr_mul_si (e->value.real, x2rev, jn ? (n2-i+1) : (n1+i-1), |
1546 | GFC_RND_MODEMPFR_RNDN); |
1547 | mpfr_mul (e->value.real, e->value.real, last2, GFC_RND_MODEMPFR_RNDN); |
1548 | mpfr_sub (e->value.real, e->value.real, last1, GFC_RND_MODEMPFR_RNDN); |
1549 | |
1550 | if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr) |
1551 | { |
1552 | /* Range_check frees "e" in that case. */ |
1553 | e = NULL__null; |
1554 | goto error; |
1555 | } |
1556 | |
1557 | if (jn) |
1558 | gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, |
1559 | -i-1); |
1560 | else |
1561 | gfc_constructor_append_expr (&result->value.constructor, e, &x->where); |
1562 | |
1563 | mpfr_set (last1, last2, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (last2); mpfr_set4(last1,_p ,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
1564 | mpfr_set (last2, e->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (e->value.real); mpfr_set4 (last2,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
1565 | } |
1566 | |
1567 | mpfr_clear (last1); |
1568 | mpfr_clear (last2); |
1569 | mpfr_clear (x2rev); |
1570 | return result; |
1571 | |
1572 | error: |
1573 | mpfr_clear (last1); |
1574 | mpfr_clear (last2); |
1575 | mpfr_clear (x2rev); |
1576 | gfc_free_expr (e); |
1577 | gfc_free_expr (result); |
1578 | return &gfc_bad_expr; |
1579 | } |
1580 | |
1581 | |
1582 | gfc_expr * |
1583 | gfc_simplify_bessel_jn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x) |
1584 | { |
1585 | return gfc_simplify_bessel_n2 (order1, order2, x, true); |
1586 | } |
1587 | |
1588 | |
1589 | gfc_expr * |
1590 | gfc_simplify_bessel_y0 (gfc_expr *x) |
1591 | { |
1592 | gfc_expr *result; |
1593 | |
1594 | if (x->expr_type != EXPR_CONSTANT) |
1595 | return NULL__null; |
1596 | |
1597 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1598 | mpfr_y0 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1599 | |
1600 | return range_check (result, "BESSEL_Y0"); |
1601 | } |
1602 | |
1603 | |
1604 | gfc_expr * |
1605 | gfc_simplify_bessel_y1 (gfc_expr *x) |
1606 | { |
1607 | gfc_expr *result; |
1608 | |
1609 | if (x->expr_type != EXPR_CONSTANT) |
1610 | return NULL__null; |
1611 | |
1612 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1613 | mpfr_y1 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1614 | |
1615 | return range_check (result, "BESSEL_Y1"); |
1616 | } |
1617 | |
1618 | |
1619 | gfc_expr * |
1620 | gfc_simplify_bessel_yn (gfc_expr *order, gfc_expr *x) |
1621 | { |
1622 | gfc_expr *result; |
1623 | long n; |
1624 | |
1625 | if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT) |
1626 | return NULL__null; |
1627 | |
1628 | n = mpz_get_si__gmpz_get_si (order->value.integer); |
1629 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1630 | mpfr_yn (result->value.real, n, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1631 | |
1632 | return range_check (result, "BESSEL_YN"); |
1633 | } |
1634 | |
1635 | |
1636 | gfc_expr * |
1637 | gfc_simplify_bessel_yn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x) |
1638 | { |
1639 | return gfc_simplify_bessel_n2 (order1, order2, x, false); |
1640 | } |
1641 | |
1642 | |
1643 | gfc_expr * |
1644 | gfc_simplify_bit_size (gfc_expr *e) |
1645 | { |
1646 | int i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
1647 | return gfc_get_int_expr (e->ts.kind, &e->where, |
1648 | gfc_integer_kinds[i].bit_size); |
1649 | } |
1650 | |
1651 | |
1652 | gfc_expr * |
1653 | gfc_simplify_btest (gfc_expr *e, gfc_expr *bit) |
1654 | { |
1655 | int b; |
1656 | |
1657 | if (e->expr_type != EXPR_CONSTANT || bit->expr_type != EXPR_CONSTANT) |
1658 | return NULL__null; |
1659 | |
1660 | if (!gfc_check_bitfcn (e, bit)) |
1661 | return &gfc_bad_expr; |
1662 | |
1663 | if (gfc_extract_int (bit, &b) || b < 0) |
1664 | return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, false); |
1665 | |
1666 | return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, |
1667 | mpz_tstbit__gmpz_tstbit (e->value.integer, b)); |
1668 | } |
1669 | |
1670 | |
1671 | static int |
1672 | compare_bitwise (gfc_expr *i, gfc_expr *j) |
1673 | { |
1674 | mpz_t x, y; |
1675 | int k, res; |
1676 | |
1677 | gcc_assert (i->ts.type == BT_INTEGER)((void)(!(i->ts.type == BT_INTEGER) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 1677, __FUNCTION__), 0 : 0)); |
1678 | gcc_assert (j->ts.type == BT_INTEGER)((void)(!(j->ts.type == BT_INTEGER) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 1678, __FUNCTION__), 0 : 0)); |
1679 | |
1680 | mpz_init_set__gmpz_init_set (x, i->value.integer); |
1681 | k = gfc_validate_kind (i->ts.type, i->ts.kind, false); |
1682 | convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size); |
1683 | |
1684 | mpz_init_set__gmpz_init_set (y, j->value.integer); |
1685 | k = gfc_validate_kind (j->ts.type, j->ts.kind, false); |
1686 | convert_mpz_to_unsigned (y, gfc_integer_kinds[k].bit_size); |
1687 | |
1688 | res = mpz_cmp__gmpz_cmp (x, y); |
1689 | mpz_clear__gmpz_clear (x); |
1690 | mpz_clear__gmpz_clear (y); |
1691 | return res; |
1692 | } |
1693 | |
1694 | |
1695 | gfc_expr * |
1696 | gfc_simplify_bge (gfc_expr *i, gfc_expr *j) |
1697 | { |
1698 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1699 | return NULL__null; |
1700 | |
1701 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1702 | compare_bitwise (i, j) >= 0); |
1703 | } |
1704 | |
1705 | |
1706 | gfc_expr * |
1707 | gfc_simplify_bgt (gfc_expr *i, gfc_expr *j) |
1708 | { |
1709 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1710 | return NULL__null; |
1711 | |
1712 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1713 | compare_bitwise (i, j) > 0); |
1714 | } |
1715 | |
1716 | |
1717 | gfc_expr * |
1718 | gfc_simplify_ble (gfc_expr *i, gfc_expr *j) |
1719 | { |
1720 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1721 | return NULL__null; |
1722 | |
1723 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1724 | compare_bitwise (i, j) <= 0); |
1725 | } |
1726 | |
1727 | |
1728 | gfc_expr * |
1729 | gfc_simplify_blt (gfc_expr *i, gfc_expr *j) |
1730 | { |
1731 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT) |
1732 | return NULL__null; |
1733 | |
1734 | return gfc_get_logical_expr (gfc_default_logical_kind, &i->where, |
1735 | compare_bitwise (i, j) < 0); |
1736 | } |
1737 | |
1738 | |
1739 | gfc_expr * |
1740 | gfc_simplify_ceiling (gfc_expr *e, gfc_expr *k) |
1741 | { |
1742 | gfc_expr *ceil, *result; |
1743 | int kind; |
1744 | |
1745 | kind = get_kind (BT_INTEGER, k, "CEILING", gfc_default_integer_kind); |
1746 | if (kind == -1) |
1747 | return &gfc_bad_expr; |
1748 | |
1749 | if (e->expr_type != EXPR_CONSTANT) |
1750 | return NULL__null; |
1751 | |
1752 | ceil = gfc_copy_expr (e); |
1753 | mpfr_ceil (ceil->value.real, e->value.real)mpfr_rint((ceil->value.real), (e->value.real), MPFR_RNDU ); |
1754 | |
1755 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
1756 | gfc_mpfr_to_mpz (result->value.integer, ceil->value.real, &e->where); |
1757 | |
1758 | gfc_free_expr (ceil); |
1759 | |
1760 | return range_check (result, "CEILING"); |
1761 | } |
1762 | |
1763 | |
1764 | gfc_expr * |
1765 | gfc_simplify_char (gfc_expr *e, gfc_expr *k) |
1766 | { |
1767 | return simplify_achar_char (e, k, "CHAR", false); |
1768 | } |
1769 | |
1770 | |
1771 | /* Common subroutine for simplifying CMPLX, COMPLEX and DCMPLX. */ |
1772 | |
1773 | static gfc_expr * |
1774 | simplify_cmplx (const char *name, gfc_expr *x, gfc_expr *y, int kind) |
1775 | { |
1776 | gfc_expr *result; |
1777 | |
1778 | if (x->expr_type != EXPR_CONSTANT |
1779 | || (y != NULL__null && y->expr_type != EXPR_CONSTANT)) |
1780 | return NULL__null; |
1781 | |
1782 | result = gfc_get_constant_expr (BT_COMPLEX, kind, &x->where); |
1783 | |
1784 | switch (x->ts.type) |
1785 | { |
1786 | case BT_INTEGER: |
1787 | mpc_set_z (result->value.complex, x->value.integer, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1788 | break; |
1789 | |
1790 | case BT_REAL: |
1791 | mpc_set_fr (result->value.complex, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1792 | break; |
1793 | |
1794 | case BT_COMPLEX: |
1795 | mpc_set (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1796 | break; |
1797 | |
1798 | default: |
1799 | gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (x)"); |
1800 | } |
1801 | |
1802 | if (!y) |
1803 | return range_check (result, name); |
1804 | |
1805 | switch (y->ts.type) |
1806 | { |
1807 | case BT_INTEGER: |
1808 | mpfr_set_z (mpc_imagref (result->value.complex)((result->value.complex)->im), |
1809 | y->value.integer, GFC_RND_MODEMPFR_RNDN); |
1810 | break; |
1811 | |
1812 | case BT_REAL: |
1813 | mpfr_set (mpc_imagref (result->value.complex),__extension__ ({ mpfr_srcptr _p = (y->value.real); mpfr_set4 (((result->value.complex)->im),_p,MPFR_RNDN,((_p)->_mpfr_sign )); }) |
1814 | y->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (y->value.real); mpfr_set4 (((result->value.complex)->im),_p,MPFR_RNDN,((_p)->_mpfr_sign )); }); |
1815 | break; |
1816 | |
1817 | default: |
1818 | gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (y)"); |
1819 | } |
1820 | |
1821 | return range_check (result, name); |
1822 | } |
1823 | |
1824 | |
1825 | gfc_expr * |
1826 | gfc_simplify_cmplx (gfc_expr *x, gfc_expr *y, gfc_expr *k) |
1827 | { |
1828 | int kind; |
1829 | |
1830 | kind = get_kind (BT_REAL, k, "CMPLX", gfc_default_complex_kind); |
1831 | if (kind == -1) |
1832 | return &gfc_bad_expr; |
1833 | |
1834 | return simplify_cmplx ("CMPLX", x, y, kind); |
1835 | } |
1836 | |
1837 | |
1838 | gfc_expr * |
1839 | gfc_simplify_complex (gfc_expr *x, gfc_expr *y) |
1840 | { |
1841 | int kind; |
1842 | |
1843 | if (x->ts.type == BT_INTEGER && y->ts.type == BT_INTEGER) |
1844 | kind = gfc_default_complex_kind; |
1845 | else if (x->ts.type == BT_REAL || y->ts.type == BT_INTEGER) |
1846 | kind = x->ts.kind; |
1847 | else if (x->ts.type == BT_INTEGER || y->ts.type == BT_REAL) |
1848 | kind = y->ts.kind; |
1849 | else if (x->ts.type == BT_REAL && y->ts.type == BT_REAL) |
1850 | kind = (x->ts.kind > y->ts.kind) ? x->ts.kind : y->ts.kind; |
1851 | else |
1852 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 1852, __FUNCTION__)); |
1853 | |
1854 | return simplify_cmplx ("COMPLEX", x, y, kind); |
1855 | } |
1856 | |
1857 | |
1858 | gfc_expr * |
1859 | gfc_simplify_conjg (gfc_expr *e) |
1860 | { |
1861 | gfc_expr *result; |
1862 | |
1863 | if (e->expr_type != EXPR_CONSTANT) |
1864 | return NULL__null; |
1865 | |
1866 | result = gfc_copy_expr (e); |
1867 | mpc_conj (result->value.complex, result->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1868 | |
1869 | return range_check (result, "CONJG"); |
1870 | } |
1871 | |
1872 | |
1873 | /* Simplify atan2d (x) where the unit is degree. */ |
1874 | |
1875 | gfc_expr * |
1876 | gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x) |
1877 | { |
1878 | gfc_expr *result; |
1879 | |
1880 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
1881 | return NULL__null; |
1882 | |
1883 | if (mpfr_zero_p (y->value.real)(((mpfr_srcptr) (0 ? (y->value.real) : (mpfr_srcptr) (y-> value.real)))->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) && mpfr_zero_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
1884 | { |
1885 | gfc_error ("If first argument of ATAN2D at %L is zero, then the " |
1886 | "second argument must not be zero", &y->where); |
1887 | return &gfc_bad_expr; |
1888 | } |
1889 | |
1890 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1891 | mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1892 | rad2deg (result->value.real); |
1893 | |
1894 | return range_check (result, "ATAN2D"); |
1895 | } |
1896 | |
1897 | |
1898 | gfc_expr * |
1899 | gfc_simplify_cos (gfc_expr *x) |
1900 | { |
1901 | gfc_expr *result; |
1902 | |
1903 | if (x->expr_type != EXPR_CONSTANT) |
1904 | return NULL__null; |
1905 | |
1906 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1907 | |
1908 | switch (x->ts.type) |
1909 | { |
1910 | case BT_REAL: |
1911 | mpfr_cos (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
1912 | break; |
1913 | |
1914 | case BT_COMPLEX: |
1915 | gfc_set_model_kind (x->ts.kind); |
1916 | mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
1917 | break; |
1918 | |
1919 | default: |
1920 | gfc_internal_error ("in gfc_simplify_cos(): Bad type"); |
1921 | } |
1922 | |
1923 | return range_check (result, "COS"); |
1924 | } |
1925 | |
1926 | |
1927 | static void |
1928 | deg2rad (mpfr_t x) |
1929 | { |
1930 | mpfr_t d2r; |
1931 | |
1932 | mpfr_init (d2r); |
1933 | mpfr_const_pi (d2r, GFC_RND_MODEMPFR_RNDN); |
1934 | mpfr_div_ui (d2r, d2r, 180, GFC_RND_MODEMPFR_RNDN); |
1935 | mpfr_mul (x, x, d2r, GFC_RND_MODEMPFR_RNDN); |
1936 | mpfr_clear (d2r); |
1937 | } |
1938 | |
1939 | |
1940 | /* Simplification routines for SIND, COSD, TAND. */ |
1941 | #include "trigd_fe.inc" |
1942 | |
1943 | |
1944 | /* Simplify COSD(X) where X has the unit of degree. */ |
1945 | |
1946 | gfc_expr * |
1947 | gfc_simplify_cosd (gfc_expr *x) |
1948 | { |
1949 | gfc_expr *result; |
1950 | |
1951 | if (x->expr_type != EXPR_CONSTANT) |
1952 | return NULL__null; |
1953 | |
1954 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1955 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (x->value.real); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
1956 | simplify_cosd (result->value.real); |
1957 | |
1958 | return range_check (result, "COSD"); |
1959 | } |
1960 | |
1961 | |
1962 | /* Simplify SIND(X) where X has the unit of degree. */ |
1963 | |
1964 | gfc_expr * |
1965 | gfc_simplify_sind (gfc_expr *x) |
1966 | { |
1967 | gfc_expr *result; |
1968 | |
1969 | if (x->expr_type != EXPR_CONSTANT) |
1970 | return NULL__null; |
1971 | |
1972 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1973 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (x->value.real); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
1974 | simplify_sind (result->value.real); |
1975 | |
1976 | return range_check (result, "SIND"); |
1977 | } |
1978 | |
1979 | |
1980 | /* Simplify TAND(X) where X has the unit of degree. */ |
1981 | |
1982 | gfc_expr * |
1983 | gfc_simplify_tand (gfc_expr *x) |
1984 | { |
1985 | gfc_expr *result; |
1986 | |
1987 | if (x->expr_type != EXPR_CONSTANT) |
1988 | return NULL__null; |
1989 | |
1990 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
1991 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (x->value.real); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
1992 | simplify_tand (result->value.real); |
1993 | |
1994 | return range_check (result, "TAND"); |
1995 | } |
1996 | |
1997 | |
1998 | /* Simplify COTAND(X) where X has the unit of degree. */ |
1999 | |
2000 | gfc_expr * |
2001 | gfc_simplify_cotand (gfc_expr *x) |
2002 | { |
2003 | gfc_expr *result; |
2004 | |
2005 | if (x->expr_type != EXPR_CONSTANT) |
2006 | return NULL__null; |
2007 | |
2008 | /* Implement COTAND = -TAND(x+90). |
2009 | TAND offers correct exact values for multiples of 30 degrees. |
2010 | This implementation is also compatible with the behavior of some legacy |
2011 | compilers. Keep this consistent with gfc_conv_intrinsic_cotand. */ |
2012 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2013 | mpfr_set (result->value.real, x->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (x->value.real); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
2014 | mpfr_add_ui (result->value.real, result->value.real, 90, GFC_RND_MODEMPFR_RNDN); |
2015 | simplify_tand (result->value.real); |
2016 | mpfr_neg (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
2017 | |
2018 | return range_check (result, "COTAND"); |
2019 | } |
2020 | |
2021 | |
2022 | gfc_expr * |
2023 | gfc_simplify_cosh (gfc_expr *x) |
2024 | { |
2025 | gfc_expr *result; |
2026 | |
2027 | if (x->expr_type != EXPR_CONSTANT) |
2028 | return NULL__null; |
2029 | |
2030 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2031 | |
2032 | switch (x->ts.type) |
2033 | { |
2034 | case BT_REAL: |
2035 | mpfr_cosh (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2036 | break; |
2037 | |
2038 | case BT_COMPLEX: |
2039 | mpc_cosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
2040 | break; |
2041 | |
2042 | default: |
2043 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 2043, __FUNCTION__)); |
2044 | } |
2045 | |
2046 | return range_check (result, "COSH"); |
2047 | } |
2048 | |
2049 | |
2050 | gfc_expr * |
2051 | gfc_simplify_count (gfc_expr *mask, gfc_expr *dim, gfc_expr *kind) |
2052 | { |
2053 | gfc_expr *result; |
2054 | bool size_zero; |
2055 | |
2056 | size_zero = gfc_is_size_zero_array (mask); |
2057 | |
2058 | if (!(is_constant_array_expr (mask) || size_zero) |
2059 | || !gfc_is_constant_expr (dim) |
2060 | || !gfc_is_constant_expr (kind)) |
2061 | return NULL__null; |
2062 | |
2063 | result = transformational_result (mask, dim, |
2064 | BT_INTEGER, |
2065 | get_kind (BT_INTEGER, kind, "COUNT", |
2066 | gfc_default_integer_kind), |
2067 | &mask->where); |
2068 | |
2069 | init_result_expr (result, 0, NULL__null); |
2070 | |
2071 | if (size_zero) |
2072 | return result; |
2073 | |
2074 | /* Passing MASK twice, once as data array, once as mask. |
2075 | Whenever gfc_count is called, '1' is added to the result. */ |
2076 | return !dim || mask->rank == 1 ? |
2077 | simplify_transformation_to_scalar (result, mask, mask, gfc_count) : |
2078 | simplify_transformation_to_array (result, mask, dim, mask, gfc_count, NULL__null); |
2079 | } |
2080 | |
2081 | /* Simplification routine for cshift. This works by copying the array |
2082 | expressions into a one-dimensional array, shuffling the values into another |
2083 | one-dimensional array and creating the new array expression from this. The |
2084 | shuffling part is basically taken from the library routine. */ |
2085 | |
2086 | gfc_expr * |
2087 | gfc_simplify_cshift (gfc_expr *array, gfc_expr *shift, gfc_expr *dim) |
2088 | { |
2089 | gfc_expr *result; |
2090 | int which; |
2091 | gfc_expr **arrayvec, **resultvec; |
2092 | gfc_expr **rptr, **sptr; |
2093 | mpz_t size; |
2094 | size_t arraysize, shiftsize, i; |
2095 | gfc_constructor *array_ctor, *shift_ctor; |
2096 | ssize_t *shiftvec, *hptr; |
2097 | ssize_t shift_val, len; |
2098 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
2099 | hs_ex[GFC_MAX_DIMENSIONS15 + 1], |
2100 | hstride[GFC_MAX_DIMENSIONS15], sstride[GFC_MAX_DIMENSIONS15], |
2101 | a_extent[GFC_MAX_DIMENSIONS15], a_stride[GFC_MAX_DIMENSIONS15], |
2102 | h_extent[GFC_MAX_DIMENSIONS15], |
2103 | ss_ex[GFC_MAX_DIMENSIONS15 + 1]; |
2104 | ssize_t rsoffset; |
2105 | int d, n; |
2106 | bool continue_loop; |
2107 | gfc_expr **src, **dest; |
2108 | |
2109 | if (!is_constant_array_expr (array)) |
2110 | return NULL__null; |
2111 | |
2112 | if (shift->rank > 0) |
2113 | gfc_simplify_expr (shift, 1); |
2114 | |
2115 | if (!gfc_is_constant_expr (shift)) |
2116 | return NULL__null; |
2117 | |
2118 | /* Make dim zero-based. */ |
2119 | if (dim) |
2120 | { |
2121 | if (!gfc_is_constant_expr (dim)) |
2122 | return NULL__null; |
2123 | which = mpz_get_si__gmpz_get_si (dim->value.integer) - 1; |
2124 | } |
2125 | else |
2126 | which = 0; |
2127 | |
2128 | if (array->shape == NULL__null) |
2129 | return NULL__null; |
2130 | |
2131 | gfc_array_size (array, &size); |
2132 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
2133 | mpz_clear__gmpz_clear (size); |
2134 | |
2135 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
2136 | result->shape = gfc_copy_shape (array->shape, array->rank); |
2137 | result->rank = array->rank; |
2138 | result->ts.u.derived = array->ts.u.derived; |
2139 | |
2140 | if (arraysize == 0) |
2141 | return result; |
2142 | |
2143 | arrayvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2144 | array_ctor = gfc_constructor_first (array->value.constructor); |
2145 | for (i = 0; i < arraysize; i++) |
2146 | { |
2147 | arrayvec[i] = array_ctor->expr; |
2148 | array_ctor = gfc_constructor_next (array_ctor); |
2149 | } |
2150 | |
2151 | resultvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2152 | |
2153 | sstride[0] = 0; |
2154 | extent[0] = 1; |
2155 | count[0] = 0; |
2156 | |
2157 | for (d=0; d < array->rank; d++) |
2158 | { |
2159 | a_extent[d] = mpz_get_si__gmpz_get_si (array->shape[d]); |
2160 | a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1]; |
2161 | } |
2162 | |
2163 | if (shift->rank > 0) |
2164 | { |
2165 | gfc_array_size (shift, &size); |
2166 | shiftsize = mpz_get_ui__gmpz_get_ui (size); |
2167 | mpz_clear__gmpz_clear (size); |
2168 | shiftvec = XCNEWVEC (ssize_t, shiftsize)((ssize_t *) xcalloc ((shiftsize), sizeof (ssize_t))); |
2169 | shift_ctor = gfc_constructor_first (shift->value.constructor); |
2170 | for (d = 0; d < shift->rank; d++) |
2171 | { |
2172 | h_extent[d] = mpz_get_si__gmpz_get_si (shift->shape[d]); |
2173 | hstride[d] = d == 0 ? 1 : hstride[d-1] * h_extent[d-1]; |
2174 | } |
2175 | } |
2176 | else |
2177 | shiftvec = NULL__null; |
2178 | |
2179 | /* Shut up compiler */ |
2180 | len = 1; |
2181 | rsoffset = 1; |
2182 | |
2183 | n = 0; |
2184 | for (d=0; d < array->rank; d++) |
2185 | { |
2186 | if (d == which) |
2187 | { |
2188 | rsoffset = a_stride[d]; |
2189 | len = a_extent[d]; |
2190 | } |
2191 | else |
2192 | { |
2193 | count[n] = 0; |
2194 | extent[n] = a_extent[d]; |
2195 | sstride[n] = a_stride[d]; |
2196 | ss_ex[n] = sstride[n] * extent[n]; |
2197 | if (shiftvec) |
2198 | hs_ex[n] = hstride[n] * extent[n]; |
2199 | n++; |
2200 | } |
2201 | } |
2202 | ss_ex[n] = 0; |
2203 | hs_ex[n] = 0; |
2204 | |
2205 | if (shiftvec) |
2206 | { |
2207 | for (i = 0; i < shiftsize; i++) |
2208 | { |
2209 | ssize_t val; |
2210 | val = mpz_get_si__gmpz_get_si (shift_ctor->expr->value.integer); |
2211 | val = val % len; |
2212 | if (val < 0) |
2213 | val += len; |
2214 | shiftvec[i] = val; |
2215 | shift_ctor = gfc_constructor_next (shift_ctor); |
2216 | } |
2217 | shift_val = 0; |
2218 | } |
2219 | else |
2220 | { |
2221 | shift_val = mpz_get_si__gmpz_get_si (shift->value.integer); |
2222 | shift_val = shift_val % len; |
2223 | if (shift_val < 0) |
2224 | shift_val += len; |
2225 | } |
2226 | |
2227 | continue_loop = true; |
2228 | d = array->rank; |
2229 | rptr = resultvec; |
2230 | sptr = arrayvec; |
2231 | hptr = shiftvec; |
2232 | |
2233 | while (continue_loop) |
2234 | { |
2235 | ssize_t sh; |
2236 | if (shiftvec) |
2237 | sh = *hptr; |
2238 | else |
2239 | sh = shift_val; |
2240 | |
2241 | src = &sptr[sh * rsoffset]; |
2242 | dest = rptr; |
2243 | for (n = 0; n < len - sh; n++) |
2244 | { |
2245 | *dest = *src; |
2246 | dest += rsoffset; |
2247 | src += rsoffset; |
2248 | } |
2249 | src = sptr; |
2250 | for ( n = 0; n < sh; n++) |
2251 | { |
2252 | *dest = *src; |
2253 | dest += rsoffset; |
2254 | src += rsoffset; |
2255 | } |
2256 | rptr += sstride[0]; |
2257 | sptr += sstride[0]; |
2258 | if (shiftvec) |
2259 | hptr += hstride[0]; |
2260 | count[0]++; |
2261 | n = 0; |
2262 | while (count[n] == extent[n]) |
2263 | { |
2264 | count[n] = 0; |
2265 | rptr -= ss_ex[n]; |
2266 | sptr -= ss_ex[n]; |
2267 | if (shiftvec) |
2268 | hptr -= hs_ex[n]; |
2269 | n++; |
2270 | if (n >= d - 1) |
2271 | { |
2272 | continue_loop = false; |
2273 | break; |
2274 | } |
2275 | else |
2276 | { |
2277 | count[n]++; |
2278 | rptr += sstride[n]; |
2279 | sptr += sstride[n]; |
2280 | if (shiftvec) |
2281 | hptr += hstride[n]; |
2282 | } |
2283 | } |
2284 | } |
2285 | |
2286 | for (i = 0; i < arraysize; i++) |
2287 | { |
2288 | gfc_constructor_append_expr (&result->value.constructor, |
2289 | gfc_copy_expr (resultvec[i]), |
2290 | NULL__null); |
2291 | } |
2292 | return result; |
2293 | } |
2294 | |
2295 | |
2296 | gfc_expr * |
2297 | gfc_simplify_dcmplx (gfc_expr *x, gfc_expr *y) |
2298 | { |
2299 | return simplify_cmplx ("DCMPLX", x, y, gfc_default_double_kind); |
2300 | } |
2301 | |
2302 | |
2303 | gfc_expr * |
2304 | gfc_simplify_dble (gfc_expr *e) |
2305 | { |
2306 | gfc_expr *result = NULL__null; |
2307 | int tmp1, tmp2; |
2308 | |
2309 | if (e->expr_type != EXPR_CONSTANT) |
2310 | return NULL__null; |
2311 | |
2312 | /* For explicit conversion, turn off -Wconversion and -Wconversion-extra |
2313 | warnings. */ |
2314 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
2315 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
2316 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
2317 | |
2318 | result = gfc_convert_constant (e, BT_REAL, gfc_default_double_kind); |
2319 | |
2320 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
2321 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
2322 | |
2323 | if (result == &gfc_bad_expr) |
2324 | return &gfc_bad_expr; |
2325 | |
2326 | return range_check (result, "DBLE"); |
2327 | } |
2328 | |
2329 | |
2330 | gfc_expr * |
2331 | gfc_simplify_digits (gfc_expr *x) |
2332 | { |
2333 | int i, digits; |
2334 | |
2335 | i = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
2336 | |
2337 | switch (x->ts.type) |
2338 | { |
2339 | case BT_INTEGER: |
2340 | digits = gfc_integer_kinds[i].digits; |
2341 | break; |
2342 | |
2343 | case BT_REAL: |
2344 | case BT_COMPLEX: |
2345 | digits = gfc_real_kinds[i].digits; |
2346 | break; |
2347 | |
2348 | default: |
2349 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 2349, __FUNCTION__)); |
2350 | } |
2351 | |
2352 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, digits); |
2353 | } |
2354 | |
2355 | |
2356 | gfc_expr * |
2357 | gfc_simplify_dim (gfc_expr *x, gfc_expr *y) |
2358 | { |
2359 | gfc_expr *result; |
2360 | int kind; |
2361 | |
2362 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
2363 | return NULL__null; |
2364 | |
2365 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
2366 | result = gfc_get_constant_expr (x->ts.type, kind, &x->where); |
2367 | |
2368 | switch (x->ts.type) |
2369 | { |
2370 | case BT_INTEGER: |
2371 | if (mpz_cmp__gmpz_cmp (x->value.integer, y->value.integer) > 0) |
2372 | mpz_sub__gmpz_sub (result->value.integer, x->value.integer, y->value.integer); |
2373 | else |
2374 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2375 | |
2376 | break; |
2377 | |
2378 | case BT_REAL: |
2379 | if (mpfr_cmp (x->value.real, y->value.real)mpfr_cmp3(x->value.real, y->value.real, 1) > 0) |
2380 | mpfr_sub (result->value.real, x->value.real, y->value.real, |
2381 | GFC_RND_MODEMPFR_RNDN); |
2382 | else |
2383 | mpfr_set_ui (result->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
2384 | |
2385 | break; |
2386 | |
2387 | default: |
2388 | gfc_internal_error ("gfc_simplify_dim(): Bad type"); |
2389 | } |
2390 | |
2391 | return range_check (result, "DIM"); |
2392 | } |
2393 | |
2394 | |
2395 | gfc_expr* |
2396 | gfc_simplify_dot_product (gfc_expr *vector_a, gfc_expr *vector_b) |
2397 | { |
2398 | /* If vector_a is a zero-sized array, the result is 0 for INTEGER, |
2399 | REAL, and COMPLEX types and .false. for LOGICAL. */ |
2400 | if (vector_a->shape && mpz_get_si__gmpz_get_si (vector_a->shape[0]) == 0) |
2401 | { |
2402 | if (vector_a->ts.type == BT_LOGICAL) |
2403 | return gfc_get_logical_expr (gfc_default_logical_kind, NULL__null, false); |
2404 | else |
2405 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, 0); |
2406 | } |
2407 | |
2408 | if (!is_constant_array_expr (vector_a) |
2409 | || !is_constant_array_expr (vector_b)) |
2410 | return NULL__null; |
2411 | |
2412 | return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0, true); |
2413 | } |
2414 | |
2415 | |
2416 | gfc_expr * |
2417 | gfc_simplify_dprod (gfc_expr *x, gfc_expr *y) |
2418 | { |
2419 | gfc_expr *a1, *a2, *result; |
2420 | |
2421 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
2422 | return NULL__null; |
2423 | |
2424 | a1 = gfc_real2real (x, gfc_default_double_kind); |
2425 | a2 = gfc_real2real (y, gfc_default_double_kind); |
2426 | |
2427 | result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &x->where); |
2428 | mpfr_mul (result->value.real, a1->value.real, a2->value.real, GFC_RND_MODEMPFR_RNDN); |
2429 | |
2430 | gfc_free_expr (a2); |
2431 | gfc_free_expr (a1); |
2432 | |
2433 | return range_check (result, "DPROD"); |
2434 | } |
2435 | |
2436 | |
2437 | static gfc_expr * |
2438 | simplify_dshift (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg, |
2439 | bool right) |
2440 | { |
2441 | gfc_expr *result; |
2442 | int i, k, size, shift; |
2443 | |
2444 | if (arg1->expr_type != EXPR_CONSTANT || arg2->expr_type != EXPR_CONSTANT |
2445 | || shiftarg->expr_type != EXPR_CONSTANT) |
2446 | return NULL__null; |
2447 | |
2448 | k = gfc_validate_kind (BT_INTEGER, arg1->ts.kind, false); |
2449 | size = gfc_integer_kinds[k].bit_size; |
2450 | |
2451 | gfc_extract_int (shiftarg, &shift); |
2452 | |
2453 | /* DSHIFTR(I,J,SHIFT) = DSHIFTL(I,J,SIZE-SHIFT). */ |
2454 | if (right) |
2455 | shift = size - shift; |
2456 | |
2457 | result = gfc_get_constant_expr (BT_INTEGER, arg1->ts.kind, &arg1->where); |
2458 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2459 | |
2460 | for (i = 0; i < shift; i++) |
2461 | if (mpz_tstbit__gmpz_tstbit (arg2->value.integer, size - shift + i)) |
2462 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
2463 | |
2464 | for (i = 0; i < size - shift; i++) |
2465 | if (mpz_tstbit__gmpz_tstbit (arg1->value.integer, i)) |
2466 | mpz_setbit__gmpz_setbit (result->value.integer, shift + i); |
2467 | |
2468 | /* Convert to a signed value. */ |
2469 | gfc_convert_mpz_to_signed (result->value.integer, size); |
2470 | |
2471 | return result; |
2472 | } |
2473 | |
2474 | |
2475 | gfc_expr * |
2476 | gfc_simplify_dshiftr (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg) |
2477 | { |
2478 | return simplify_dshift (arg1, arg2, shiftarg, true); |
2479 | } |
2480 | |
2481 | |
2482 | gfc_expr * |
2483 | gfc_simplify_dshiftl (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg) |
2484 | { |
2485 | return simplify_dshift (arg1, arg2, shiftarg, false); |
2486 | } |
2487 | |
2488 | |
2489 | gfc_expr * |
2490 | gfc_simplify_eoshift (gfc_expr *array, gfc_expr *shift, gfc_expr *boundary, |
2491 | gfc_expr *dim) |
2492 | { |
2493 | bool temp_boundary; |
2494 | gfc_expr *bnd; |
2495 | gfc_expr *result; |
2496 | int which; |
2497 | gfc_expr **arrayvec, **resultvec; |
2498 | gfc_expr **rptr, **sptr; |
2499 | mpz_t size; |
2500 | size_t arraysize, i; |
2501 | gfc_constructor *array_ctor, *shift_ctor, *bnd_ctor; |
2502 | ssize_t shift_val, len; |
2503 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
2504 | sstride[GFC_MAX_DIMENSIONS15], a_extent[GFC_MAX_DIMENSIONS15], |
2505 | a_stride[GFC_MAX_DIMENSIONS15], ss_ex[GFC_MAX_DIMENSIONS15 + 1]; |
2506 | ssize_t rsoffset; |
2507 | int d, n; |
2508 | bool continue_loop; |
2509 | gfc_expr **src, **dest; |
2510 | size_t s_len; |
2511 | |
2512 | if (!is_constant_array_expr (array)) |
2513 | return NULL__null; |
2514 | |
2515 | if (shift->rank > 0) |
2516 | gfc_simplify_expr (shift, 1); |
2517 | |
2518 | if (!gfc_is_constant_expr (shift)) |
2519 | return NULL__null; |
2520 | |
2521 | if (boundary) |
2522 | { |
2523 | if (boundary->rank > 0) |
2524 | gfc_simplify_expr (boundary, 1); |
2525 | |
2526 | if (!gfc_is_constant_expr (boundary)) |
2527 | return NULL__null; |
2528 | } |
2529 | |
2530 | if (dim) |
2531 | { |
2532 | if (!gfc_is_constant_expr (dim)) |
2533 | return NULL__null; |
2534 | which = mpz_get_si__gmpz_get_si (dim->value.integer) - 1; |
2535 | } |
2536 | else |
2537 | which = 0; |
2538 | |
2539 | s_len = 0; |
Value stored to 's_len' is never read | |
2540 | if (boundary == NULL__null) |
2541 | { |
2542 | temp_boundary = true; |
2543 | switch (array->ts.type) |
2544 | { |
2545 | |
2546 | case BT_INTEGER: |
2547 | bnd = gfc_get_int_expr (array->ts.kind, NULL__null, 0); |
2548 | break; |
2549 | |
2550 | case BT_LOGICAL: |
2551 | bnd = gfc_get_logical_expr (array->ts.kind, NULL__null, 0); |
2552 | break; |
2553 | |
2554 | case BT_REAL: |
2555 | bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus); |
2556 | mpfr_set_ui (bnd->value.real, 0, GFC_RND_MODEMPFR_RNDN); |
2557 | break; |
2558 | |
2559 | case BT_COMPLEX: |
2560 | bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus); |
2561 | mpc_set_ui (bnd->value.complex, 0, GFC_RND_MODEMPFR_RNDN); |
2562 | break; |
2563 | |
2564 | case BT_CHARACTER: |
2565 | s_len = mpz_get_ui__gmpz_get_ui (array->ts.u.cl->length->value.integer); |
2566 | bnd = gfc_get_character_expr (array->ts.kind, &gfc_current_locus, NULL__null, s_len); |
2567 | break; |
2568 | |
2569 | default: |
2570 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 2570, __FUNCTION__)); |
2571 | |
2572 | } |
2573 | } |
2574 | else |
2575 | { |
2576 | temp_boundary = false; |
2577 | bnd = boundary; |
2578 | } |
2579 | |
2580 | gfc_array_size (array, &size); |
2581 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
2582 | mpz_clear__gmpz_clear (size); |
2583 | |
2584 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
2585 | result->shape = gfc_copy_shape (array->shape, array->rank); |
2586 | result->rank = array->rank; |
2587 | result->ts = array->ts; |
2588 | |
2589 | if (arraysize == 0) |
2590 | goto final; |
2591 | |
2592 | if (array->shape == NULL__null) |
2593 | goto final; |
2594 | |
2595 | arrayvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2596 | array_ctor = gfc_constructor_first (array->value.constructor); |
2597 | for (i = 0; i < arraysize; i++) |
2598 | { |
2599 | arrayvec[i] = array_ctor->expr; |
2600 | array_ctor = gfc_constructor_next (array_ctor); |
2601 | } |
2602 | |
2603 | resultvec = XCNEWVEC (gfc_expr *, arraysize)((gfc_expr * *) xcalloc ((arraysize), sizeof (gfc_expr *))); |
2604 | |
2605 | extent[0] = 1; |
2606 | count[0] = 0; |
2607 | |
2608 | for (d=0; d < array->rank; d++) |
2609 | { |
2610 | a_extent[d] = mpz_get_si__gmpz_get_si (array->shape[d]); |
2611 | a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1]; |
2612 | } |
2613 | |
2614 | if (shift->rank > 0) |
2615 | { |
2616 | shift_ctor = gfc_constructor_first (shift->value.constructor); |
2617 | shift_val = 0; |
2618 | } |
2619 | else |
2620 | { |
2621 | shift_ctor = NULL__null; |
2622 | shift_val = mpz_get_si__gmpz_get_si (shift->value.integer); |
2623 | } |
2624 | |
2625 | if (bnd->rank > 0) |
2626 | bnd_ctor = gfc_constructor_first (bnd->value.constructor); |
2627 | else |
2628 | bnd_ctor = NULL__null; |
2629 | |
2630 | /* Shut up compiler */ |
2631 | len = 1; |
2632 | rsoffset = 1; |
2633 | |
2634 | n = 0; |
2635 | for (d=0; d < array->rank; d++) |
2636 | { |
2637 | if (d == which) |
2638 | { |
2639 | rsoffset = a_stride[d]; |
2640 | len = a_extent[d]; |
2641 | } |
2642 | else |
2643 | { |
2644 | count[n] = 0; |
2645 | extent[n] = a_extent[d]; |
2646 | sstride[n] = a_stride[d]; |
2647 | ss_ex[n] = sstride[n] * extent[n]; |
2648 | n++; |
2649 | } |
2650 | } |
2651 | ss_ex[n] = 0; |
2652 | |
2653 | continue_loop = true; |
2654 | d = array->rank; |
2655 | rptr = resultvec; |
2656 | sptr = arrayvec; |
2657 | |
2658 | while (continue_loop) |
2659 | { |
2660 | ssize_t sh, delta; |
2661 | |
2662 | if (shift_ctor) |
2663 | sh = mpz_get_si__gmpz_get_si (shift_ctor->expr->value.integer); |
2664 | else |
2665 | sh = shift_val; |
2666 | |
2667 | if (( sh >= 0 ? sh : -sh ) > len) |
2668 | { |
2669 | delta = len; |
2670 | sh = len; |
2671 | } |
2672 | else |
2673 | delta = (sh >= 0) ? sh: -sh; |
2674 | |
2675 | if (sh > 0) |
2676 | { |
2677 | src = &sptr[delta * rsoffset]; |
2678 | dest = rptr; |
2679 | } |
2680 | else |
2681 | { |
2682 | src = sptr; |
2683 | dest = &rptr[delta * rsoffset]; |
2684 | } |
2685 | |
2686 | for (n = 0; n < len - delta; n++) |
2687 | { |
2688 | *dest = *src; |
2689 | dest += rsoffset; |
2690 | src += rsoffset; |
2691 | } |
2692 | |
2693 | if (sh < 0) |
2694 | dest = rptr; |
2695 | |
2696 | n = delta; |
2697 | |
2698 | if (bnd_ctor) |
2699 | { |
2700 | while (n--) |
2701 | { |
2702 | *dest = gfc_copy_expr (bnd_ctor->expr); |
2703 | dest += rsoffset; |
2704 | } |
2705 | } |
2706 | else |
2707 | { |
2708 | while (n--) |
2709 | { |
2710 | *dest = gfc_copy_expr (bnd); |
2711 | dest += rsoffset; |
2712 | } |
2713 | } |
2714 | rptr += sstride[0]; |
2715 | sptr += sstride[0]; |
2716 | if (shift_ctor) |
2717 | shift_ctor = gfc_constructor_next (shift_ctor); |
2718 | |
2719 | if (bnd_ctor) |
2720 | bnd_ctor = gfc_constructor_next (bnd_ctor); |
2721 | |
2722 | count[0]++; |
2723 | n = 0; |
2724 | while (count[n] == extent[n]) |
2725 | { |
2726 | count[n] = 0; |
2727 | rptr -= ss_ex[n]; |
2728 | sptr -= ss_ex[n]; |
2729 | n++; |
2730 | if (n >= d - 1) |
2731 | { |
2732 | continue_loop = false; |
2733 | break; |
2734 | } |
2735 | else |
2736 | { |
2737 | count[n]++; |
2738 | rptr += sstride[n]; |
2739 | sptr += sstride[n]; |
2740 | } |
2741 | } |
2742 | } |
2743 | |
2744 | for (i = 0; i < arraysize; i++) |
2745 | { |
2746 | gfc_constructor_append_expr (&result->value.constructor, |
2747 | gfc_copy_expr (resultvec[i]), |
2748 | NULL__null); |
2749 | } |
2750 | |
2751 | final: |
2752 | if (temp_boundary) |
2753 | gfc_free_expr (bnd); |
2754 | |
2755 | return result; |
2756 | } |
2757 | |
2758 | gfc_expr * |
2759 | gfc_simplify_erf (gfc_expr *x) |
2760 | { |
2761 | gfc_expr *result; |
2762 | |
2763 | if (x->expr_type != EXPR_CONSTANT) |
2764 | return NULL__null; |
2765 | |
2766 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2767 | mpfr_erf (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2768 | |
2769 | return range_check (result, "ERF"); |
2770 | } |
2771 | |
2772 | |
2773 | gfc_expr * |
2774 | gfc_simplify_erfc (gfc_expr *x) |
2775 | { |
2776 | gfc_expr *result; |
2777 | |
2778 | if (x->expr_type != EXPR_CONSTANT) |
2779 | return NULL__null; |
2780 | |
2781 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2782 | mpfr_erfc (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2783 | |
2784 | return range_check (result, "ERFC"); |
2785 | } |
2786 | |
2787 | |
2788 | /* Helper functions to simplify ERFC_SCALED(x) = ERFC(x) * EXP(X**2). */ |
2789 | |
2790 | #define MAX_ITER 200 |
2791 | #define ARG_LIMIT 12 |
2792 | |
2793 | /* Calculate ERFC_SCALED directly by its definition: |
2794 | |
2795 | ERFC_SCALED(x) = ERFC(x) * EXP(X**2) |
2796 | |
2797 | using a large precision for intermediate results. This is used for all |
2798 | but large values of the argument. */ |
2799 | static void |
2800 | fullprec_erfc_scaled (mpfr_t res, mpfr_t arg) |
2801 | { |
2802 | mpfr_prec_t prec; |
2803 | mpfr_t a, b; |
2804 | |
2805 | prec = mpfr_get_default_prec (); |
2806 | mpfr_set_default_prec (10 * prec); |
2807 | |
2808 | mpfr_init (a); |
2809 | mpfr_init (b); |
2810 | |
2811 | mpfr_set (a, arg, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (arg); mpfr_set4(a,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2812 | mpfr_sqr (b, a, GFC_RND_MODEMPFR_RNDN); |
2813 | mpfr_exp (b, b, GFC_RND_MODEMPFR_RNDN); |
2814 | mpfr_erfc (a, a, GFC_RND_MODEMPFR_RNDN); |
2815 | mpfr_mul (a, a, b, GFC_RND_MODEMPFR_RNDN); |
2816 | |
2817 | mpfr_set (res, a, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (a); mpfr_set4(res,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2818 | mpfr_set_default_prec (prec); |
2819 | |
2820 | mpfr_clear (a); |
2821 | mpfr_clear (b); |
2822 | } |
2823 | |
2824 | /* Calculate ERFC_SCALED using a power series expansion in 1/arg: |
2825 | |
2826 | ERFC_SCALED(x) = 1 / (x * sqrt(pi)) |
2827 | * (1 + Sum_n (-1)**n * (1 * 3 * 5 * ... * (2n-1)) |
2828 | / (2 * x**2)**n) |
2829 | |
2830 | This is used for large values of the argument. Intermediate calculations |
2831 | are performed with twice the precision. We don't do a fixed number of |
2832 | iterations of the sum, but stop when it has converged to the required |
2833 | precision. */ |
2834 | static void |
2835 | asympt_erfc_scaled (mpfr_t res, mpfr_t arg) |
2836 | { |
2837 | mpfr_t sum, x, u, v, w, oldsum, sumtrunc; |
2838 | mpz_t num; |
2839 | mpfr_prec_t prec; |
2840 | unsigned i; |
2841 | |
2842 | prec = mpfr_get_default_prec (); |
2843 | mpfr_set_default_prec (2 * prec); |
2844 | |
2845 | mpfr_init (sum); |
2846 | mpfr_init (x); |
2847 | mpfr_init (u); |
2848 | mpfr_init (v); |
2849 | mpfr_init (w); |
2850 | mpz_init__gmpz_init (num); |
2851 | |
2852 | mpfr_init (oldsum); |
2853 | mpfr_init (sumtrunc); |
2854 | mpfr_set_prec (oldsum, prec); |
2855 | mpfr_set_prec (sumtrunc, prec); |
2856 | |
2857 | mpfr_set (x, arg, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (arg); mpfr_set4(x,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2858 | mpfr_set_ui (sum, 1, GFC_RND_MODEMPFR_RNDN); |
2859 | mpz_set_ui__gmpz_set_ui (num, 1); |
2860 | |
2861 | mpfr_set (u, x, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (x); mpfr_set4(u,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2862 | mpfr_sqr (u, u, GFC_RND_MODEMPFR_RNDN); |
2863 | mpfr_mul_ui (u, u, 2, GFC_RND_MODEMPFR_RNDN); |
2864 | mpfr_pow_si (u, u, -1, GFC_RND_MODEMPFR_RNDN); |
2865 | |
2866 | for (i = 1; i < MAX_ITER; i++) |
2867 | { |
2868 | mpfr_set (oldsum, sum, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (sum); mpfr_set4(oldsum,_p, MPFR_RNDN,((_p)->_mpfr_sign)); }); |
2869 | |
2870 | mpz_mul_ui__gmpz_mul_ui (num, num, 2 * i - 1); |
2871 | mpz_neg__gmpz_neg (num, num); |
2872 | |
2873 | mpfr_set (w, u, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (u); mpfr_set4(w,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2874 | mpfr_pow_ui (w, w, i, GFC_RND_MODEMPFR_RNDN); |
2875 | |
2876 | mpfr_set_z (v, num, GFC_RND_MODEMPFR_RNDN); |
2877 | mpfr_mul (v, v, w, GFC_RND_MODEMPFR_RNDN); |
2878 | |
2879 | mpfr_add (sum, sum, v, GFC_RND_MODEMPFR_RNDN); |
2880 | |
2881 | mpfr_set (sumtrunc, sum, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (sum); mpfr_set4(sumtrunc,_p ,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
2882 | if (mpfr_cmp (sumtrunc, oldsum)mpfr_cmp3(sumtrunc, oldsum, 1) == 0) |
2883 | break; |
2884 | } |
2885 | |
2886 | /* We should have converged by now; otherwise, ARG_LIMIT is probably |
2887 | set too low. */ |
2888 | gcc_assert (i < MAX_ITER)((void)(!(i < MAX_ITER) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 2888, __FUNCTION__), 0 : 0)); |
2889 | |
2890 | /* Divide by x * sqrt(Pi). */ |
2891 | mpfr_const_pi (u, GFC_RND_MODEMPFR_RNDN); |
2892 | mpfr_sqrt (u, u, GFC_RND_MODEMPFR_RNDN); |
2893 | mpfr_mul (u, u, x, GFC_RND_MODEMPFR_RNDN); |
2894 | mpfr_div (sum, sum, u, GFC_RND_MODEMPFR_RNDN); |
2895 | |
2896 | mpfr_set (res, sum, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (sum); mpfr_set4(res,_p,MPFR_RNDN ,((_p)->_mpfr_sign)); }); |
2897 | mpfr_set_default_prec (prec); |
2898 | |
2899 | mpfr_clears (sum, x, u, v, w, oldsum, sumtrunc, NULL__null); |
2900 | mpz_clear__gmpz_clear (num); |
2901 | } |
2902 | |
2903 | |
2904 | gfc_expr * |
2905 | gfc_simplify_erfc_scaled (gfc_expr *x) |
2906 | { |
2907 | gfc_expr *result; |
2908 | |
2909 | if (x->expr_type != EXPR_CONSTANT) |
2910 | return NULL__null; |
2911 | |
2912 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2913 | if (mpfr_cmp_d (x->value.real, ARG_LIMIT) >= 0) |
2914 | asympt_erfc_scaled (result->value.real, x->value.real); |
2915 | else |
2916 | fullprec_erfc_scaled (result->value.real, x->value.real); |
2917 | |
2918 | return range_check (result, "ERFC_SCALED"); |
2919 | } |
2920 | |
2921 | #undef MAX_ITER |
2922 | #undef ARG_LIMIT |
2923 | |
2924 | |
2925 | gfc_expr * |
2926 | gfc_simplify_epsilon (gfc_expr *e) |
2927 | { |
2928 | gfc_expr *result; |
2929 | int i; |
2930 | |
2931 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
2932 | |
2933 | result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where); |
2934 | mpfr_set (result->value.real, gfc_real_kinds[i].epsilon, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (gfc_real_kinds[i].epsilon) ; mpfr_set4(result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign )); }); |
2935 | |
2936 | return range_check (result, "EPSILON"); |
2937 | } |
2938 | |
2939 | |
2940 | gfc_expr * |
2941 | gfc_simplify_exp (gfc_expr *x) |
2942 | { |
2943 | gfc_expr *result; |
2944 | |
2945 | if (x->expr_type != EXPR_CONSTANT) |
2946 | return NULL__null; |
2947 | |
2948 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
2949 | |
2950 | switch (x->ts.type) |
2951 | { |
2952 | case BT_REAL: |
2953 | mpfr_exp (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
2954 | break; |
2955 | |
2956 | case BT_COMPLEX: |
2957 | gfc_set_model_kind (x->ts.kind); |
2958 | mpc_exp (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
2959 | break; |
2960 | |
2961 | default: |
2962 | gfc_internal_error ("in gfc_simplify_exp(): Bad type"); |
2963 | } |
2964 | |
2965 | return range_check (result, "EXP"); |
2966 | } |
2967 | |
2968 | |
2969 | gfc_expr * |
2970 | gfc_simplify_exponent (gfc_expr *x) |
2971 | { |
2972 | long int val; |
2973 | gfc_expr *result; |
2974 | |
2975 | if (x->expr_type != EXPR_CONSTANT) |
2976 | return NULL__null; |
2977 | |
2978 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
2979 | &x->where); |
2980 | |
2981 | /* EXPONENT(inf) = EXPONENT(nan) = HUGE(0) */ |
2982 | if (mpfr_inf_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1)))) || mpfr_nan_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
2983 | { |
2984 | int i = gfc_validate_kind (BT_INTEGER, gfc_default_integer_kind, false); |
2985 | mpz_set__gmpz_set (result->value.integer, gfc_integer_kinds[i].huge); |
2986 | return result; |
2987 | } |
2988 | |
2989 | /* EXPONENT(+/- 0.0) = 0 */ |
2990 | if (mpfr_zero_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (0 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
2991 | { |
2992 | mpz_set_ui__gmpz_set_ui (result->value.integer, 0); |
2993 | return result; |
2994 | } |
2995 | |
2996 | gfc_set_model (x->value.real); |
2997 | |
2998 | val = (long int) mpfr_get_exp (x->value.real)(0 ? (((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) ( x->value.real)))->_mpfr_exp) : (((mpfr_srcptr) (0 ? (x-> value.real) : (mpfr_srcptr) (x->value.real)))->_mpfr_exp )); |
2999 | mpz_set_si__gmpz_set_si (result->value.integer, val); |
3000 | |
3001 | return range_check (result, "EXPONENT"); |
3002 | } |
3003 | |
3004 | |
3005 | gfc_expr * |
3006 | gfc_simplify_failed_or_stopped_images (gfc_expr *team ATTRIBUTE_UNUSED__attribute__ ((__unused__)), |
3007 | gfc_expr *kind) |
3008 | { |
3009 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
3010 | { |
3011 | gfc_current_locus = *gfc_current_intrinsic_where; |
3012 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
3013 | return &gfc_bad_expr; |
3014 | } |
3015 | |
3016 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE) |
3017 | { |
3018 | gfc_expr *result; |
3019 | int actual_kind; |
3020 | if (kind) |
3021 | gfc_extract_int (kind, &actual_kind); |
3022 | else |
3023 | actual_kind = gfc_default_integer_kind; |
3024 | |
3025 | result = gfc_get_array_expr (BT_INTEGER, actual_kind, &gfc_current_locus); |
3026 | result->rank = 1; |
3027 | return result; |
3028 | } |
3029 | |
3030 | /* For fcoarray = lib no simplification is possible, because it is not known |
3031 | what images failed or are stopped at compile time. */ |
3032 | return NULL__null; |
3033 | } |
3034 | |
3035 | |
3036 | gfc_expr * |
3037 | gfc_simplify_get_team (gfc_expr *level ATTRIBUTE_UNUSED__attribute__ ((__unused__))) |
3038 | { |
3039 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
3040 | { |
3041 | gfc_current_locus = *gfc_current_intrinsic_where; |
3042 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
3043 | return &gfc_bad_expr; |
3044 | } |
3045 | |
3046 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE) |
3047 | { |
3048 | gfc_expr *result; |
3049 | result = gfc_get_array_expr (BT_INTEGER, gfc_default_integer_kind, &gfc_current_locus); |
3050 | result->rank = 0; |
3051 | return result; |
3052 | } |
3053 | |
3054 | /* For fcoarray = lib no simplification is possible, because it is not known |
3055 | what images failed or are stopped at compile time. */ |
3056 | return NULL__null; |
3057 | } |
3058 | |
3059 | |
3060 | gfc_expr * |
3061 | gfc_simplify_float (gfc_expr *a) |
3062 | { |
3063 | gfc_expr *result; |
3064 | |
3065 | if (a->expr_type != EXPR_CONSTANT) |
3066 | return NULL__null; |
3067 | |
3068 | result = gfc_int2real (a, gfc_default_real_kind); |
3069 | |
3070 | return range_check (result, "FLOAT"); |
3071 | } |
3072 | |
3073 | |
3074 | static bool |
3075 | is_last_ref_vtab (gfc_expr *e) |
3076 | { |
3077 | gfc_ref *ref; |
3078 | gfc_component *comp = NULL__null; |
3079 | |
3080 | if (e->expr_type != EXPR_VARIABLE) |
3081 | return false; |
3082 | |
3083 | for (ref = e->ref; ref; ref = ref->next) |
3084 | if (ref->type == REF_COMPONENT) |
3085 | comp = ref->u.c.component; |
3086 | |
3087 | if (!e->ref || !comp) |
3088 | return e->symtree->n.sym->attr.vtab; |
3089 | |
3090 | if (comp->name[0] == '_' && strcmp (comp->name, "_vptr") == 0) |
3091 | return true; |
3092 | |
3093 | return false; |
3094 | } |
3095 | |
3096 | |
3097 | gfc_expr * |
3098 | gfc_simplify_extends_type_of (gfc_expr *a, gfc_expr *mold) |
3099 | { |
3100 | /* Avoid simplification of resolved symbols. */ |
3101 | if (is_last_ref_vtab (a) || is_last_ref_vtab (mold)) |
3102 | return NULL__null; |
3103 | |
3104 | if (a->ts.type == BT_DERIVED && mold->ts.type == BT_DERIVED) |
3105 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
3106 | gfc_type_is_extension_of (mold->ts.u.derived, |
3107 | a->ts.u.derived)); |
3108 | |
3109 | if (UNLIMITED_POLY (a)(a != __null && a->ts.type == BT_CLASS && a ->ts.u.derived->components && a->ts.u.derived ->components->ts.u.derived && a->ts.u.derived ->components->ts.u.derived->attr.unlimited_polymorphic ) || UNLIMITED_POLY (mold)(mold != __null && mold->ts.type == BT_CLASS && mold->ts.u.derived->components && mold->ts. u.derived->components->ts.u.derived && mold-> ts.u.derived->components->ts.u.derived->attr.unlimited_polymorphic )) |
3110 | return NULL__null; |
3111 | |
3112 | if ((a->ts.type == BT_CLASS && !gfc_expr_attr (a).class_ok) |
3113 | || (mold->ts.type == BT_CLASS && !gfc_expr_attr (mold).class_ok)) |
3114 | return NULL__null; |
3115 | |
3116 | /* Return .false. if the dynamic type can never be an extension. */ |
3117 | if ((a->ts.type == BT_CLASS && mold->ts.type == BT_CLASS |
3118 | && !gfc_type_is_extension_of |
3119 | (mold->ts.u.derived->components->ts.u.derived, |
3120 | a->ts.u.derived->components->ts.u.derived) |
3121 | && !gfc_type_is_extension_of |
3122 | (a->ts.u.derived->components->ts.u.derived, |
3123 | mold->ts.u.derived->components->ts.u.derived)) |
3124 | || (a->ts.type == BT_DERIVED && mold->ts.type == BT_CLASS |
3125 | && !gfc_type_is_extension_of |
3126 | (mold->ts.u.derived->components->ts.u.derived, |
3127 | a->ts.u.derived)) |
3128 | || (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED |
3129 | && !gfc_type_is_extension_of |
3130 | (mold->ts.u.derived, |
3131 | a->ts.u.derived->components->ts.u.derived) |
3132 | && !gfc_type_is_extension_of |
3133 | (a->ts.u.derived->components->ts.u.derived, |
3134 | mold->ts.u.derived))) |
3135 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false); |
3136 | |
3137 | /* Return .true. if the dynamic type is guaranteed to be an extension. */ |
3138 | if (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED |
3139 | && gfc_type_is_extension_of (mold->ts.u.derived, |
3140 | a->ts.u.derived->components->ts.u.derived)) |
3141 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, true); |
3142 | |
3143 | return NULL__null; |
3144 | } |
3145 | |
3146 | |
3147 | gfc_expr * |
3148 | gfc_simplify_same_type_as (gfc_expr *a, gfc_expr *b) |
3149 | { |
3150 | /* Avoid simplification of resolved symbols. */ |
3151 | if (is_last_ref_vtab (a) || is_last_ref_vtab (b)) |
3152 | return NULL__null; |
3153 | |
3154 | /* Return .false. if the dynamic type can never be the |
3155 | same. */ |
3156 | if (((a->ts.type == BT_CLASS && gfc_expr_attr (a).class_ok) |
3157 | || (b->ts.type == BT_CLASS && gfc_expr_attr (b).class_ok)) |
3158 | && !gfc_type_compatible (&a->ts, &b->ts) |
3159 | && !gfc_type_compatible (&b->ts, &a->ts)) |
3160 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false); |
3161 | |
3162 | if (a->ts.type != BT_DERIVED || b->ts.type != BT_DERIVED) |
3163 | return NULL__null; |
3164 | |
3165 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
3166 | gfc_compare_derived_types (a->ts.u.derived, |
3167 | b->ts.u.derived)); |
3168 | } |
3169 | |
3170 | |
3171 | gfc_expr * |
3172 | gfc_simplify_floor (gfc_expr *e, gfc_expr *k) |
3173 | { |
3174 | gfc_expr *result; |
3175 | mpfr_t floor; |
3176 | int kind; |
3177 | |
3178 | kind = get_kind (BT_INTEGER, k, "FLOOR", gfc_default_integer_kind); |
3179 | if (kind == -1) |
3180 | gfc_internal_error ("gfc_simplify_floor(): Bad kind"); |
3181 | |
3182 | if (e->expr_type != EXPR_CONSTANT) |
3183 | return NULL__null; |
3184 | |
3185 | mpfr_init2 (floor, mpfr_get_prec (e->value.real)(0 ? (((mpfr_srcptr) (0 ? (e->value.real) : (mpfr_srcptr) ( e->value.real)))->_mpfr_prec) : (((mpfr_srcptr) (0 ? (e ->value.real) : (mpfr_srcptr) (e->value.real)))->_mpfr_prec ))); |
3186 | mpfr_floor (floor, e->value.real)mpfr_rint((floor), (e->value.real), MPFR_RNDD); |
3187 | |
3188 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
3189 | gfc_mpfr_to_mpz (result->value.integer, floor, &e->where); |
3190 | |
3191 | mpfr_clear (floor); |
3192 | |
3193 | return range_check (result, "FLOOR"); |
3194 | } |
3195 | |
3196 | |
3197 | gfc_expr * |
3198 | gfc_simplify_fraction (gfc_expr *x) |
3199 | { |
3200 | gfc_expr *result; |
3201 | mpfr_exp_t e; |
3202 | |
3203 | if (x->expr_type != EXPR_CONSTANT) |
3204 | return NULL__null; |
3205 | |
3206 | result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where); |
3207 | |
3208 | /* FRACTION(inf) = NaN. */ |
3209 | if (mpfr_inf_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (2 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
3210 | { |
3211 | mpfr_set_nan (result->value.real); |
3212 | return result; |
3213 | } |
3214 | |
3215 | /* mpfr_frexp() correctly handles zeros and NaNs. */ |
3216 | mpfr_frexp (&e, result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
3217 | |
3218 | return range_check (result, "FRACTION"); |
3219 | } |
3220 | |
3221 | |
3222 | gfc_expr * |
3223 | gfc_simplify_gamma (gfc_expr *x) |
3224 | { |
3225 | gfc_expr *result; |
3226 | |
3227 | if (x->expr_type != EXPR_CONSTANT) |
3228 | return NULL__null; |
3229 | |
3230 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3231 | mpfr_gamma (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
3232 | |
3233 | return range_check (result, "GAMMA"); |
3234 | } |
3235 | |
3236 | |
3237 | gfc_expr * |
3238 | gfc_simplify_huge (gfc_expr *e) |
3239 | { |
3240 | gfc_expr *result; |
3241 | int i; |
3242 | |
3243 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
3244 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
3245 | |
3246 | switch (e->ts.type) |
3247 | { |
3248 | case BT_INTEGER: |
3249 | mpz_set__gmpz_set (result->value.integer, gfc_integer_kinds[i].huge); |
3250 | break; |
3251 | |
3252 | case BT_REAL: |
3253 | mpfr_set (result->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (gfc_real_kinds[i].huge); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
3254 | break; |
3255 | |
3256 | default: |
3257 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3257, __FUNCTION__)); |
3258 | } |
3259 | |
3260 | return result; |
3261 | } |
3262 | |
3263 | |
3264 | gfc_expr * |
3265 | gfc_simplify_hypot (gfc_expr *x, gfc_expr *y) |
3266 | { |
3267 | gfc_expr *result; |
3268 | |
3269 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3270 | return NULL__null; |
3271 | |
3272 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3273 | mpfr_hypot (result->value.real, x->value.real, y->value.real, GFC_RND_MODEMPFR_RNDN); |
3274 | return range_check (result, "HYPOT"); |
3275 | } |
3276 | |
3277 | |
3278 | /* We use the processor's collating sequence, because all |
3279 | systems that gfortran currently works on are ASCII. */ |
3280 | |
3281 | gfc_expr * |
3282 | gfc_simplify_iachar (gfc_expr *e, gfc_expr *kind) |
3283 | { |
3284 | gfc_expr *result; |
3285 | gfc_char_t index; |
3286 | int k; |
3287 | |
3288 | if (e->expr_type != EXPR_CONSTANT) |
3289 | return NULL__null; |
3290 | |
3291 | if (e->value.character.length != 1) |
3292 | { |
3293 | gfc_error ("Argument of IACHAR at %L must be of length one", &e->where); |
3294 | return &gfc_bad_expr; |
3295 | } |
3296 | |
3297 | index = e->value.character.string[0]; |
3298 | |
3299 | if (warn_surprisingglobal_options.x_warn_surprising && index > 127) |
3300 | gfc_warning (OPT_Wsurprising, |
3301 | "Argument of IACHAR function at %L outside of range 0..127", |
3302 | &e->where); |
3303 | |
3304 | k = get_kind (BT_INTEGER, kind, "IACHAR", gfc_default_integer_kind); |
3305 | if (k == -1) |
3306 | return &gfc_bad_expr; |
3307 | |
3308 | result = gfc_get_int_expr (k, &e->where, index); |
3309 | |
3310 | return range_check (result, "IACHAR"); |
3311 | } |
3312 | |
3313 | |
3314 | static gfc_expr * |
3315 | do_bit_and (gfc_expr *result, gfc_expr *e) |
3316 | { |
3317 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3317, __FUNCTION__), 0 : 0)); |
3318 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3319, __FUNCTION__), 0 : 0)) |
3319 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3319, __FUNCTION__), 0 : 0)); |
3320 | |
3321 | mpz_and__gmpz_and (result->value.integer, result->value.integer, e->value.integer); |
3322 | return result; |
3323 | } |
3324 | |
3325 | |
3326 | gfc_expr * |
3327 | gfc_simplify_iall (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3328 | { |
3329 | return simplify_transformation (array, dim, mask, -1, do_bit_and); |
3330 | } |
3331 | |
3332 | |
3333 | static gfc_expr * |
3334 | do_bit_ior (gfc_expr *result, gfc_expr *e) |
3335 | { |
3336 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3336, __FUNCTION__), 0 : 0)); |
3337 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3338, __FUNCTION__), 0 : 0)) |
3338 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3338, __FUNCTION__), 0 : 0)); |
3339 | |
3340 | mpz_ior__gmpz_ior (result->value.integer, result->value.integer, e->value.integer); |
3341 | return result; |
3342 | } |
3343 | |
3344 | |
3345 | gfc_expr * |
3346 | gfc_simplify_iany (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3347 | { |
3348 | return simplify_transformation (array, dim, mask, 0, do_bit_ior); |
3349 | } |
3350 | |
3351 | |
3352 | gfc_expr * |
3353 | gfc_simplify_iand (gfc_expr *x, gfc_expr *y) |
3354 | { |
3355 | gfc_expr *result; |
3356 | |
3357 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3358 | return NULL__null; |
3359 | |
3360 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3361 | mpz_and__gmpz_and (result->value.integer, x->value.integer, y->value.integer); |
3362 | |
3363 | return range_check (result, "IAND"); |
3364 | } |
3365 | |
3366 | |
3367 | gfc_expr * |
3368 | gfc_simplify_ibclr (gfc_expr *x, gfc_expr *y) |
3369 | { |
3370 | gfc_expr *result; |
3371 | int k, pos; |
3372 | |
3373 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3374 | return NULL__null; |
3375 | |
3376 | if (!gfc_check_bitfcn (x, y)) |
3377 | return &gfc_bad_expr; |
3378 | |
3379 | gfc_extract_int (y, &pos); |
3380 | |
3381 | k = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
3382 | |
3383 | result = gfc_copy_expr (x); |
3384 | /* Drop any separate memory representation of x to avoid potential |
3385 | inconsistencies in result. */ |
3386 | if (result->representation.string) |
3387 | { |
3388 | free (result->representation.string); |
3389 | result->representation.string = NULL__null; |
3390 | } |
3391 | |
3392 | convert_mpz_to_unsigned (result->value.integer, |
3393 | gfc_integer_kinds[k].bit_size); |
3394 | |
3395 | mpz_clrbit__gmpz_clrbit (result->value.integer, pos); |
3396 | |
3397 | gfc_convert_mpz_to_signed (result->value.integer, |
3398 | gfc_integer_kinds[k].bit_size); |
3399 | |
3400 | return result; |
3401 | } |
3402 | |
3403 | |
3404 | gfc_expr * |
3405 | gfc_simplify_ibits (gfc_expr *x, gfc_expr *y, gfc_expr *z) |
3406 | { |
3407 | gfc_expr *result; |
3408 | int pos, len; |
3409 | int i, k, bitsize; |
3410 | int *bits; |
3411 | |
3412 | if (x->expr_type != EXPR_CONSTANT |
3413 | || y->expr_type != EXPR_CONSTANT |
3414 | || z->expr_type != EXPR_CONSTANT) |
3415 | return NULL__null; |
3416 | |
3417 | if (!gfc_check_ibits (x, y, z)) |
3418 | return &gfc_bad_expr; |
3419 | |
3420 | gfc_extract_int (y, &pos); |
3421 | gfc_extract_int (z, &len); |
3422 | |
3423 | k = gfc_validate_kind (BT_INTEGER, x->ts.kind, false); |
3424 | |
3425 | bitsize = gfc_integer_kinds[k].bit_size; |
3426 | |
3427 | if (pos + len > bitsize) |
3428 | { |
3429 | gfc_error ("Sum of second and third arguments of IBITS exceeds " |
3430 | "bit size at %L", &y->where); |
3431 | return &gfc_bad_expr; |
3432 | } |
3433 | |
3434 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
3435 | convert_mpz_to_unsigned (result->value.integer, |
3436 | gfc_integer_kinds[k].bit_size); |
3437 | |
3438 | bits = XCNEWVEC (int, bitsize)((int *) xcalloc ((bitsize), sizeof (int))); |
3439 | |
3440 | for (i = 0; i < bitsize; i++) |
3441 | bits[i] = 0; |
3442 | |
3443 | for (i = 0; i < len; i++) |
3444 | bits[i] = mpz_tstbit__gmpz_tstbit (x->value.integer, i + pos); |
3445 | |
3446 | for (i = 0; i < bitsize; i++) |
3447 | { |
3448 | if (bits[i] == 0) |
3449 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3450 | else if (bits[i] == 1) |
3451 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
3452 | else |
3453 | gfc_internal_error ("IBITS: Bad bit"); |
3454 | } |
3455 | |
3456 | free (bits); |
3457 | |
3458 | gfc_convert_mpz_to_signed (result->value.integer, |
3459 | gfc_integer_kinds[k].bit_size); |
3460 | |
3461 | return result; |
3462 | } |
3463 | |
3464 | |
3465 | gfc_expr * |
3466 | gfc_simplify_ibset (gfc_expr *x, gfc_expr *y) |
3467 | { |
3468 | gfc_expr *result; |
3469 | int k, pos; |
3470 | |
3471 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3472 | return NULL__null; |
3473 | |
3474 | if (!gfc_check_bitfcn (x, y)) |
3475 | return &gfc_bad_expr; |
3476 | |
3477 | gfc_extract_int (y, &pos); |
3478 | |
3479 | k = gfc_validate_kind (x->ts.type, x->ts.kind, false); |
3480 | |
3481 | result = gfc_copy_expr (x); |
3482 | /* Drop any separate memory representation of x to avoid potential |
3483 | inconsistencies in result. */ |
3484 | if (result->representation.string) |
3485 | { |
3486 | free (result->representation.string); |
3487 | result->representation.string = NULL__null; |
3488 | } |
3489 | |
3490 | convert_mpz_to_unsigned (result->value.integer, |
3491 | gfc_integer_kinds[k].bit_size); |
3492 | |
3493 | mpz_setbit__gmpz_setbit (result->value.integer, pos); |
3494 | |
3495 | gfc_convert_mpz_to_signed (result->value.integer, |
3496 | gfc_integer_kinds[k].bit_size); |
3497 | |
3498 | return result; |
3499 | } |
3500 | |
3501 | |
3502 | gfc_expr * |
3503 | gfc_simplify_ichar (gfc_expr *e, gfc_expr *kind) |
3504 | { |
3505 | gfc_expr *result; |
3506 | gfc_char_t index; |
3507 | int k; |
3508 | |
3509 | if (e->expr_type != EXPR_CONSTANT) |
3510 | return NULL__null; |
3511 | |
3512 | if (e->value.character.length != 1) |
3513 | { |
3514 | gfc_error ("Argument of ICHAR at %L must be of length one", &e->where); |
3515 | return &gfc_bad_expr; |
3516 | } |
3517 | |
3518 | index = e->value.character.string[0]; |
3519 | |
3520 | k = get_kind (BT_INTEGER, kind, "ICHAR", gfc_default_integer_kind); |
3521 | if (k == -1) |
3522 | return &gfc_bad_expr; |
3523 | |
3524 | result = gfc_get_int_expr (k, &e->where, index); |
3525 | |
3526 | return range_check (result, "ICHAR"); |
3527 | } |
3528 | |
3529 | |
3530 | gfc_expr * |
3531 | gfc_simplify_ieor (gfc_expr *x, gfc_expr *y) |
3532 | { |
3533 | gfc_expr *result; |
3534 | |
3535 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3536 | return NULL__null; |
3537 | |
3538 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3539 | mpz_xor__gmpz_xor (result->value.integer, x->value.integer, y->value.integer); |
3540 | |
3541 | return range_check (result, "IEOR"); |
3542 | } |
3543 | |
3544 | |
3545 | gfc_expr * |
3546 | gfc_simplify_index (gfc_expr *x, gfc_expr *y, gfc_expr *b, gfc_expr *kind) |
3547 | { |
3548 | gfc_expr *result; |
3549 | bool back; |
3550 | HOST_WIDE_INTlong len, lensub, start, last, i, index = 0; |
3551 | int k, delta; |
3552 | |
3553 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT |
3554 | || ( b != NULL__null && b->expr_type != EXPR_CONSTANT)) |
3555 | return NULL__null; |
3556 | |
3557 | back = (b != NULL__null && b->value.logical != 0); |
3558 | |
3559 | k = get_kind (BT_INTEGER, kind, "INDEX", gfc_default_integer_kind); |
3560 | if (k == -1) |
3561 | return &gfc_bad_expr; |
3562 | |
3563 | result = gfc_get_constant_expr (BT_INTEGER, k, &x->where); |
3564 | |
3565 | len = x->value.character.length; |
3566 | lensub = y->value.character.length; |
3567 | |
3568 | if (len < lensub) |
3569 | { |
3570 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
3571 | return result; |
3572 | } |
3573 | |
3574 | if (lensub == 0) |
3575 | { |
3576 | if (back) |
3577 | index = len + 1; |
3578 | else |
3579 | index = 1; |
3580 | goto done; |
3581 | } |
3582 | |
3583 | if (!back) |
3584 | { |
3585 | last = len + 1 - lensub; |
3586 | start = 0; |
3587 | delta = 1; |
3588 | } |
3589 | else |
3590 | { |
3591 | last = -1; |
3592 | start = len - lensub; |
3593 | delta = -1; |
3594 | } |
3595 | |
3596 | for (; start != last; start += delta) |
3597 | { |
3598 | for (i = 0; i < lensub; i++) |
3599 | { |
3600 | if (x->value.character.string[start + i] |
3601 | != y->value.character.string[i]) |
3602 | break; |
3603 | } |
3604 | if (i == lensub) |
3605 | { |
3606 | index = start + 1; |
3607 | goto done; |
3608 | } |
3609 | } |
3610 | |
3611 | done: |
3612 | mpz_set_si__gmpz_set_si (result->value.integer, index); |
3613 | return range_check (result, "INDEX"); |
3614 | } |
3615 | |
3616 | |
3617 | static gfc_expr * |
3618 | simplify_intconv (gfc_expr *e, int kind, const char *name) |
3619 | { |
3620 | gfc_expr *result = NULL__null; |
3621 | int tmp1, tmp2; |
3622 | |
3623 | /* Convert BOZ to integer, and return without range checking. */ |
3624 | if (e->ts.type == BT_BOZ) |
3625 | { |
3626 | if (!gfc_boz2int (e, kind)) |
3627 | return NULL__null; |
3628 | result = gfc_copy_expr (e); |
3629 | return result; |
3630 | } |
3631 | |
3632 | if (e->expr_type != EXPR_CONSTANT) |
3633 | return NULL__null; |
3634 | |
3635 | /* For explicit conversion, turn off -Wconversion and -Wconversion-extra |
3636 | warnings. */ |
3637 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
3638 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
3639 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
3640 | |
3641 | result = gfc_convert_constant (e, BT_INTEGER, kind); |
3642 | |
3643 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
3644 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
3645 | |
3646 | if (result == &gfc_bad_expr) |
3647 | return &gfc_bad_expr; |
3648 | |
3649 | return range_check (result, name); |
3650 | } |
3651 | |
3652 | |
3653 | gfc_expr * |
3654 | gfc_simplify_int (gfc_expr *e, gfc_expr *k) |
3655 | { |
3656 | int kind; |
3657 | |
3658 | kind = get_kind (BT_INTEGER, k, "INT", gfc_default_integer_kind); |
3659 | if (kind == -1) |
3660 | return &gfc_bad_expr; |
3661 | |
3662 | return simplify_intconv (e, kind, "INT"); |
3663 | } |
3664 | |
3665 | gfc_expr * |
3666 | gfc_simplify_int2 (gfc_expr *e) |
3667 | { |
3668 | return simplify_intconv (e, 2, "INT2"); |
3669 | } |
3670 | |
3671 | |
3672 | gfc_expr * |
3673 | gfc_simplify_int8 (gfc_expr *e) |
3674 | { |
3675 | return simplify_intconv (e, 8, "INT8"); |
3676 | } |
3677 | |
3678 | |
3679 | gfc_expr * |
3680 | gfc_simplify_long (gfc_expr *e) |
3681 | { |
3682 | return simplify_intconv (e, 4, "LONG"); |
3683 | } |
3684 | |
3685 | |
3686 | gfc_expr * |
3687 | gfc_simplify_ifix (gfc_expr *e) |
3688 | { |
3689 | gfc_expr *rtrunc, *result; |
3690 | |
3691 | if (e->expr_type != EXPR_CONSTANT) |
3692 | return NULL__null; |
3693 | |
3694 | rtrunc = gfc_copy_expr (e); |
3695 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
3696 | |
3697 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
3698 | &e->where); |
3699 | gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where); |
3700 | |
3701 | gfc_free_expr (rtrunc); |
3702 | |
3703 | return range_check (result, "IFIX"); |
3704 | } |
3705 | |
3706 | |
3707 | gfc_expr * |
3708 | gfc_simplify_idint (gfc_expr *e) |
3709 | { |
3710 | gfc_expr *rtrunc, *result; |
3711 | |
3712 | if (e->expr_type != EXPR_CONSTANT) |
3713 | return NULL__null; |
3714 | |
3715 | rtrunc = gfc_copy_expr (e); |
3716 | mpfr_trunc (rtrunc->value.real, e->value.real)mpfr_rint((rtrunc->value.real), (e->value.real), MPFR_RNDZ ); |
3717 | |
3718 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
3719 | &e->where); |
3720 | gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where); |
3721 | |
3722 | gfc_free_expr (rtrunc); |
3723 | |
3724 | return range_check (result, "IDINT"); |
3725 | } |
3726 | |
3727 | |
3728 | gfc_expr * |
3729 | gfc_simplify_ior (gfc_expr *x, gfc_expr *y) |
3730 | { |
3731 | gfc_expr *result; |
3732 | |
3733 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
3734 | return NULL__null; |
3735 | |
3736 | result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where); |
3737 | mpz_ior__gmpz_ior (result->value.integer, x->value.integer, y->value.integer); |
3738 | |
3739 | return range_check (result, "IOR"); |
3740 | } |
3741 | |
3742 | |
3743 | static gfc_expr * |
3744 | do_bit_xor (gfc_expr *result, gfc_expr *e) |
3745 | { |
3746 | gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3746, __FUNCTION__), 0 : 0)); |
3747 | gcc_assert (result->ts.type == BT_INTEGER((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3748, __FUNCTION__), 0 : 0)) |
3748 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_INTEGER && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 3748, __FUNCTION__), 0 : 0)); |
3749 | |
3750 | mpz_xor__gmpz_xor (result->value.integer, result->value.integer, e->value.integer); |
3751 | return result; |
3752 | } |
3753 | |
3754 | |
3755 | gfc_expr * |
3756 | gfc_simplify_iparity (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) |
3757 | { |
3758 | return simplify_transformation (array, dim, mask, 0, do_bit_xor); |
3759 | } |
3760 | |
3761 | |
3762 | gfc_expr * |
3763 | gfc_simplify_is_iostat_end (gfc_expr *x) |
3764 | { |
3765 | if (x->expr_type != EXPR_CONSTANT) |
3766 | return NULL__null; |
3767 | |
3768 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3769 | mpz_cmp_si (x->value.integer,(__builtin_constant_p ((LIBERROR_END) >= 0) && (LIBERROR_END ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_END))) && ((static_cast<unsigned long > (LIBERROR_END))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_END )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_END)) |
3770 | LIBERROR_END)(__builtin_constant_p ((LIBERROR_END) >= 0) && (LIBERROR_END ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_END))) && ((static_cast<unsigned long > (LIBERROR_END))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_END )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_END)) == 0); |
3771 | } |
3772 | |
3773 | |
3774 | gfc_expr * |
3775 | gfc_simplify_is_iostat_eor (gfc_expr *x) |
3776 | { |
3777 | if (x->expr_type != EXPR_CONSTANT) |
3778 | return NULL__null; |
3779 | |
3780 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3781 | mpz_cmp_si (x->value.integer,(__builtin_constant_p ((LIBERROR_EOR) >= 0) && (LIBERROR_EOR ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_EOR))) && ((static_cast<unsigned long > (LIBERROR_EOR))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_EOR )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_EOR)) |
3782 | LIBERROR_EOR)(__builtin_constant_p ((LIBERROR_EOR) >= 0) && (LIBERROR_EOR ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (LIBERROR_EOR))) && ((static_cast<unsigned long > (LIBERROR_EOR))) == 0 ? ((x->value.integer)->_mp_size < 0 ? -1 : (x->value.integer)->_mp_size > 0) : __gmpz_cmp_ui (x->value.integer,(static_cast<unsigned long> (LIBERROR_EOR )))) : __gmpz_cmp_si (x->value.integer,LIBERROR_EOR)) == 0); |
3783 | } |
3784 | |
3785 | |
3786 | gfc_expr * |
3787 | gfc_simplify_isnan (gfc_expr *x) |
3788 | { |
3789 | if (x->expr_type != EXPR_CONSTANT) |
3790 | return NULL__null; |
3791 | |
3792 | return gfc_get_logical_expr (gfc_default_logical_kind, &x->where, |
3793 | mpfr_nan_p (x->value.real)(((mpfr_srcptr) (0 ? (x->value.real) : (mpfr_srcptr) (x-> value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))); |
3794 | } |
3795 | |
3796 | |
3797 | /* Performs a shift on its first argument. Depending on the last |
3798 | argument, the shift can be arithmetic, i.e. with filling from the |
3799 | left like in the SHIFTA intrinsic. */ |
3800 | static gfc_expr * |
3801 | simplify_shift (gfc_expr *e, gfc_expr *s, const char *name, |
3802 | bool arithmetic, int direction) |
3803 | { |
3804 | gfc_expr *result; |
3805 | int ashift, *bits, i, k, bitsize, shift; |
3806 | |
3807 | if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
3808 | return NULL__null; |
3809 | |
3810 | gfc_extract_int (s, &shift); |
3811 | |
3812 | k = gfc_validate_kind (BT_INTEGER, e->ts.kind, false); |
3813 | bitsize = gfc_integer_kinds[k].bit_size; |
3814 | |
3815 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
3816 | |
3817 | if (shift == 0) |
3818 | { |
3819 | mpz_set__gmpz_set (result->value.integer, e->value.integer); |
3820 | return result; |
3821 | } |
3822 | |
3823 | if (direction > 0 && shift < 0) |
3824 | { |
3825 | /* Left shift, as in SHIFTL. */ |
3826 | gfc_error ("Second argument of %s is negative at %L", name, &e->where); |
3827 | return &gfc_bad_expr; |
3828 | } |
3829 | else if (direction < 0) |
3830 | { |
3831 | /* Right shift, as in SHIFTR or SHIFTA. */ |
3832 | if (shift < 0) |
3833 | { |
3834 | gfc_error ("Second argument of %s is negative at %L", |
3835 | name, &e->where); |
3836 | return &gfc_bad_expr; |
3837 | } |
3838 | |
3839 | shift = -shift; |
3840 | } |
3841 | |
3842 | ashift = (shift >= 0 ? shift : -shift); |
3843 | |
3844 | if (ashift > bitsize) |
3845 | { |
3846 | gfc_error ("Magnitude of second argument of %s exceeds bit size " |
3847 | "at %L", name, &e->where); |
3848 | return &gfc_bad_expr; |
3849 | } |
3850 | |
3851 | bits = XCNEWVEC (int, bitsize)((int *) xcalloc ((bitsize), sizeof (int))); |
3852 | |
3853 | for (i = 0; i < bitsize; i++) |
3854 | bits[i] = mpz_tstbit__gmpz_tstbit (e->value.integer, i); |
3855 | |
3856 | if (shift > 0) |
3857 | { |
3858 | /* Left shift. */ |
3859 | for (i = 0; i < shift; i++) |
3860 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3861 | |
3862 | for (i = 0; i < bitsize - shift; i++) |
3863 | { |
3864 | if (bits[i] == 0) |
3865 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
3866 | else |
3867 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
3868 | } |
3869 | } |
3870 | else |
3871 | { |
3872 | /* Right shift. */ |
3873 | if (arithmetic && bits[bitsize - 1]) |
3874 | for (i = bitsize - 1; i >= bitsize - ashift; i--) |
3875 | mpz_setbit__gmpz_setbit (result->value.integer, i); |
3876 | else |
3877 | for (i = bitsize - 1; i >= bitsize - ashift; i--) |
3878 | mpz_clrbit__gmpz_clrbit (result->value.integer, i); |
3879 | |
3880 | for (i = bitsize - 1; i >= ashift; i--) |
3881 | { |
3882 | if (bits[i] == 0) |
3883 | mpz_clrbit__gmpz_clrbit (result->value.integer, i - ashift); |
3884 | else |
3885 | mpz_setbit__gmpz_setbit (result->value.integer, i - ashift); |
3886 | } |
3887 | } |
3888 | |
3889 | gfc_convert_mpz_to_signed (result->value.integer, bitsize); |
3890 | free (bits); |
3891 | |
3892 | return result; |
3893 | } |
3894 | |
3895 | |
3896 | gfc_expr * |
3897 | gfc_simplify_ishft (gfc_expr *e, gfc_expr *s) |
3898 | { |
3899 | return simplify_shift (e, s, "ISHFT", false, 0); |
3900 | } |
3901 | |
3902 | |
3903 | gfc_expr * |
3904 | gfc_simplify_lshift (gfc_expr *e, gfc_expr *s) |
3905 | { |
3906 | return simplify_shift (e, s, "LSHIFT", false, 1); |
3907 | } |
3908 | |
3909 | |
3910 | gfc_expr * |
3911 | gfc_simplify_rshift (gfc_expr *e, gfc_expr *s) |
3912 | { |
3913 | return simplify_shift (e, s, "RSHIFT", true, -1); |
3914 | } |
3915 | |
3916 | |
3917 | gfc_expr * |
3918 | gfc_simplify_shifta (gfc_expr *e, gfc_expr *s) |
3919 | { |
3920 | return simplify_shift (e, s, "SHIFTA", true, -1); |
3921 | } |
3922 | |
3923 | |
3924 | gfc_expr * |
3925 | gfc_simplify_shiftl (gfc_expr *e, gfc_expr *s) |
3926 | { |
3927 | return simplify_shift (e, s, "SHIFTL", false, 1); |
3928 | } |
3929 | |
3930 | |
3931 | gfc_expr * |
3932 | gfc_simplify_shiftr (gfc_expr *e, gfc_expr *s) |
3933 | { |
3934 | return simplify_shift (e, s, "SHIFTR", false, -1); |
3935 | } |
3936 | |
3937 | |
3938 | gfc_expr * |
3939 | gfc_simplify_ishftc (gfc_expr *e, gfc_expr *s, gfc_expr *sz) |
3940 | { |
3941 | gfc_expr *result; |
3942 | int shift, ashift, isize, ssize, delta, k; |
3943 | int i, *bits; |
3944 | |
3945 | if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
3946 | return NULL__null; |
3947 | |
3948 | gfc_extract_int (s, &shift); |
3949 | |
3950 | k = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
3951 | isize = gfc_integer_kinds[k].bit_size; |
3952 | |
3953 | if (sz != NULL__null) |
3954 | { |
3955 | if (sz->expr_type != EXPR_CONSTANT) |
3956 | return NULL__null; |
3957 | |
3958 | gfc_extract_int (sz, &ssize); |
3959 | |
3960 | if (ssize > isize || ssize <= 0) |
3961 | return &gfc_bad_expr; |
3962 | } |
3963 | else |
3964 | ssize = isize; |
3965 | |
3966 | if (shift >= 0) |
3967 | ashift = shift; |
3968 | else |
3969 | ashift = -shift; |
3970 | |
3971 | if (ashift > ssize) |
3972 | { |
3973 | if (sz == NULL__null) |
3974 | gfc_error ("Magnitude of second argument of ISHFTC exceeds " |
3975 | "BIT_SIZE of first argument at %C"); |
3976 | else |
3977 | gfc_error ("Absolute value of SHIFT shall be less than or equal " |
3978 | "to SIZE at %C"); |
3979 | return &gfc_bad_expr; |
3980 | } |
3981 | |
3982 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
3983 | |
3984 | mpz_set__gmpz_set (result->value.integer, e->value.integer); |
3985 | |
3986 | if (shift == 0) |
3987 | return result; |
3988 | |
3989 | convert_mpz_to_unsigned (result->value.integer, isize); |
3990 | |
3991 | bits = XCNEWVEC (int, ssize)((int *) xcalloc ((ssize), sizeof (int))); |
3992 | |
3993 | for (i = 0; i < ssize; i++) |
3994 | bits[i] = mpz_tstbit__gmpz_tstbit (e->value.integer, i); |
3995 | |
3996 | delta = ssize - ashift; |
3997 | |
3998 | if (shift > 0) |
3999 | { |
4000 | for (i = 0; i < delta; i++) |
4001 | { |
4002 | if (bits[i] == 0) |
4003 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
4004 | else |
4005 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
4006 | } |
4007 | |
4008 | for (i = delta; i < ssize; i++) |
4009 | { |
4010 | if (bits[i] == 0) |
4011 | mpz_clrbit__gmpz_clrbit (result->value.integer, i - delta); |
4012 | else |
4013 | mpz_setbit__gmpz_setbit (result->value.integer, i - delta); |
4014 | } |
4015 | } |
4016 | else |
4017 | { |
4018 | for (i = 0; i < ashift; i++) |
4019 | { |
4020 | if (bits[i] == 0) |
4021 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + delta); |
4022 | else |
4023 | mpz_setbit__gmpz_setbit (result->value.integer, i + delta); |
4024 | } |
4025 | |
4026 | for (i = ashift; i < ssize; i++) |
4027 | { |
4028 | if (bits[i] == 0) |
4029 | mpz_clrbit__gmpz_clrbit (result->value.integer, i + shift); |
4030 | else |
4031 | mpz_setbit__gmpz_setbit (result->value.integer, i + shift); |
4032 | } |
4033 | } |
4034 | |
4035 | gfc_convert_mpz_to_signed (result->value.integer, isize); |
4036 | |
4037 | free (bits); |
4038 | return result; |
4039 | } |
4040 | |
4041 | |
4042 | gfc_expr * |
4043 | gfc_simplify_kind (gfc_expr *e) |
4044 | { |
4045 | return gfc_get_int_expr (gfc_default_integer_kind, NULL__null, e->ts.kind); |
4046 | } |
4047 | |
4048 | |
4049 | static gfc_expr * |
4050 | simplify_bound_dim (gfc_expr *array, gfc_expr *kind, int d, int upper, |
4051 | gfc_array_spec *as, gfc_ref *ref, bool coarray) |
4052 | { |
4053 | gfc_expr *l, *u, *result; |
4054 | int k; |
4055 | |
4056 | k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND", |
4057 | gfc_default_integer_kind); |
4058 | if (k == -1) |
4059 | return &gfc_bad_expr; |
4060 | |
4061 | result = gfc_get_constant_expr (BT_INTEGER, k, &array->where); |
4062 | |
4063 | /* For non-variables, LBOUND(expr, DIM=n) = 1 and |
4064 | UBOUND(expr, DIM=n) = SIZE(expr, DIM=n). */ |
4065 | if (!coarray && array->expr_type != EXPR_VARIABLE) |
4066 | { |
4067 | if (upper) |
4068 | { |
4069 | gfc_expr* dim = result; |
4070 | mpz_set_si__gmpz_set_si (dim->value.integer, d); |
4071 | |
4072 | result = simplify_size (array, dim, k); |
4073 | gfc_free_expr (dim); |
4074 | if (!result) |
4075 | goto returnNull; |
4076 | } |
4077 | else |
4078 | mpz_set_si__gmpz_set_si (result->value.integer, 1); |
4079 | |
4080 | goto done; |
4081 | } |
4082 | |
4083 | /* Otherwise, we have a variable expression. */ |
4084 | gcc_assert (array->expr_type == EXPR_VARIABLE)((void)(!(array->expr_type == EXPR_VARIABLE) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4084, __FUNCTION__), 0 : 0)); |
4085 | gcc_assert (as)((void)(!(as) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4085, __FUNCTION__), 0 : 0)); |
4086 | |
4087 | if (!gfc_resolve_array_spec (as, 0)) |
4088 | return NULL__null; |
4089 | |
4090 | /* The last dimension of an assumed-size array is special. */ |
4091 | if ((!coarray && d == as->rank && as->type == AS_ASSUMED_SIZE && !upper) |
4092 | || (coarray && d == as->rank + as->corank |
4093 | && (!upper || flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_SINGLE))) |
4094 | { |
4095 | if (as->lower[d-1] && as->lower[d-1]->expr_type == EXPR_CONSTANT) |
4096 | { |
4097 | gfc_free_expr (result); |
4098 | return gfc_copy_expr (as->lower[d-1]); |
4099 | } |
4100 | |
4101 | goto returnNull; |
4102 | } |
4103 | |
4104 | result = gfc_get_constant_expr (BT_INTEGER, k, &array->where); |
4105 | |
4106 | /* Then, we need to know the extent of the given dimension. */ |
4107 | if (coarray || (ref->u.ar.type == AR_FULL && !ref->next)) |
4108 | { |
4109 | gfc_expr *declared_bound; |
4110 | int empty_bound; |
4111 | bool constant_lbound, constant_ubound; |
4112 | |
4113 | l = as->lower[d-1]; |
4114 | u = as->upper[d-1]; |
4115 | |
4116 | gcc_assert (l != NULL)((void)(!(l != __null) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4116, __FUNCTION__), 0 : 0)); |
4117 | |
4118 | constant_lbound = l->expr_type == EXPR_CONSTANT; |
4119 | constant_ubound = u && u->expr_type == EXPR_CONSTANT; |
4120 | |
4121 | empty_bound = upper ? 0 : 1; |
4122 | declared_bound = upper ? u : l; |
4123 | |
4124 | if ((!upper && !constant_lbound) |
4125 | || (upper && !constant_ubound)) |
4126 | goto returnNull; |
4127 | |
4128 | if (!coarray) |
4129 | { |
4130 | /* For {L,U}BOUND, the value depends on whether the array |
4131 | is empty. We can nevertheless simplify if the declared bound |
4132 | has the same value as that of an empty array, in which case |
4133 | the result isn't dependent on the array emptyness. */ |
4134 | if (mpz_cmp_si (declared_bound->value.integer, empty_bound)(__builtin_constant_p ((empty_bound) >= 0) && (empty_bound ) >= 0 ? (__builtin_constant_p ((static_cast<unsigned long > (empty_bound))) && ((static_cast<unsigned long > (empty_bound))) == 0 ? ((declared_bound->value.integer )->_mp_size < 0 ? -1 : (declared_bound->value.integer )->_mp_size > 0) : __gmpz_cmp_ui (declared_bound->value .integer,(static_cast<unsigned long> (empty_bound)))) : __gmpz_cmp_si (declared_bound->value.integer,empty_bound) ) == 0) |
4135 | mpz_set_si__gmpz_set_si (result->value.integer, empty_bound); |
4136 | else if (!constant_lbound || !constant_ubound) |
4137 | /* Array emptyness can't be determined, we can't simplify. */ |
4138 | goto returnNull; |
4139 | else if (mpz_cmp__gmpz_cmp (l->value.integer, u->value.integer) > 0) |
4140 | mpz_set_si__gmpz_set_si (result->value.integer, empty_bound); |
4141 | else |
4142 | mpz_set__gmpz_set (result->value.integer, declared_bound->value.integer); |
4143 | } |
4144 | else |
4145 | mpz_set__gmpz_set (result->value.integer, declared_bound->value.integer); |
4146 | } |
4147 | else |
4148 | { |
4149 | if (upper) |
4150 | { |
4151 | int d2 = 0, cnt = 0; |
4152 | for (int idx = 0; idx < ref->u.ar.dimen; ++idx) |
4153 | { |
4154 | if (ref->u.ar.dimen_type[idx] == DIMEN_ELEMENT) |
4155 | d2++; |
4156 | else if (cnt < d - 1) |
4157 | cnt++; |
4158 | else |
4159 | break; |
4160 | } |
4161 | if (!gfc_ref_dimen_size (&ref->u.ar, d2 + d - 1, &result->value.integer, NULL__null)) |
4162 | goto returnNull; |
4163 | } |
4164 | else |
4165 | mpz_set_si__gmpz_set_si (result->value.integer, (long int) 1); |
4166 | } |
4167 | |
4168 | done: |
4169 | return range_check (result, upper ? "UBOUND" : "LBOUND"); |
4170 | |
4171 | returnNull: |
4172 | gfc_free_expr (result); |
4173 | return NULL__null; |
4174 | } |
4175 | |
4176 | |
4177 | static gfc_expr * |
4178 | simplify_bound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper) |
4179 | { |
4180 | gfc_ref *ref; |
4181 | gfc_array_spec *as; |
4182 | ar_type type = AR_UNKNOWN; |
4183 | int d; |
4184 | |
4185 | if (array->ts.type == BT_CLASS) |
4186 | return NULL__null; |
4187 | |
4188 | if (array->expr_type != EXPR_VARIABLE) |
4189 | { |
4190 | as = NULL__null; |
4191 | ref = NULL__null; |
4192 | goto done; |
4193 | } |
4194 | |
4195 | /* Do not attempt to resolve if error has already been issued. */ |
4196 | if (array->symtree->n.sym->error) |
4197 | return NULL__null; |
4198 | |
4199 | /* Follow any component references. */ |
4200 | as = array->symtree->n.sym->as; |
4201 | for (ref = array->ref; ref; ref = ref->next) |
4202 | { |
4203 | switch (ref->type) |
4204 | { |
4205 | case REF_ARRAY: |
4206 | type = ref->u.ar.type; |
4207 | switch (ref->u.ar.type) |
4208 | { |
4209 | case AR_ELEMENT: |
4210 | as = NULL__null; |
4211 | continue; |
4212 | |
4213 | case AR_FULL: |
4214 | /* We're done because 'as' has already been set in the |
4215 | previous iteration. */ |
4216 | goto done; |
4217 | |
4218 | case AR_UNKNOWN: |
4219 | return NULL__null; |
4220 | |
4221 | case AR_SECTION: |
4222 | as = ref->u.ar.as; |
4223 | goto done; |
4224 | } |
4225 | |
4226 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4226, __FUNCTION__)); |
4227 | |
4228 | case REF_COMPONENT: |
4229 | as = ref->u.c.component->as; |
4230 | continue; |
4231 | |
4232 | case REF_SUBSTRING: |
4233 | case REF_INQUIRY: |
4234 | continue; |
4235 | } |
4236 | } |
4237 | |
4238 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4238, __FUNCTION__)); |
4239 | |
4240 | done: |
4241 | |
4242 | if (as && (as->type == AS_DEFERRED || as->type == AS_ASSUMED_RANK |
4243 | || (as->type == AS_ASSUMED_SHAPE && upper))) |
4244 | return NULL__null; |
4245 | |
4246 | /* 'array' shall not be an unallocated allocatable variable or a pointer that |
4247 | is not associated. */ |
4248 | if (array->expr_type == EXPR_VARIABLE |
4249 | && (gfc_expr_attr (array).allocatable || gfc_expr_attr (array).pointer)) |
4250 | return NULL__null; |
4251 | |
4252 | gcc_assert (!as((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4256, __FUNCTION__), 0 : 0)) |
4253 | || (as->type != AS_DEFERRED((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4256, __FUNCTION__), 0 : 0)) |
4254 | && array->expr_type == EXPR_VARIABLE((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4256, __FUNCTION__), 0 : 0)) |
4255 | && !gfc_expr_attr (array).allocatable((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4256, __FUNCTION__), 0 : 0)) |
4256 | && !gfc_expr_attr (array).pointer))((void)(!(!as || (as->type != AS_DEFERRED && array ->expr_type == EXPR_VARIABLE && !gfc_expr_attr (array ).allocatable && !gfc_expr_attr (array).pointer)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4256, __FUNCTION__), 0 : 0)); |
4257 | |
4258 | if (dim == NULL__null) |
4259 | { |
4260 | /* Multi-dimensional bounds. */ |
4261 | gfc_expr *bounds[GFC_MAX_DIMENSIONS15]; |
4262 | gfc_expr *e; |
4263 | int k; |
4264 | |
4265 | /* UBOUND(ARRAY) is not valid for an assumed-size array. */ |
4266 | if (upper && type == AR_FULL && as && as->type == AS_ASSUMED_SIZE) |
4267 | { |
4268 | /* An error message will be emitted in |
4269 | check_assumed_size_reference (resolve.cc). */ |
4270 | return &gfc_bad_expr; |
4271 | } |
4272 | |
4273 | /* Simplify the bounds for each dimension. */ |
4274 | for (d = 0; d < array->rank; d++) |
4275 | { |
4276 | bounds[d] = simplify_bound_dim (array, kind, d + 1, upper, as, ref, |
4277 | false); |
4278 | if (bounds[d] == NULL__null || bounds[d] == &gfc_bad_expr) |
4279 | { |
4280 | int j; |
4281 | |
4282 | for (j = 0; j < d; j++) |
4283 | gfc_free_expr (bounds[j]); |
4284 | |
4285 | if (gfc_seen_div0) |
4286 | return &gfc_bad_expr; |
4287 | else |
4288 | return bounds[d]; |
4289 | } |
4290 | } |
4291 | |
4292 | /* Allocate the result expression. */ |
4293 | k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND", |
4294 | gfc_default_integer_kind); |
4295 | if (k == -1) |
4296 | return &gfc_bad_expr; |
4297 | |
4298 | e = gfc_get_array_expr (BT_INTEGER, k, &array->where); |
4299 | |
4300 | /* The result is a rank 1 array; its size is the rank of the first |
4301 | argument to {L,U}BOUND. */ |
4302 | e->rank = 1; |
4303 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4304 | mpz_init_set_ui__gmpz_init_set_ui (e->shape[0], array->rank); |
4305 | |
4306 | /* Create the constructor for this array. */ |
4307 | for (d = 0; d < array->rank; d++) |
4308 | gfc_constructor_append_expr (&e->value.constructor, |
4309 | bounds[d], &e->where); |
4310 | |
4311 | return e; |
4312 | } |
4313 | else |
4314 | { |
4315 | /* A DIM argument is specified. */ |
4316 | if (dim->expr_type != EXPR_CONSTANT) |
4317 | return NULL__null; |
4318 | |
4319 | d = mpz_get_si__gmpz_get_si (dim->value.integer); |
4320 | |
4321 | if ((d < 1 || d > array->rank) |
4322 | || (d == array->rank && as && as->type == AS_ASSUMED_SIZE && upper)) |
4323 | { |
4324 | gfc_error ("DIM argument at %L is out of bounds", &dim->where); |
4325 | return &gfc_bad_expr; |
4326 | } |
4327 | |
4328 | if (as && as->type == AS_ASSUMED_RANK) |
4329 | return NULL__null; |
4330 | |
4331 | return simplify_bound_dim (array, kind, d, upper, as, ref, false); |
4332 | } |
4333 | } |
4334 | |
4335 | |
4336 | static gfc_expr * |
4337 | simplify_cobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper) |
4338 | { |
4339 | gfc_ref *ref; |
4340 | gfc_array_spec *as; |
4341 | int d; |
4342 | |
4343 | if (array->expr_type != EXPR_VARIABLE) |
4344 | return NULL__null; |
4345 | |
4346 | /* Follow any component references. */ |
4347 | as = (array->ts.type == BT_CLASS && array->ts.u.derived->components) |
4348 | ? array->ts.u.derived->components->as |
4349 | : array->symtree->n.sym->as; |
4350 | for (ref = array->ref; ref; ref = ref->next) |
4351 | { |
4352 | switch (ref->type) |
4353 | { |
4354 | case REF_ARRAY: |
4355 | switch (ref->u.ar.type) |
4356 | { |
4357 | case AR_ELEMENT: |
4358 | if (ref->u.ar.as->corank > 0) |
4359 | { |
4360 | gcc_assert (as == ref->u.ar.as)((void)(!(as == ref->u.ar.as) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4360, __FUNCTION__), 0 : 0)); |
4361 | goto done; |
4362 | } |
4363 | as = NULL__null; |
4364 | continue; |
4365 | |
4366 | case AR_FULL: |
4367 | /* We're done because 'as' has already been set in the |
4368 | previous iteration. */ |
4369 | goto done; |
4370 | |
4371 | case AR_UNKNOWN: |
4372 | return NULL__null; |
4373 | |
4374 | case AR_SECTION: |
4375 | as = ref->u.ar.as; |
4376 | goto done; |
4377 | } |
4378 | |
4379 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4379, __FUNCTION__)); |
4380 | |
4381 | case REF_COMPONENT: |
4382 | as = ref->u.c.component->as; |
4383 | continue; |
4384 | |
4385 | case REF_SUBSTRING: |
4386 | case REF_INQUIRY: |
4387 | continue; |
4388 | } |
4389 | } |
4390 | |
4391 | if (!as) |
4392 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4392, __FUNCTION__)); |
4393 | |
4394 | done: |
4395 | |
4396 | if (as->cotype == AS_DEFERRED || as->cotype == AS_ASSUMED_SHAPE) |
4397 | return NULL__null; |
4398 | |
4399 | if (dim == NULL__null) |
4400 | { |
4401 | /* Multi-dimensional cobounds. */ |
4402 | gfc_expr *bounds[GFC_MAX_DIMENSIONS15]; |
4403 | gfc_expr *e; |
4404 | int k; |
4405 | |
4406 | /* Simplify the cobounds for each dimension. */ |
4407 | for (d = 0; d < as->corank; d++) |
4408 | { |
4409 | bounds[d] = simplify_bound_dim (array, kind, d + 1 + as->rank, |
4410 | upper, as, ref, true); |
4411 | if (bounds[d] == NULL__null || bounds[d] == &gfc_bad_expr) |
4412 | { |
4413 | int j; |
4414 | |
4415 | for (j = 0; j < d; j++) |
4416 | gfc_free_expr (bounds[j]); |
4417 | return bounds[d]; |
4418 | } |
4419 | } |
4420 | |
4421 | /* Allocate the result expression. */ |
4422 | e = gfc_get_expr (); |
4423 | e->where = array->where; |
4424 | e->expr_type = EXPR_ARRAY; |
4425 | e->ts.type = BT_INTEGER; |
4426 | k = get_kind (BT_INTEGER, kind, upper ? "UCOBOUND" : "LCOBOUND", |
4427 | gfc_default_integer_kind); |
4428 | if (k == -1) |
4429 | { |
4430 | gfc_free_expr (e); |
4431 | return &gfc_bad_expr; |
4432 | } |
4433 | e->ts.kind = k; |
4434 | |
4435 | /* The result is a rank 1 array; its size is the rank of the first |
4436 | argument to {L,U}COBOUND. */ |
4437 | e->rank = 1; |
4438 | e->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4439 | mpz_init_set_ui__gmpz_init_set_ui (e->shape[0], as->corank); |
4440 | |
4441 | /* Create the constructor for this array. */ |
4442 | for (d = 0; d < as->corank; d++) |
4443 | gfc_constructor_append_expr (&e->value.constructor, |
4444 | bounds[d], &e->where); |
4445 | return e; |
4446 | } |
4447 | else |
4448 | { |
4449 | /* A DIM argument is specified. */ |
4450 | if (dim->expr_type != EXPR_CONSTANT) |
4451 | return NULL__null; |
4452 | |
4453 | d = mpz_get_si__gmpz_get_si (dim->value.integer); |
4454 | |
4455 | if (d < 1 || d > as->corank) |
4456 | { |
4457 | gfc_error ("DIM argument at %L is out of bounds", &dim->where); |
4458 | return &gfc_bad_expr; |
4459 | } |
4460 | |
4461 | return simplify_bound_dim (array, kind, d+as->rank, upper, as, ref, true); |
4462 | } |
4463 | } |
4464 | |
4465 | |
4466 | gfc_expr * |
4467 | gfc_simplify_lbound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind) |
4468 | { |
4469 | return simplify_bound (array, dim, kind, 0); |
4470 | } |
4471 | |
4472 | |
4473 | gfc_expr * |
4474 | gfc_simplify_lcobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind) |
4475 | { |
4476 | return simplify_cobound (array, dim, kind, 0); |
4477 | } |
4478 | |
4479 | gfc_expr * |
4480 | gfc_simplify_leadz (gfc_expr *e) |
4481 | { |
4482 | unsigned long lz, bs; |
4483 | int i; |
4484 | |
4485 | if (e->expr_type != EXPR_CONSTANT) |
4486 | return NULL__null; |
4487 | |
4488 | i = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
4489 | bs = gfc_integer_kinds[i].bit_size; |
4490 | if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) == 0) |
4491 | lz = bs; |
4492 | else if (mpz_cmp_si (e->value.integer, 0)(__builtin_constant_p ((0) >= 0) && (0) >= 0 ? ( __builtin_constant_p ((static_cast<unsigned long> (0))) && ((static_cast<unsigned long> (0))) == 0 ? ( (e->value.integer)->_mp_size < 0 ? -1 : (e->value .integer)->_mp_size > 0) : __gmpz_cmp_ui (e->value.integer ,(static_cast<unsigned long> (0)))) : __gmpz_cmp_si (e-> value.integer,0)) < 0) |
4493 | lz = 0; |
4494 | else |
4495 | lz = bs - mpz_sizeinbase__gmpz_sizeinbase (e->value.integer, 2); |
4496 | |
4497 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, lz); |
4498 | } |
4499 | |
4500 | |
4501 | /* Check for constant length of a substring. */ |
4502 | |
4503 | static bool |
4504 | substring_has_constant_len (gfc_expr *e) |
4505 | { |
4506 | gfc_ref *ref; |
4507 | HOST_WIDE_INTlong istart, iend, length; |
4508 | bool equal_length = false; |
4509 | |
4510 | if (e->ts.type != BT_CHARACTER) |
4511 | return false; |
4512 | |
4513 | for (ref = e->ref; ref; ref = ref->next) |
4514 | if (ref->type != REF_COMPONENT && ref->type != REF_ARRAY) |
4515 | break; |
4516 | |
4517 | if (!ref |
4518 | || ref->type != REF_SUBSTRING |
4519 | || !ref->u.ss.start |
4520 | || ref->u.ss.start->expr_type != EXPR_CONSTANT |
4521 | || !ref->u.ss.end |
4522 | || ref->u.ss.end->expr_type != EXPR_CONSTANT) |
4523 | return false; |
4524 | |
4525 | /* Basic checks on substring starting and ending indices. */ |
4526 | if (!gfc_resolve_substring (ref, &equal_length)) |
4527 | return false; |
4528 | |
4529 | istart = gfc_mpz_get_hwi (ref->u.ss.start->value.integer); |
4530 | iend = gfc_mpz_get_hwi (ref->u.ss.end->value.integer); |
4531 | |
4532 | if (istart <= iend) |
4533 | length = iend - istart + 1; |
4534 | else |
4535 | length = 0; |
4536 | |
4537 | /* Fix substring length. */ |
4538 | e->value.character.length = length; |
4539 | |
4540 | return true; |
4541 | } |
4542 | |
4543 | |
4544 | gfc_expr * |
4545 | gfc_simplify_len (gfc_expr *e, gfc_expr *kind) |
4546 | { |
4547 | gfc_expr *result; |
4548 | int k = get_kind (BT_INTEGER, kind, "LEN", gfc_default_integer_kind); |
4549 | |
4550 | if (k == -1) |
4551 | return &gfc_bad_expr; |
4552 | |
4553 | if (e->expr_type == EXPR_CONSTANT |
4554 | || substring_has_constant_len (e)) |
4555 | { |
4556 | result = gfc_get_constant_expr (BT_INTEGER, k, &e->where); |
4557 | mpz_set_si__gmpz_set_si (result->value.integer, e->value.character.length); |
4558 | return range_check (result, "LEN"); |
4559 | } |
4560 | else if (e->ts.u.cl != NULL__null && e->ts.u.cl->length != NULL__null |
4561 | && e->ts.u.cl->length->expr_type == EXPR_CONSTANT |
4562 | && e->ts.u.cl->length->ts.type == BT_INTEGER) |
4563 | { |
4564 | result = gfc_get_constant_expr (BT_INTEGER, k, &e->where); |
4565 | mpz_set__gmpz_set (result->value.integer, e->ts.u.cl->length->value.integer); |
4566 | return range_check (result, "LEN"); |
4567 | } |
4568 | else if (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER |
4569 | && e->symtree->n.sym |
4570 | && e->symtree->n.sym->ts.type != BT_DERIVED |
4571 | && e->symtree->n.sym->assoc && e->symtree->n.sym->assoc->target |
4572 | && e->symtree->n.sym->assoc->target->ts.type == BT_DERIVED |
4573 | && e->symtree->n.sym->assoc->target->symtree->n.sym |
4574 | && UNLIMITED_POLY (e->symtree->n.sym->assoc->target->symtree->n.sym)(e->symtree->n.sym->assoc->target->symtree-> n.sym != __null && e->symtree->n.sym->assoc-> target->symtree->n.sym->ts.type == BT_CLASS && e->symtree->n.sym->assoc->target->symtree-> n.sym->ts.u.derived->components && e->symtree ->n.sym->assoc->target->symtree->n.sym->ts. u.derived->components->ts.u.derived && e->symtree ->n.sym->assoc->target->symtree->n.sym->ts. u.derived->components->ts.u.derived->attr.unlimited_polymorphic )) |
4575 | |
4576 | /* The expression in assoc->target points to a ref to the _data component |
4577 | of the unlimited polymorphic entity. To get the _len component the last |
4578 | _data ref needs to be stripped and a ref to the _len component added. */ |
4579 | return gfc_get_len_component (e->symtree->n.sym->assoc->target, k); |
4580 | else |
4581 | return NULL__null; |
4582 | } |
4583 | |
4584 | |
4585 | gfc_expr * |
4586 | gfc_simplify_len_trim (gfc_expr *e, gfc_expr *kind) |
4587 | { |
4588 | gfc_expr *result; |
4589 | size_t count, len, i; |
4590 | int k = get_kind (BT_INTEGER, kind, "LEN_TRIM", gfc_default_integer_kind); |
4591 | |
4592 | if (k == -1) |
4593 | return &gfc_bad_expr; |
4594 | |
4595 | if (e->expr_type != EXPR_CONSTANT) |
4596 | return NULL__null; |
4597 | |
4598 | len = e->value.character.length; |
4599 | for (count = 0, i = 1; i <= len; i++) |
4600 | if (e->value.character.string[len - i] == ' ') |
4601 | count++; |
4602 | else |
4603 | break; |
4604 | |
4605 | result = gfc_get_int_expr (k, &e->where, len - count); |
4606 | return range_check (result, "LEN_TRIM"); |
4607 | } |
4608 | |
4609 | gfc_expr * |
4610 | gfc_simplify_lgamma (gfc_expr *x) |
4611 | { |
4612 | gfc_expr *result; |
4613 | int sg; |
4614 | |
4615 | if (x->expr_type != EXPR_CONSTANT) |
4616 | return NULL__null; |
4617 | |
4618 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4619 | mpfr_lgamma (result->value.real, &sg, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4620 | |
4621 | return range_check (result, "LGAMMA"); |
4622 | } |
4623 | |
4624 | |
4625 | gfc_expr * |
4626 | gfc_simplify_lge (gfc_expr *a, gfc_expr *b) |
4627 | { |
4628 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4629 | return NULL__null; |
4630 | |
4631 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4632 | gfc_compare_string (a, b) >= 0); |
4633 | } |
4634 | |
4635 | |
4636 | gfc_expr * |
4637 | gfc_simplify_lgt (gfc_expr *a, gfc_expr *b) |
4638 | { |
4639 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4640 | return NULL__null; |
4641 | |
4642 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4643 | gfc_compare_string (a, b) > 0); |
4644 | } |
4645 | |
4646 | |
4647 | gfc_expr * |
4648 | gfc_simplify_lle (gfc_expr *a, gfc_expr *b) |
4649 | { |
4650 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4651 | return NULL__null; |
4652 | |
4653 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4654 | gfc_compare_string (a, b) <= 0); |
4655 | } |
4656 | |
4657 | |
4658 | gfc_expr * |
4659 | gfc_simplify_llt (gfc_expr *a, gfc_expr *b) |
4660 | { |
4661 | if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT) |
4662 | return NULL__null; |
4663 | |
4664 | return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, |
4665 | gfc_compare_string (a, b) < 0); |
4666 | } |
4667 | |
4668 | |
4669 | gfc_expr * |
4670 | gfc_simplify_log (gfc_expr *x) |
4671 | { |
4672 | gfc_expr *result; |
4673 | |
4674 | if (x->expr_type != EXPR_CONSTANT) |
4675 | return NULL__null; |
4676 | |
4677 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4678 | |
4679 | switch (x->ts.type) |
4680 | { |
4681 | case BT_REAL: |
4682 | if (mpfr_sgn (x->value.real)((x->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? ((((mpfr_srcptr) (0 ? (x-> value.real) : (mpfr_srcptr) (x->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((x->value.real)->_mpfr_sign) ) <= 0) |
4683 | { |
4684 | gfc_error ("Argument of LOG at %L cannot be less than or equal " |
4685 | "to zero", &x->where); |
4686 | gfc_free_expr (result); |
4687 | return &gfc_bad_expr; |
4688 | } |
4689 | |
4690 | mpfr_log (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4691 | break; |
4692 | |
4693 | case BT_COMPLEX: |
4694 | if (mpfr_zero_p (mpc_realref (x->value.complex))(((mpfr_srcptr) (0 ? (((x->value.complex)->re)) : (mpfr_srcptr ) (((x->value.complex)->re))))->_mpfr_exp == (0 - (( mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) |
4695 | && mpfr_zero_p (mpc_imagref (x->value.complex))(((mpfr_srcptr) (0 ? (((x->value.complex)->im)) : (mpfr_srcptr ) (((x->value.complex)->im))))->_mpfr_exp == (0 - (( mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1))))) |
4696 | { |
4697 | gfc_error ("Complex argument of LOG at %L cannot be zero", |
4698 | &x->where); |
4699 | gfc_free_expr (result); |
4700 | return &gfc_bad_expr; |
4701 | } |
4702 | |
4703 | gfc_set_model_kind (x->ts.kind); |
4704 | mpc_log (result->value.complex, x->value.complex, GFC_MPC_RND_MODE(((int)(MPFR_RNDN)) + ((int)(MPFR_RNDN) << 4))); |
4705 | break; |
4706 | |
4707 | default: |
4708 | gfc_internal_error ("gfc_simplify_log: bad type"); |
4709 | } |
4710 | |
4711 | return range_check (result, "LOG"); |
4712 | } |
4713 | |
4714 | |
4715 | gfc_expr * |
4716 | gfc_simplify_log10 (gfc_expr *x) |
4717 | { |
4718 | gfc_expr *result; |
4719 | |
4720 | if (x->expr_type != EXPR_CONSTANT) |
4721 | return NULL__null; |
4722 | |
4723 | if (mpfr_sgn (x->value.real)((x->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? ((((mpfr_srcptr) (0 ? (x-> value.real) : (mpfr_srcptr) (x->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((x->value.real)->_mpfr_sign) ) <= 0) |
4724 | { |
4725 | gfc_error ("Argument of LOG10 at %L cannot be less than or equal " |
4726 | "to zero", &x->where); |
4727 | return &gfc_bad_expr; |
4728 | } |
4729 | |
4730 | result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); |
4731 | mpfr_log10 (result->value.real, x->value.real, GFC_RND_MODEMPFR_RNDN); |
4732 | |
4733 | return range_check (result, "LOG10"); |
4734 | } |
4735 | |
4736 | |
4737 | gfc_expr * |
4738 | gfc_simplify_logical (gfc_expr *e, gfc_expr *k) |
4739 | { |
4740 | int kind; |
4741 | |
4742 | kind = get_kind (BT_LOGICAL, k, "LOGICAL", gfc_default_logical_kind); |
4743 | if (kind < 0) |
4744 | return &gfc_bad_expr; |
4745 | |
4746 | if (e->expr_type != EXPR_CONSTANT) |
4747 | return NULL__null; |
4748 | |
4749 | return gfc_get_logical_expr (kind, &e->where, e->value.logical); |
4750 | } |
4751 | |
4752 | |
4753 | gfc_expr* |
4754 | gfc_simplify_matmul (gfc_expr *matrix_a, gfc_expr *matrix_b) |
4755 | { |
4756 | gfc_expr *result; |
4757 | int row, result_rows, col, result_columns; |
4758 | int stride_a, offset_a, stride_b, offset_b; |
4759 | |
4760 | if (!is_constant_array_expr (matrix_a) |
4761 | || !is_constant_array_expr (matrix_b)) |
4762 | return NULL__null; |
4763 | |
4764 | /* MATMUL should do mixed-mode arithmetic. Set the result type. */ |
4765 | if (matrix_a->ts.type != matrix_b->ts.type) |
4766 | { |
4767 | gfc_expr e; |
4768 | e.expr_type = EXPR_OP; |
4769 | gfc_clear_ts (&e.ts); |
4770 | e.value.op.op = INTRINSIC_NONE; |
4771 | e.value.op.op1 = matrix_a; |
4772 | e.value.op.op2 = matrix_b; |
4773 | gfc_type_convert_binary (&e, 1); |
4774 | result = gfc_get_array_expr (e.ts.type, e.ts.kind, &matrix_a->where); |
4775 | } |
4776 | else |
4777 | { |
4778 | result = gfc_get_array_expr (matrix_a->ts.type, matrix_a->ts.kind, |
4779 | &matrix_a->where); |
4780 | } |
4781 | |
4782 | if (matrix_a->rank == 1 && matrix_b->rank == 2) |
4783 | { |
4784 | result_rows = 1; |
4785 | result_columns = mpz_get_si__gmpz_get_si (matrix_b->shape[1]); |
4786 | stride_a = 1; |
4787 | stride_b = mpz_get_si__gmpz_get_si (matrix_b->shape[0]); |
4788 | |
4789 | result->rank = 1; |
4790 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4791 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_columns); |
4792 | } |
4793 | else if (matrix_a->rank == 2 && matrix_b->rank == 1) |
4794 | { |
4795 | result_rows = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4796 | result_columns = 1; |
4797 | stride_a = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4798 | stride_b = 1; |
4799 | |
4800 | result->rank = 1; |
4801 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4802 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_rows); |
4803 | } |
4804 | else if (matrix_a->rank == 2 && matrix_b->rank == 2) |
4805 | { |
4806 | result_rows = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4807 | result_columns = mpz_get_si__gmpz_get_si (matrix_b->shape[1]); |
4808 | stride_a = mpz_get_si__gmpz_get_si (matrix_a->shape[0]); |
4809 | stride_b = mpz_get_si__gmpz_get_si (matrix_b->shape[0]); |
4810 | |
4811 | result->rank = 2; |
4812 | result->shape = gfc_get_shape (result->rank)(((mpz_t *) xcalloc (((result->rank)), sizeof (mpz_t)))); |
4813 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], result_rows); |
4814 | mpz_init_set_si__gmpz_init_set_si (result->shape[1], result_columns); |
4815 | } |
4816 | else |
4817 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4817, __FUNCTION__)); |
4818 | |
4819 | offset_b = 0; |
4820 | for (col = 0; col < result_columns; ++col) |
4821 | { |
4822 | offset_a = 0; |
4823 | |
4824 | for (row = 0; row < result_rows; ++row) |
4825 | { |
4826 | gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a, |
4827 | matrix_b, 1, offset_b, false); |
4828 | gfc_constructor_append_expr (&result->value.constructor, |
4829 | e, NULL__null); |
4830 | |
4831 | offset_a += 1; |
4832 | } |
4833 | |
4834 | offset_b += stride_b; |
4835 | } |
4836 | |
4837 | return result; |
4838 | } |
4839 | |
4840 | |
4841 | gfc_expr * |
4842 | gfc_simplify_maskr (gfc_expr *i, gfc_expr *kind_arg) |
4843 | { |
4844 | gfc_expr *result; |
4845 | int kind, arg, k; |
4846 | |
4847 | if (i->expr_type != EXPR_CONSTANT) |
4848 | return NULL__null; |
4849 | |
4850 | kind = get_kind (BT_INTEGER, kind_arg, "MASKR", gfc_default_integer_kind); |
4851 | if (kind == -1) |
4852 | return &gfc_bad_expr; |
4853 | k = gfc_validate_kind (BT_INTEGER, kind, false); |
4854 | |
4855 | bool fail = gfc_extract_int (i, &arg); |
4856 | gcc_assert (!fail)((void)(!(!fail) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4856, __FUNCTION__), 0 : 0)); |
4857 | |
4858 | if (!gfc_check_mask (i, kind_arg)) |
4859 | return &gfc_bad_expr; |
4860 | |
4861 | result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where); |
4862 | |
4863 | /* MASKR(n) = 2^n - 1 */ |
4864 | mpz_set_ui__gmpz_set_ui (result->value.integer, 1); |
4865 | mpz_mul_2exp__gmpz_mul_2exp (result->value.integer, result->value.integer, arg); |
4866 | mpz_sub_ui__gmpz_sub_ui (result->value.integer, result->value.integer, 1); |
4867 | |
4868 | gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size); |
4869 | |
4870 | return result; |
4871 | } |
4872 | |
4873 | |
4874 | gfc_expr * |
4875 | gfc_simplify_maskl (gfc_expr *i, gfc_expr *kind_arg) |
4876 | { |
4877 | gfc_expr *result; |
4878 | int kind, arg, k; |
4879 | mpz_t z; |
4880 | |
4881 | if (i->expr_type != EXPR_CONSTANT) |
4882 | return NULL__null; |
4883 | |
4884 | kind = get_kind (BT_INTEGER, kind_arg, "MASKL", gfc_default_integer_kind); |
4885 | if (kind == -1) |
4886 | return &gfc_bad_expr; |
4887 | k = gfc_validate_kind (BT_INTEGER, kind, false); |
4888 | |
4889 | bool fail = gfc_extract_int (i, &arg); |
4890 | gcc_assert (!fail)((void)(!(!fail) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 4890, __FUNCTION__), 0 : 0)); |
4891 | |
4892 | if (!gfc_check_mask (i, kind_arg)) |
4893 | return &gfc_bad_expr; |
4894 | |
4895 | result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where); |
4896 | |
4897 | /* MASKL(n) = 2^bit_size - 2^(bit_size - n) */ |
4898 | mpz_init_set_ui__gmpz_init_set_ui (z, 1); |
4899 | mpz_mul_2exp__gmpz_mul_2exp (z, z, gfc_integer_kinds[k].bit_size); |
4900 | mpz_set_ui__gmpz_set_ui (result->value.integer, 1); |
4901 | mpz_mul_2exp__gmpz_mul_2exp (result->value.integer, result->value.integer, |
4902 | gfc_integer_kinds[k].bit_size - arg); |
4903 | mpz_sub__gmpz_sub (result->value.integer, z, result->value.integer); |
4904 | mpz_clear__gmpz_clear (z); |
4905 | |
4906 | gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size); |
4907 | |
4908 | return result; |
4909 | } |
4910 | |
4911 | |
4912 | gfc_expr * |
4913 | gfc_simplify_merge (gfc_expr *tsource, gfc_expr *fsource, gfc_expr *mask) |
4914 | { |
4915 | gfc_expr * result; |
4916 | gfc_constructor *tsource_ctor, *fsource_ctor, *mask_ctor; |
4917 | |
4918 | if (mask->expr_type == EXPR_CONSTANT) |
4919 | { |
4920 | /* The standard requires evaluation of all function arguments. |
4921 | Simplify only when the other dropped argument (FSOURCE or TSOURCE) |
4922 | is a constant expression. */ |
4923 | if (mask->value.logical) |
4924 | { |
4925 | if (!gfc_is_constant_expr (fsource)) |
4926 | return NULL__null; |
4927 | result = gfc_copy_expr (tsource); |
4928 | } |
4929 | else |
4930 | { |
4931 | if (!gfc_is_constant_expr (tsource)) |
4932 | return NULL__null; |
4933 | result = gfc_copy_expr (fsource); |
4934 | } |
4935 | |
4936 | /* Parenthesis is needed to get lower bounds of 1. */ |
4937 | result = gfc_get_parentheses (result); |
4938 | gfc_simplify_expr (result, 1); |
4939 | return result; |
4940 | } |
4941 | |
4942 | if (!mask->rank || !is_constant_array_expr (mask) |
4943 | || !is_constant_array_expr (tsource) || !is_constant_array_expr (fsource)) |
4944 | return NULL__null; |
4945 | |
4946 | result = gfc_get_array_expr (tsource->ts.type, tsource->ts.kind, |
4947 | &tsource->where); |
4948 | if (tsource->ts.type == BT_DERIVED) |
4949 | result->ts.u.derived = tsource->ts.u.derived; |
4950 | else if (tsource->ts.type == BT_CHARACTER) |
4951 | result->ts.u.cl = tsource->ts.u.cl; |
4952 | |
4953 | tsource_ctor = gfc_constructor_first (tsource->value.constructor); |
4954 | fsource_ctor = gfc_constructor_first (fsource->value.constructor); |
4955 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
4956 | |
4957 | while (mask_ctor) |
4958 | { |
4959 | if (mask_ctor->expr->value.logical) |
4960 | gfc_constructor_append_expr (&result->value.constructor, |
4961 | gfc_copy_expr (tsource_ctor->expr), |
4962 | NULL__null); |
4963 | else |
4964 | gfc_constructor_append_expr (&result->value.constructor, |
4965 | gfc_copy_expr (fsource_ctor->expr), |
4966 | NULL__null); |
4967 | tsource_ctor = gfc_constructor_next (tsource_ctor); |
4968 | fsource_ctor = gfc_constructor_next (fsource_ctor); |
4969 | mask_ctor = gfc_constructor_next (mask_ctor); |
4970 | } |
4971 | |
4972 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
4973 | gfc_array_size (result, &result->shape[0]); |
4974 | |
4975 | return result; |
4976 | } |
4977 | |
4978 | |
4979 | gfc_expr * |
4980 | gfc_simplify_merge_bits (gfc_expr *i, gfc_expr *j, gfc_expr *mask_expr) |
4981 | { |
4982 | mpz_t arg1, arg2, mask; |
4983 | gfc_expr *result; |
4984 | |
4985 | if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT |
4986 | || mask_expr->expr_type != EXPR_CONSTANT) |
4987 | return NULL__null; |
4988 | |
4989 | result = gfc_get_constant_expr (BT_INTEGER, i->ts.kind, &i->where); |
4990 | |
4991 | /* Convert all argument to unsigned. */ |
4992 | mpz_init_set__gmpz_init_set (arg1, i->value.integer); |
4993 | mpz_init_set__gmpz_init_set (arg2, j->value.integer); |
4994 | mpz_init_set__gmpz_init_set (mask, mask_expr->value.integer); |
4995 | |
4996 | /* MERGE_BITS(I,J,MASK) = IOR (IAND (I, MASK), IAND (J, NOT (MASK))). */ |
4997 | mpz_and__gmpz_and (arg1, arg1, mask); |
4998 | mpz_com__gmpz_com (mask, mask); |
4999 | mpz_and__gmpz_and (arg2, arg2, mask); |
5000 | mpz_ior__gmpz_ior (result->value.integer, arg1, arg2); |
5001 | |
5002 | mpz_clear__gmpz_clear (arg1); |
5003 | mpz_clear__gmpz_clear (arg2); |
5004 | mpz_clear__gmpz_clear (mask); |
5005 | |
5006 | return result; |
5007 | } |
5008 | |
5009 | |
5010 | /* Selects between current value and extremum for simplify_min_max |
5011 | and simplify_minval_maxval. */ |
5012 | static int |
5013 | min_max_choose (gfc_expr *arg, gfc_expr *extremum, int sign, bool back_val) |
5014 | { |
5015 | int ret; |
5016 | |
5017 | switch (arg->ts.type) |
5018 | { |
5019 | case BT_INTEGER: |
5020 | if (extremum->ts.kind < arg->ts.kind) |
5021 | extremum->ts.kind = arg->ts.kind; |
5022 | ret = mpz_cmp__gmpz_cmp (arg->value.integer, |
5023 | extremum->value.integer) * sign; |
5024 | if (ret > 0) |
5025 | mpz_set__gmpz_set (extremum->value.integer, arg->value.integer); |
5026 | break; |
5027 | |
5028 | case BT_REAL: |
5029 | if (extremum->ts.kind < arg->ts.kind) |
5030 | extremum->ts.kind = arg->ts.kind; |
5031 | if (mpfr_nan_p (extremum->value.real)(((mpfr_srcptr) (0 ? (extremum->value.real) : (mpfr_srcptr ) (extremum->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
5032 | { |
5033 | ret = 1; |
5034 | mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (arg->value.real); mpfr_set4 (extremum->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
5035 | } |
5036 | else if (mpfr_nan_p (arg->value.real)(((mpfr_srcptr) (0 ? (arg->value.real) : (mpfr_srcptr) (arg ->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
5037 | ret = -1; |
5038 | else |
5039 | { |
5040 | ret = mpfr_cmp (arg->value.real, extremum->value.real)mpfr_cmp3(arg->value.real, extremum->value.real, 1) * sign; |
5041 | if (ret > 0) |
5042 | mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (arg->value.real); mpfr_set4 (extremum->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
5043 | } |
5044 | break; |
5045 | |
5046 | case BT_CHARACTER: |
5047 | #define LENGTH(x) ((x)->value.character.length) |
5048 | #define STRING(x) ((x)->value.character.string) |
5049 | if (LENGTH (extremum) < LENGTH(arg)) |
5050 | { |
5051 | gfc_char_t *tmp = STRING(extremum); |
5052 | |
5053 | STRING(extremum) = gfc_get_wide_string (LENGTH(arg) + 1)((gfc_char_t *) xcalloc ((LENGTH(arg) + 1), sizeof (gfc_char_t ))); |
5054 | memcpy (STRING(extremum), tmp, |
5055 | LENGTH(extremum) * sizeof (gfc_char_t)); |
5056 | gfc_wide_memset (&STRING(extremum)[LENGTH(extremum)], ' ', |
5057 | LENGTH(arg) - LENGTH(extremum)); |
5058 | STRING(extremum)[LENGTH(arg)] = '\0'; /* For debugger */ |
5059 | LENGTH(extremum) = LENGTH(arg); |
5060 | free (tmp); |
5061 | } |
5062 | ret = gfc_compare_string (arg, extremum) * sign; |
5063 | if (ret > 0) |
5064 | { |
5065 | free (STRING(extremum)); |
5066 | STRING(extremum) = gfc_get_wide_string (LENGTH(extremum) + 1)((gfc_char_t *) xcalloc ((LENGTH(extremum) + 1), sizeof (gfc_char_t ))); |
5067 | memcpy (STRING(extremum), STRING(arg), |
5068 | LENGTH(arg) * sizeof (gfc_char_t)); |
5069 | gfc_wide_memset (&STRING(extremum)[LENGTH(arg)], ' ', |
5070 | LENGTH(extremum) - LENGTH(arg)); |
5071 | STRING(extremum)[LENGTH(extremum)] = '\0'; /* For debugger */ |
5072 | } |
5073 | #undef LENGTH |
5074 | #undef STRING |
5075 | break; |
5076 | |
5077 | default: |
5078 | gfc_internal_error ("simplify_min_max(): Bad type in arglist"); |
5079 | } |
5080 | if (back_val && ret == 0) |
5081 | ret = 1; |
5082 | |
5083 | return ret; |
5084 | } |
5085 | |
5086 | |
5087 | /* This function is special since MAX() can take any number of |
5088 | arguments. The simplified expression is a rewritten version of the |
5089 | argument list containing at most one constant element. Other |
5090 | constant elements are deleted. Because the argument list has |
5091 | already been checked, this function always succeeds. sign is 1 for |
5092 | MAX(), -1 for MIN(). */ |
5093 | |
5094 | static gfc_expr * |
5095 | simplify_min_max (gfc_expr *expr, int sign) |
5096 | { |
5097 | int tmp1, tmp2; |
5098 | gfc_actual_arglist *arg, *last, *extremum; |
5099 | gfc_expr *tmp, *ret; |
5100 | const char *fname; |
5101 | |
5102 | last = NULL__null; |
5103 | extremum = NULL__null; |
5104 | |
5105 | arg = expr->value.function.actual; |
5106 | |
5107 | for (; arg; last = arg, arg = arg->next) |
5108 | { |
5109 | if (arg->expr->expr_type != EXPR_CONSTANT) |
5110 | continue; |
5111 | |
5112 | if (extremum == NULL__null) |
5113 | { |
5114 | extremum = arg; |
5115 | continue; |
5116 | } |
5117 | |
5118 | min_max_choose (arg->expr, extremum->expr, sign); |
5119 | |
5120 | /* Delete the extra constant argument. */ |
5121 | last->next = arg->next; |
5122 | |
5123 | arg->next = NULL__null; |
5124 | gfc_free_actual_arglist (arg); |
5125 | arg = last; |
5126 | } |
5127 | |
5128 | /* If there is one value left, replace the function call with the |
5129 | expression. */ |
5130 | if (expr->value.function.actual->next != NULL__null) |
5131 | return NULL__null; |
5132 | |
5133 | /* Handle special cases of specific functions (min|max)1 and |
5134 | a(min|max)0. */ |
5135 | |
5136 | tmp = expr->value.function.actual->expr; |
5137 | fname = expr->value.function.isym->name; |
5138 | |
5139 | if ((tmp->ts.type != BT_INTEGER || tmp->ts.kind != gfc_integer_4_kind4) |
5140 | && (strcmp (fname, "min1") == 0 || strcmp (fname, "max1") == 0)) |
5141 | { |
5142 | /* Explicit conversion, turn off -Wconversion and -Wconversion-extra |
5143 | warnings. */ |
5144 | tmp1 = warn_conversionglobal_options.x_warn_conversion; |
5145 | tmp2 = warn_conversion_extraglobal_options.x_warn_conversion_extra; |
5146 | warn_conversionglobal_options.x_warn_conversion = warn_conversion_extraglobal_options.x_warn_conversion_extra = 0; |
5147 | |
5148 | ret = gfc_convert_constant (tmp, BT_INTEGER, gfc_integer_4_kind4); |
5149 | |
5150 | warn_conversionglobal_options.x_warn_conversion = tmp1; |
5151 | warn_conversion_extraglobal_options.x_warn_conversion_extra = tmp2; |
5152 | } |
5153 | else if ((tmp->ts.type != BT_REAL || tmp->ts.kind != gfc_real_4_kind4) |
5154 | && (strcmp (fname, "amin0") == 0 || strcmp (fname, "amax0") == 0)) |
5155 | { |
5156 | ret = gfc_convert_constant (tmp, BT_REAL, gfc_real_4_kind4); |
5157 | } |
5158 | else |
5159 | ret = gfc_copy_expr (tmp); |
5160 | |
5161 | return ret; |
5162 | |
5163 | } |
5164 | |
5165 | |
5166 | gfc_expr * |
5167 | gfc_simplify_min (gfc_expr *e) |
5168 | { |
5169 | return simplify_min_max (e, -1); |
5170 | } |
5171 | |
5172 | |
5173 | gfc_expr * |
5174 | gfc_simplify_max (gfc_expr *e) |
5175 | { |
5176 | return simplify_min_max (e, 1); |
5177 | } |
5178 | |
5179 | /* Helper function for gfc_simplify_minval. */ |
5180 | |
5181 | static gfc_expr * |
5182 | gfc_min (gfc_expr *op1, gfc_expr *op2) |
5183 | { |
5184 | min_max_choose (op1, op2, -1); |
5185 | gfc_free_expr (op1); |
5186 | return op2; |
5187 | } |
5188 | |
5189 | /* Simplify minval for constant arrays. */ |
5190 | |
5191 | gfc_expr * |
5192 | gfc_simplify_minval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask) |
5193 | { |
5194 | return simplify_transformation (array, dim, mask, INT_MAX2147483647, gfc_min); |
5195 | } |
5196 | |
5197 | /* Helper function for gfc_simplify_maxval. */ |
5198 | |
5199 | static gfc_expr * |
5200 | gfc_max (gfc_expr *op1, gfc_expr *op2) |
5201 | { |
5202 | min_max_choose (op1, op2, 1); |
5203 | gfc_free_expr (op1); |
5204 | return op2; |
5205 | } |
5206 | |
5207 | |
5208 | /* Simplify maxval for constant arrays. */ |
5209 | |
5210 | gfc_expr * |
5211 | gfc_simplify_maxval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask) |
5212 | { |
5213 | return simplify_transformation (array, dim, mask, INT_MIN(-2147483647 -1), gfc_max); |
5214 | } |
5215 | |
5216 | |
5217 | /* Transform minloc or maxloc of an array, according to MASK, |
5218 | to the scalar result. This code is mostly identical to |
5219 | simplify_transformation_to_scalar. */ |
5220 | |
5221 | static gfc_expr * |
5222 | simplify_minmaxloc_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask, |
5223 | gfc_expr *extremum, int sign, bool back_val) |
5224 | { |
5225 | gfc_expr *a, *m; |
5226 | gfc_constructor *array_ctor, *mask_ctor; |
5227 | mpz_t count; |
5228 | |
5229 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
5230 | |
5231 | |
5232 | /* Shortcut for constant .FALSE. MASK. */ |
5233 | if (mask |
5234 | && mask->expr_type == EXPR_CONSTANT |
5235 | && !mask->value.logical) |
5236 | return result; |
5237 | |
5238 | array_ctor = gfc_constructor_first (array->value.constructor); |
5239 | if (mask && mask->expr_type == EXPR_ARRAY) |
5240 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5241 | else |
5242 | mask_ctor = NULL__null; |
5243 | |
5244 | mpz_init_set_si__gmpz_init_set_si (count, 0); |
5245 | while (array_ctor) |
5246 | { |
5247 | mpz_add_ui__gmpz_add_ui (count, count, 1); |
5248 | a = array_ctor->expr; |
5249 | array_ctor = gfc_constructor_next (array_ctor); |
5250 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
5251 | if (mask_ctor) |
5252 | { |
5253 | m = mask_ctor->expr; |
5254 | mask_ctor = gfc_constructor_next (mask_ctor); |
5255 | if (!m->value.logical) |
5256 | continue; |
5257 | } |
5258 | if (min_max_choose (a, extremum, sign, back_val) > 0) |
5259 | mpz_set__gmpz_set (result->value.integer, count); |
5260 | } |
5261 | mpz_clear__gmpz_clear (count); |
5262 | gfc_free_expr (extremum); |
5263 | return result; |
5264 | } |
5265 | |
5266 | /* Simplify minloc / maxloc in the absence of a dim argument. */ |
5267 | |
5268 | static gfc_expr * |
5269 | simplify_minmaxloc_nodim (gfc_expr *result, gfc_expr *extremum, |
5270 | gfc_expr *array, gfc_expr *mask, int sign, |
5271 | bool back_val) |
5272 | { |
5273 | ssize_t res[GFC_MAX_DIMENSIONS15]; |
5274 | int i, n; |
5275 | gfc_constructor *result_ctor, *array_ctor, *mask_ctor; |
5276 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5277 | sstride[GFC_MAX_DIMENSIONS15]; |
5278 | gfc_expr *a, *m; |
5279 | bool continue_loop; |
5280 | bool ma; |
5281 | |
5282 | for (i = 0; i<array->rank; i++) |
5283 | res[i] = -1; |
5284 | |
5285 | /* Shortcut for constant .FALSE. MASK. */ |
5286 | if (mask |
5287 | && mask->expr_type == EXPR_CONSTANT |
5288 | && !mask->value.logical) |
5289 | goto finish; |
5290 | |
5291 | if (array->shape == NULL__null) |
5292 | goto finish; |
5293 | |
5294 | for (i = 0; i < array->rank; i++) |
5295 | { |
5296 | count[i] = 0; |
5297 | sstride[i] = (i == 0) ? 1 : sstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5298 | extent[i] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5299 | if (extent[i] <= 0) |
5300 | goto finish; |
5301 | } |
5302 | |
5303 | continue_loop = true; |
5304 | array_ctor = gfc_constructor_first (array->value.constructor); |
5305 | if (mask && mask->rank > 0) |
5306 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5307 | else |
5308 | mask_ctor = NULL__null; |
5309 | |
5310 | /* Loop over the array elements (and mask), keeping track of |
5311 | the indices to return. */ |
5312 | while (continue_loop) |
5313 | { |
5314 | do |
5315 | { |
5316 | a = array_ctor->expr; |
5317 | if (mask_ctor) |
5318 | { |
5319 | m = mask_ctor->expr; |
5320 | ma = m->value.logical; |
5321 | mask_ctor = gfc_constructor_next (mask_ctor); |
5322 | } |
5323 | else |
5324 | ma = true; |
5325 | |
5326 | if (ma && min_max_choose (a, extremum, sign, back_val) > 0) |
5327 | { |
5328 | for (i = 0; i<array->rank; i++) |
5329 | res[i] = count[i]; |
5330 | } |
5331 | array_ctor = gfc_constructor_next (array_ctor); |
5332 | count[0] ++; |
5333 | } while (count[0] != extent[0]); |
5334 | n = 0; |
5335 | do |
5336 | { |
5337 | /* When we get to the end of a dimension, reset it and increment |
5338 | the next dimension. */ |
5339 | count[n] = 0; |
5340 | n++; |
5341 | if (n >= array->rank) |
5342 | { |
5343 | continue_loop = false; |
5344 | break; |
5345 | } |
5346 | else |
5347 | count[n] ++; |
5348 | } while (count[n] == extent[n]); |
5349 | } |
5350 | |
5351 | finish: |
5352 | gfc_free_expr (extremum); |
5353 | result_ctor = gfc_constructor_first (result->value.constructor); |
5354 | for (i = 0; i<array->rank; i++) |
5355 | { |
5356 | gfc_expr *r_expr; |
5357 | r_expr = result_ctor->expr; |
5358 | mpz_set_si__gmpz_set_si (r_expr->value.integer, res[i] + 1); |
5359 | result_ctor = gfc_constructor_next (result_ctor); |
5360 | } |
5361 | return result; |
5362 | } |
5363 | |
5364 | /* Helper function for gfc_simplify_minmaxloc - build an array |
5365 | expression with n elements. */ |
5366 | |
5367 | static gfc_expr * |
5368 | new_array (bt type, int kind, int n, locus *where) |
5369 | { |
5370 | gfc_expr *result; |
5371 | int i; |
5372 | |
5373 | result = gfc_get_array_expr (type, kind, where); |
5374 | result->rank = 1; |
5375 | result->shape = gfc_get_shape(1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
5376 | mpz_init_set_si__gmpz_init_set_si (result->shape[0], n); |
5377 | for (i = 0; i < n; i++) |
5378 | { |
5379 | gfc_constructor_append_expr (&result->value.constructor, |
5380 | gfc_get_constant_expr (type, kind, where), |
5381 | NULL__null); |
5382 | } |
5383 | |
5384 | return result; |
5385 | } |
5386 | |
5387 | /* Simplify minloc and maxloc. This code is mostly identical to |
5388 | simplify_transformation_to_array. */ |
5389 | |
5390 | static gfc_expr * |
5391 | simplify_minmaxloc_to_array (gfc_expr *result, gfc_expr *array, |
5392 | gfc_expr *dim, gfc_expr *mask, |
5393 | gfc_expr *extremum, int sign, bool back_val) |
5394 | { |
5395 | mpz_t size; |
5396 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
5397 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
5398 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
5399 | |
5400 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5401 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
5402 | tmpstride[GFC_MAX_DIMENSIONS15]; |
5403 | |
5404 | /* Shortcut for constant .FALSE. MASK. */ |
5405 | if (mask |
5406 | && mask->expr_type == EXPR_CONSTANT |
5407 | && !mask->value.logical) |
5408 | return result; |
5409 | |
5410 | /* Build an indexed table for array element expressions to minimize |
5411 | linked-list traversal. Masked elements are set to NULL. */ |
5412 | gfc_array_size (array, &size); |
5413 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
5414 | mpz_clear__gmpz_clear (size); |
5415 | |
5416 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
5417 | |
5418 | array_ctor = gfc_constructor_first (array->value.constructor); |
5419 | mask_ctor = NULL__null; |
5420 | if (mask && mask->expr_type == EXPR_ARRAY) |
5421 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5422 | |
5423 | for (i = 0; i < arraysize; ++i) |
5424 | { |
5425 | arrayvec[i] = array_ctor->expr; |
5426 | array_ctor = gfc_constructor_next (array_ctor); |
5427 | |
5428 | if (mask_ctor) |
5429 | { |
5430 | if (!mask_ctor->expr->value.logical) |
5431 | arrayvec[i] = NULL__null; |
5432 | |
5433 | mask_ctor = gfc_constructor_next (mask_ctor); |
5434 | } |
5435 | } |
5436 | |
5437 | /* Same for the result expression. */ |
5438 | gfc_array_size (result, &size); |
5439 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
5440 | mpz_clear__gmpz_clear (size); |
5441 | |
5442 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
5443 | result_ctor = gfc_constructor_first (result->value.constructor); |
5444 | for (i = 0; i < resultsize; ++i) |
5445 | { |
5446 | resultvec[i] = result_ctor->expr; |
5447 | result_ctor = gfc_constructor_next (result_ctor); |
5448 | } |
5449 | |
5450 | gfc_extract_int (dim, &dim_index); |
5451 | dim_index -= 1; /* zero-base index */ |
5452 | dim_extent = 0; |
5453 | dim_stride = 0; |
5454 | |
5455 | for (i = 0, n = 0; i < array->rank; ++i) |
5456 | { |
5457 | count[i] = 0; |
5458 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5459 | if (i == dim_index) |
5460 | { |
5461 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
5462 | dim_stride = tmpstride[i]; |
5463 | continue; |
5464 | } |
5465 | |
5466 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5467 | sstride[n] = tmpstride[i]; |
5468 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
5469 | n += 1; |
5470 | } |
5471 | |
5472 | done = resultsize <= 0; |
5473 | base = arrayvec; |
5474 | dest = resultvec; |
5475 | while (!done) |
5476 | { |
5477 | gfc_expr *ex; |
5478 | ex = gfc_copy_expr (extremum); |
5479 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
5480 | { |
5481 | if (*src && min_max_choose (*src, ex, sign, back_val) > 0) |
5482 | mpz_set_si__gmpz_set_si ((*dest)->value.integer, n + 1); |
5483 | } |
5484 | |
5485 | count[0]++; |
5486 | base += sstride[0]; |
5487 | dest += dstride[0]; |
5488 | gfc_free_expr (ex); |
5489 | |
5490 | n = 0; |
5491 | while (!done && count[n] == extent[n]) |
5492 | { |
5493 | count[n] = 0; |
5494 | base -= sstride[n] * extent[n]; |
5495 | dest -= dstride[n] * extent[n]; |
5496 | |
5497 | n++; |
5498 | if (n < result->rank) |
5499 | { |
5500 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
5501 | times, we'd warn for the last iteration, because the |
5502 | array index will have already been incremented to the |
5503 | array sizes, and we can't tell that this must make |
5504 | the test against result->rank false, because ranks |
5505 | must not exceed GFC_MAX_DIMENSIONS. */ |
5506 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
5507 | count[n]++; |
5508 | base += sstride[n]; |
5509 | dest += dstride[n]; |
5510 | GCC_DIAGNOSTIC_POP |
5511 | } |
5512 | else |
5513 | done = true; |
5514 | } |
5515 | } |
5516 | |
5517 | /* Place updated expression in result constructor. */ |
5518 | result_ctor = gfc_constructor_first (result->value.constructor); |
5519 | for (i = 0; i < resultsize; ++i) |
5520 | { |
5521 | result_ctor->expr = resultvec[i]; |
5522 | result_ctor = gfc_constructor_next (result_ctor); |
5523 | } |
5524 | |
5525 | free (arrayvec); |
5526 | free (resultvec); |
5527 | free (extremum); |
5528 | return result; |
5529 | } |
5530 | |
5531 | /* Simplify minloc and maxloc for constant arrays. */ |
5532 | |
5533 | static gfc_expr * |
5534 | gfc_simplify_minmaxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, |
5535 | gfc_expr *kind, gfc_expr *back, int sign) |
5536 | { |
5537 | gfc_expr *result; |
5538 | gfc_expr *extremum; |
5539 | int ikind; |
5540 | int init_val; |
5541 | bool back_val = false; |
5542 | |
5543 | if (!is_constant_array_expr (array) |
5544 | || !gfc_is_constant_expr (dim)) |
5545 | return NULL__null; |
5546 | |
5547 | if (mask |
5548 | && !is_constant_array_expr (mask) |
5549 | && mask->expr_type != EXPR_CONSTANT) |
5550 | return NULL__null; |
5551 | |
5552 | if (kind) |
5553 | { |
5554 | if (gfc_extract_int (kind, &ikind, -1)) |
5555 | return NULL__null; |
5556 | } |
5557 | else |
5558 | ikind = gfc_default_integer_kind; |
5559 | |
5560 | if (back) |
5561 | { |
5562 | if (back->expr_type != EXPR_CONSTANT) |
5563 | return NULL__null; |
5564 | |
5565 | back_val = back->value.logical; |
5566 | } |
5567 | |
5568 | if (sign < 0) |
5569 | init_val = INT_MAX2147483647; |
5570 | else if (sign > 0) |
5571 | init_val = INT_MIN(-2147483647 -1); |
5572 | else |
5573 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 5573, __FUNCTION__)); |
5574 | |
5575 | extremum = gfc_get_constant_expr (array->ts.type, array->ts.kind, &array->where); |
5576 | init_result_expr (extremum, init_val, array); |
5577 | |
5578 | if (dim) |
5579 | { |
5580 | result = transformational_result (array, dim, BT_INTEGER, |
5581 | ikind, &array->where); |
5582 | init_result_expr (result, 0, array); |
5583 | |
5584 | if (array->rank == 1) |
5585 | return simplify_minmaxloc_to_scalar (result, array, mask, extremum, |
5586 | sign, back_val); |
5587 | else |
5588 | return simplify_minmaxloc_to_array (result, array, dim, mask, extremum, |
5589 | sign, back_val); |
5590 | } |
5591 | else |
5592 | { |
5593 | result = new_array (BT_INTEGER, ikind, array->rank, &array->where); |
5594 | return simplify_minmaxloc_nodim (result, extremum, array, mask, |
5595 | sign, back_val); |
5596 | } |
5597 | } |
5598 | |
5599 | gfc_expr * |
5600 | gfc_simplify_minloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind, |
5601 | gfc_expr *back) |
5602 | { |
5603 | return gfc_simplify_minmaxloc (array, dim, mask, kind, back, -1); |
5604 | } |
5605 | |
5606 | gfc_expr * |
5607 | gfc_simplify_maxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind, |
5608 | gfc_expr *back) |
5609 | { |
5610 | return gfc_simplify_minmaxloc (array, dim, mask, kind, back, 1); |
5611 | } |
5612 | |
5613 | /* Simplify findloc to scalar. Similar to |
5614 | simplify_minmaxloc_to_scalar. */ |
5615 | |
5616 | static gfc_expr * |
5617 | simplify_findloc_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *value, |
5618 | gfc_expr *mask, int back_val) |
5619 | { |
5620 | gfc_expr *a, *m; |
5621 | gfc_constructor *array_ctor, *mask_ctor; |
5622 | mpz_t count; |
5623 | |
5624 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
5625 | |
5626 | /* Shortcut for constant .FALSE. MASK. */ |
5627 | if (mask |
5628 | && mask->expr_type == EXPR_CONSTANT |
5629 | && !mask->value.logical) |
5630 | return result; |
5631 | |
5632 | array_ctor = gfc_constructor_first (array->value.constructor); |
5633 | if (mask && mask->expr_type == EXPR_ARRAY) |
5634 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5635 | else |
5636 | mask_ctor = NULL__null; |
5637 | |
5638 | mpz_init_set_si__gmpz_init_set_si (count, 0); |
5639 | while (array_ctor) |
5640 | { |
5641 | mpz_add_ui__gmpz_add_ui (count, count, 1); |
5642 | a = array_ctor->expr; |
5643 | array_ctor = gfc_constructor_next (array_ctor); |
5644 | /* A constant MASK equals .TRUE. here and can be ignored. */ |
5645 | if (mask_ctor) |
5646 | { |
5647 | m = mask_ctor->expr; |
5648 | mask_ctor = gfc_constructor_next (mask_ctor); |
5649 | if (!m->value.logical) |
5650 | continue; |
5651 | } |
5652 | if (gfc_compare_expr (a, value, INTRINSIC_EQ) == 0) |
5653 | { |
5654 | /* We have a match. If BACK is true, continue so we find |
5655 | the last one. */ |
5656 | mpz_set__gmpz_set (result->value.integer, count); |
5657 | if (!back_val) |
5658 | break; |
5659 | } |
5660 | } |
5661 | mpz_clear__gmpz_clear (count); |
5662 | return result; |
5663 | } |
5664 | |
5665 | /* Simplify findloc in the absence of a dim argument. Similar to |
5666 | simplify_minmaxloc_nodim. */ |
5667 | |
5668 | static gfc_expr * |
5669 | simplify_findloc_nodim (gfc_expr *result, gfc_expr *value, gfc_expr *array, |
5670 | gfc_expr *mask, bool back_val) |
5671 | { |
5672 | ssize_t res[GFC_MAX_DIMENSIONS15]; |
5673 | int i, n; |
5674 | gfc_constructor *result_ctor, *array_ctor, *mask_ctor; |
5675 | ssize_t count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5676 | sstride[GFC_MAX_DIMENSIONS15]; |
5677 | gfc_expr *a, *m; |
5678 | bool continue_loop; |
5679 | bool ma; |
5680 | |
5681 | for (i = 0; i < array->rank; i++) |
5682 | res[i] = -1; |
5683 | |
5684 | /* Shortcut for constant .FALSE. MASK. */ |
5685 | if (mask |
5686 | && mask->expr_type == EXPR_CONSTANT |
5687 | && !mask->value.logical) |
5688 | goto finish; |
5689 | |
5690 | for (i = 0; i < array->rank; i++) |
5691 | { |
5692 | count[i] = 0; |
5693 | sstride[i] = (i == 0) ? 1 : sstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5694 | extent[i] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5695 | if (extent[i] <= 0) |
5696 | goto finish; |
5697 | } |
5698 | |
5699 | continue_loop = true; |
5700 | array_ctor = gfc_constructor_first (array->value.constructor); |
5701 | if (mask && mask->rank > 0) |
5702 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5703 | else |
5704 | mask_ctor = NULL__null; |
5705 | |
5706 | /* Loop over the array elements (and mask), keeping track of |
5707 | the indices to return. */ |
5708 | while (continue_loop) |
5709 | { |
5710 | do |
5711 | { |
5712 | a = array_ctor->expr; |
5713 | if (mask_ctor) |
5714 | { |
5715 | m = mask_ctor->expr; |
5716 | ma = m->value.logical; |
5717 | mask_ctor = gfc_constructor_next (mask_ctor); |
5718 | } |
5719 | else |
5720 | ma = true; |
5721 | |
5722 | if (ma && gfc_compare_expr (a, value, INTRINSIC_EQ) == 0) |
5723 | { |
5724 | for (i = 0; i < array->rank; i++) |
5725 | res[i] = count[i]; |
5726 | if (!back_val) |
5727 | goto finish; |
5728 | } |
5729 | array_ctor = gfc_constructor_next (array_ctor); |
5730 | count[0] ++; |
5731 | } while (count[0] != extent[0]); |
5732 | n = 0; |
5733 | do |
5734 | { |
5735 | /* When we get to the end of a dimension, reset it and increment |
5736 | the next dimension. */ |
5737 | count[n] = 0; |
5738 | n++; |
5739 | if (n >= array->rank) |
5740 | { |
5741 | continue_loop = false; |
5742 | break; |
5743 | } |
5744 | else |
5745 | count[n] ++; |
5746 | } while (count[n] == extent[n]); |
5747 | } |
5748 | |
5749 | finish: |
5750 | result_ctor = gfc_constructor_first (result->value.constructor); |
5751 | for (i = 0; i < array->rank; i++) |
5752 | { |
5753 | gfc_expr *r_expr; |
5754 | r_expr = result_ctor->expr; |
5755 | mpz_set_si__gmpz_set_si (r_expr->value.integer, res[i] + 1); |
5756 | result_ctor = gfc_constructor_next (result_ctor); |
5757 | } |
5758 | return result; |
5759 | } |
5760 | |
5761 | |
5762 | /* Simplify findloc to an array. Similar to |
5763 | simplify_minmaxloc_to_array. */ |
5764 | |
5765 | static gfc_expr * |
5766 | simplify_findloc_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *value, |
5767 | gfc_expr *dim, gfc_expr *mask, bool back_val) |
5768 | { |
5769 | mpz_t size; |
5770 | int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride; |
5771 | gfc_expr **arrayvec, **resultvec, **base, **src, **dest; |
5772 | gfc_constructor *array_ctor, *mask_ctor, *result_ctor; |
5773 | |
5774 | int count[GFC_MAX_DIMENSIONS15], extent[GFC_MAX_DIMENSIONS15], |
5775 | sstride[GFC_MAX_DIMENSIONS15], dstride[GFC_MAX_DIMENSIONS15], |
5776 | tmpstride[GFC_MAX_DIMENSIONS15]; |
5777 | |
5778 | /* Shortcut for constant .FALSE. MASK. */ |
5779 | if (mask |
5780 | && mask->expr_type == EXPR_CONSTANT |
5781 | && !mask->value.logical) |
5782 | return result; |
5783 | |
5784 | /* Build an indexed table for array element expressions to minimize |
5785 | linked-list traversal. Masked elements are set to NULL. */ |
5786 | gfc_array_size (array, &size); |
5787 | arraysize = mpz_get_ui__gmpz_get_ui (size); |
5788 | mpz_clear__gmpz_clear (size); |
5789 | |
5790 | arrayvec = XCNEWVEC (gfc_expr*, arraysize)((gfc_expr* *) xcalloc ((arraysize), sizeof (gfc_expr*))); |
5791 | |
5792 | array_ctor = gfc_constructor_first (array->value.constructor); |
5793 | mask_ctor = NULL__null; |
5794 | if (mask && mask->expr_type == EXPR_ARRAY) |
5795 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
5796 | |
5797 | for (i = 0; i < arraysize; ++i) |
5798 | { |
5799 | arrayvec[i] = array_ctor->expr; |
5800 | array_ctor = gfc_constructor_next (array_ctor); |
5801 | |
5802 | if (mask_ctor) |
5803 | { |
5804 | if (!mask_ctor->expr->value.logical) |
5805 | arrayvec[i] = NULL__null; |
5806 | |
5807 | mask_ctor = gfc_constructor_next (mask_ctor); |
5808 | } |
5809 | } |
5810 | |
5811 | /* Same for the result expression. */ |
5812 | gfc_array_size (result, &size); |
5813 | resultsize = mpz_get_ui__gmpz_get_ui (size); |
5814 | mpz_clear__gmpz_clear (size); |
5815 | |
5816 | resultvec = XCNEWVEC (gfc_expr*, resultsize)((gfc_expr* *) xcalloc ((resultsize), sizeof (gfc_expr*))); |
5817 | result_ctor = gfc_constructor_first (result->value.constructor); |
5818 | for (i = 0; i < resultsize; ++i) |
5819 | { |
5820 | resultvec[i] = result_ctor->expr; |
5821 | result_ctor = gfc_constructor_next (result_ctor); |
5822 | } |
5823 | |
5824 | gfc_extract_int (dim, &dim_index); |
5825 | |
5826 | dim_index -= 1; /* Zero-base index. */ |
5827 | dim_extent = 0; |
5828 | dim_stride = 0; |
5829 | |
5830 | for (i = 0, n = 0; i < array->rank; ++i) |
5831 | { |
5832 | count[i] = 0; |
5833 | tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si__gmpz_get_si (array->shape[i-1]); |
5834 | if (i == dim_index) |
5835 | { |
5836 | dim_extent = mpz_get_si__gmpz_get_si (array->shape[i]); |
5837 | dim_stride = tmpstride[i]; |
5838 | continue; |
5839 | } |
5840 | |
5841 | extent[n] = mpz_get_si__gmpz_get_si (array->shape[i]); |
5842 | sstride[n] = tmpstride[i]; |
5843 | dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1]; |
5844 | n += 1; |
5845 | } |
5846 | |
5847 | done = resultsize <= 0; |
5848 | base = arrayvec; |
5849 | dest = resultvec; |
5850 | while (!done) |
5851 | { |
5852 | for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n) |
5853 | { |
5854 | if (*src && gfc_compare_expr (*src, value, INTRINSIC_EQ) == 0) |
5855 | { |
5856 | mpz_set_si__gmpz_set_si ((*dest)->value.integer, n + 1); |
5857 | if (!back_val) |
5858 | break; |
5859 | } |
5860 | } |
5861 | |
5862 | count[0]++; |
5863 | base += sstride[0]; |
5864 | dest += dstride[0]; |
5865 | |
5866 | n = 0; |
5867 | while (!done && count[n] == extent[n]) |
5868 | { |
5869 | count[n] = 0; |
5870 | base -= sstride[n] * extent[n]; |
5871 | dest -= dstride[n] * extent[n]; |
5872 | |
5873 | n++; |
5874 | if (n < result->rank) |
5875 | { |
5876 | /* If the nested loop is unrolled GFC_MAX_DIMENSIONS |
5877 | times, we'd warn for the last iteration, because the |
5878 | array index will have already been incremented to the |
5879 | array sizes, and we can't tell that this must make |
5880 | the test against result->rank false, because ranks |
5881 | must not exceed GFC_MAX_DIMENSIONS. */ |
5882 | GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds) |
5883 | count[n]++; |
5884 | base += sstride[n]; |
5885 | dest += dstride[n]; |
5886 | GCC_DIAGNOSTIC_POP |
5887 | } |
5888 | else |
5889 | done = true; |
5890 | } |
5891 | } |
5892 | |
5893 | /* Place updated expression in result constructor. */ |
5894 | result_ctor = gfc_constructor_first (result->value.constructor); |
5895 | for (i = 0; i < resultsize; ++i) |
5896 | { |
5897 | result_ctor->expr = resultvec[i]; |
5898 | result_ctor = gfc_constructor_next (result_ctor); |
5899 | } |
5900 | |
5901 | free (arrayvec); |
5902 | free (resultvec); |
5903 | return result; |
5904 | } |
5905 | |
5906 | /* Simplify findloc. */ |
5907 | |
5908 | gfc_expr * |
5909 | gfc_simplify_findloc (gfc_expr *array, gfc_expr *value, gfc_expr *dim, |
5910 | gfc_expr *mask, gfc_expr *kind, gfc_expr *back) |
5911 | { |
5912 | gfc_expr *result; |
5913 | int ikind; |
5914 | bool back_val = false; |
5915 | |
5916 | if (!is_constant_array_expr (array) |
5917 | || array->shape == NULL__null |
5918 | || !gfc_is_constant_expr (dim)) |
5919 | return NULL__null; |
5920 | |
5921 | if (! gfc_is_constant_expr (value)) |
5922 | return 0; |
5923 | |
5924 | if (mask |
5925 | && !is_constant_array_expr (mask) |
5926 | && mask->expr_type != EXPR_CONSTANT) |
5927 | return NULL__null; |
5928 | |
5929 | if (kind) |
5930 | { |
5931 | if (gfc_extract_int (kind, &ikind, -1)) |
5932 | return NULL__null; |
5933 | } |
5934 | else |
5935 | ikind = gfc_default_integer_kind; |
5936 | |
5937 | if (back) |
5938 | { |
5939 | if (back->expr_type != EXPR_CONSTANT) |
5940 | return NULL__null; |
5941 | |
5942 | back_val = back->value.logical; |
5943 | } |
5944 | |
5945 | if (dim) |
5946 | { |
5947 | result = transformational_result (array, dim, BT_INTEGER, |
5948 | ikind, &array->where); |
5949 | init_result_expr (result, 0, array); |
5950 | |
5951 | if (array->rank == 1) |
5952 | return simplify_findloc_to_scalar (result, array, value, mask, |
5953 | back_val); |
5954 | else |
5955 | return simplify_findloc_to_array (result, array, value, dim, mask, |
5956 | back_val); |
5957 | } |
5958 | else |
5959 | { |
5960 | result = new_array (BT_INTEGER, ikind, array->rank, &array->where); |
5961 | return simplify_findloc_nodim (result, value, array, mask, back_val); |
5962 | } |
5963 | return NULL__null; |
5964 | } |
5965 | |
5966 | gfc_expr * |
5967 | gfc_simplify_maxexponent (gfc_expr *x) |
5968 | { |
5969 | int i = gfc_validate_kind (BT_REAL, x->ts.kind, false); |
5970 | return gfc_get_int_expr (gfc_default_integer_kind, &x->where, |
5971 | gfc_real_kinds[i].max_exponent); |
5972 | } |
5973 | |
5974 | |
5975 | gfc_expr * |
5976 | gfc_simplify_minexponent (gfc_expr *x) |
5977 | { |
5978 | int i = gfc_validate_kind (BT_REAL, x->ts.kind, false); |
5979 | return gfc_get_int_expr (gfc_default_integer_kind, &x->where, |
5980 | gfc_real_kinds[i].min_exponent); |
5981 | } |
5982 | |
5983 | |
5984 | gfc_expr * |
5985 | gfc_simplify_mod (gfc_expr *a, gfc_expr *p) |
5986 | { |
5987 | gfc_expr *result; |
5988 | int kind; |
5989 | |
5990 | /* First check p. */ |
5991 | if (p->expr_type != EXPR_CONSTANT) |
5992 | return NULL__null; |
5993 | |
5994 | /* p shall not be 0. */ |
5995 | switch (p->ts.type) |
5996 | { |
5997 | case BT_INTEGER: |
5998 | if (mpz_cmp_ui (p->value.integer, 0)(__builtin_constant_p (0) && (0) == 0 ? ((p->value .integer)->_mp_size < 0 ? -1 : (p->value.integer)-> _mp_size > 0) : __gmpz_cmp_ui (p->value.integer,0)) == 0) |
5999 | { |
6000 | gfc_error ("Argument %qs of MOD at %L shall not be zero", |
6001 | "P", &p->where); |
6002 | return &gfc_bad_expr; |
6003 | } |
6004 | break; |
6005 | case BT_REAL: |
6006 | if (mpfr_cmp_ui (p->value.real, 0)mpfr_cmp_ui_2exp((p->value.real),(0),0) == 0) |
6007 | { |
6008 | gfc_error ("Argument %qs of MOD at %L shall not be zero", |
6009 | "P", &p->where); |
6010 | return &gfc_bad_expr; |
6011 | } |
6012 | break; |
6013 | default: |
6014 | gfc_internal_error ("gfc_simplify_mod(): Bad arguments"); |
6015 | } |
6016 | |
6017 | if (a->expr_type != EXPR_CONSTANT) |
6018 | return NULL__null; |
6019 | |
6020 | kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind; |
6021 | result = gfc_get_constant_expr (a->ts.type, kind, &a->where); |
6022 | |
6023 | if (a->ts.type == BT_INTEGER) |
6024 | mpz_tdiv_r__gmpz_tdiv_r (result->value.integer, a->value.integer, p->value.integer); |
6025 | else |
6026 | { |
6027 | gfc_set_model_kind (kind); |
6028 | mpfr_fmod (result->value.real, a->value.real, p->value.real, |
6029 | GFC_RND_MODEMPFR_RNDN); |
6030 | } |
6031 | |
6032 | return range_check (result, "MOD"); |
6033 | } |
6034 | |
6035 | |
6036 | gfc_expr * |
6037 | gfc_simplify_modulo (gfc_expr *a, gfc_expr *p) |
6038 | { |
6039 | gfc_expr *result; |
6040 | int kind; |
6041 | |
6042 | /* First check p. */ |
6043 | if (p->expr_type != EXPR_CONSTANT) |
6044 | return NULL__null; |
6045 | |
6046 | /* p shall not be 0. */ |
6047 | switch (p->ts.type) |
6048 | { |
6049 | case BT_INTEGER: |
6050 | if (mpz_cmp_ui (p->value.integer, 0)(__builtin_constant_p (0) && (0) == 0 ? ((p->value .integer)->_mp_size < 0 ? -1 : (p->value.integer)-> _mp_size > 0) : __gmpz_cmp_ui (p->value.integer,0)) == 0) |
6051 | { |
6052 | gfc_error ("Argument %qs of MODULO at %L shall not be zero", |
6053 | "P", &p->where); |
6054 | return &gfc_bad_expr; |
6055 | } |
6056 | break; |
6057 | case BT_REAL: |
6058 | if (mpfr_cmp_ui (p->value.real, 0)mpfr_cmp_ui_2exp((p->value.real),(0),0) == 0) |
6059 | { |
6060 | gfc_error ("Argument %qs of MODULO at %L shall not be zero", |
6061 | "P", &p->where); |
6062 | return &gfc_bad_expr; |
6063 | } |
6064 | break; |
6065 | default: |
6066 | gfc_internal_error ("gfc_simplify_modulo(): Bad arguments"); |
6067 | } |
6068 | |
6069 | if (a->expr_type != EXPR_CONSTANT) |
6070 | return NULL__null; |
6071 | |
6072 | kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind; |
6073 | result = gfc_get_constant_expr (a->ts.type, kind, &a->where); |
6074 | |
6075 | if (a->ts.type == BT_INTEGER) |
6076 | mpz_fdiv_r__gmpz_fdiv_r (result->value.integer, a->value.integer, p->value.integer); |
6077 | else |
6078 | { |
6079 | gfc_set_model_kind (kind); |
6080 | mpfr_fmod (result->value.real, a->value.real, p->value.real, |
6081 | GFC_RND_MODEMPFR_RNDN); |
6082 | if (mpfr_cmp_ui (result->value.real, 0)mpfr_cmp_ui_2exp((result->value.real),(0),0) != 0) |
6083 | { |
6084 | if (mpfr_signbit (a->value.real)((0 ? (((((mpfr_srcptr) (0 ? (a->value.real) : (mpfr_srcptr ) (a->value.real))))->_mpfr_sign)) : (((((mpfr_srcptr) ( 0 ? (a->value.real) : (mpfr_srcptr) (a->value.real))))-> _mpfr_sign))) < 0) != mpfr_signbit (p->value.real)((0 ? (((((mpfr_srcptr) (0 ? (p->value.real) : (mpfr_srcptr ) (p->value.real))))->_mpfr_sign)) : (((((mpfr_srcptr) ( 0 ? (p->value.real) : (mpfr_srcptr) (p->value.real))))-> _mpfr_sign))) < 0)) |
6085 | mpfr_add (result->value.real, result->value.real, p->value.real, |
6086 | GFC_RND_MODEMPFR_RNDN); |
6087 | } |
6088 | else |
6089 | mpfr_copysign (result->value.real, result->value.real,mpfr_set4(result->value.real,result->value.real,MPFR_RNDN ,(0 ? (((((mpfr_srcptr) (0 ? (p->value.real) : (mpfr_srcptr ) (p->value.real))))->_mpfr_sign)) : (((((mpfr_srcptr) ( 0 ? (p->value.real) : (mpfr_srcptr) (p->value.real))))-> _mpfr_sign)))) |
6090 | p->value.real, GFC_RND_MODE)mpfr_set4(result->value.real,result->value.real,MPFR_RNDN ,(0 ? (((((mpfr_srcptr) (0 ? (p->value.real) : (mpfr_srcptr ) (p->value.real))))->_mpfr_sign)) : (((((mpfr_srcptr) ( 0 ? (p->value.real) : (mpfr_srcptr) (p->value.real))))-> _mpfr_sign)))); |
6091 | } |
6092 | |
6093 | return range_check (result, "MODULO"); |
6094 | } |
6095 | |
6096 | |
6097 | gfc_expr * |
6098 | gfc_simplify_nearest (gfc_expr *x, gfc_expr *s) |
6099 | { |
6100 | gfc_expr *result; |
6101 | mpfr_exp_t emin, emax; |
6102 | int kind; |
6103 | |
6104 | if (x->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT) |
6105 | return NULL__null; |
6106 | |
6107 | result = gfc_copy_expr (x); |
6108 | |
6109 | /* Save current values of emin and emax. */ |
6110 | emin = mpfr_get_emin (); |
6111 | emax = mpfr_get_emax (); |
6112 | |
6113 | /* Set emin and emax for the current model number. */ |
6114 | kind = gfc_validate_kind (BT_REAL, x->ts.kind, 0); |
6115 | mpfr_set_emin ((mpfr_exp_t) gfc_real_kinds[kind].min_exponent - |
6116 | mpfr_get_prec(result->value.real)(0 ? (((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr ) (result->value.real)))->_mpfr_prec) : (((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr) (result->value .real)))->_mpfr_prec)) + 1); |
6117 | mpfr_set_emax ((mpfr_exp_t) gfc_real_kinds[kind].max_exponent); |
6118 | mpfr_check_range (result->value.real, 0, MPFR_RNDU); |
6119 | |
6120 | if (mpfr_sgn (s->value.real)((s->value.real)->_mpfr_exp < (2 - ((mpfr_exp_t) ((( mpfr_uexp_t) -1) >> 1))) ? ((((mpfr_srcptr) (0 ? (s-> value.real) : (mpfr_srcptr) (s->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) (((mpfr_uexp_t) -1) >> 1)))) ? mpfr_set_erangeflag () : (mpfr_void) 0), 0 : ((s->value.real)->_mpfr_sign) ) > 0) |
6121 | { |
6122 | mpfr_nextabove (result->value.real); |
6123 | mpfr_subnormalize (result->value.real, 0, MPFR_RNDU); |
6124 | } |
6125 | else |
6126 | { |
6127 | mpfr_nextbelow (result->value.real); |
6128 | mpfr_subnormalize (result->value.real, 0, MPFR_RNDD); |
6129 | } |
6130 | |
6131 | mpfr_set_emin (emin); |
6132 | mpfr_set_emax (emax); |
6133 | |
6134 | /* Only NaN can occur. Do not use range check as it gives an |
6135 | error for denormal numbers. */ |
6136 | if (mpfr_nan_p (result->value.real)(((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr) ( result->value.real)))->_mpfr_exp == (1 - ((mpfr_exp_t) ( ((mpfr_uexp_t) -1) >> 1)))) && flag_range_checkglobal_options.x_flag_range_check) |
6137 | { |
6138 | gfc_error ("Result of NEAREST is NaN at %L", &result->where); |
6139 | gfc_free_expr (result); |
6140 | return &gfc_bad_expr; |
6141 | } |
6142 | |
6143 | return result; |
6144 | } |
6145 | |
6146 | |
6147 | static gfc_expr * |
6148 | simplify_nint (const char *name, gfc_expr *e, gfc_expr *k) |
6149 | { |
6150 | gfc_expr *itrunc, *result; |
6151 | int kind; |
6152 | |
6153 | kind = get_kind (BT_INTEGER, k, name, gfc_default_integer_kind); |
6154 | if (kind == -1) |
6155 | return &gfc_bad_expr; |
6156 | |
6157 | if (e->expr_type != EXPR_CONSTANT) |
6158 | return NULL__null; |
6159 | |
6160 | itrunc = gfc_copy_expr (e); |
6161 | mpfr_round (itrunc->value.real, e->value.real)mpfr_rint((itrunc->value.real), (e->value.real), MPFR_RNDNA ); |
6162 | |
6163 | result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where); |
6164 | gfc_mpfr_to_mpz (result->value.integer, itrunc->value.real, &e->where); |
6165 | |
6166 | gfc_free_expr (itrunc); |
6167 | |
6168 | return range_check (result, name); |
6169 | } |
6170 | |
6171 | |
6172 | gfc_expr * |
6173 | gfc_simplify_new_line (gfc_expr *e) |
6174 | { |
6175 | gfc_expr *result; |
6176 | |
6177 | result = gfc_get_character_expr (e->ts.kind, &e->where, NULL__null, 1); |
6178 | result->value.character.string[0] = '\n'; |
6179 | |
6180 | return result; |
6181 | } |
6182 | |
6183 | |
6184 | gfc_expr * |
6185 | gfc_simplify_nint (gfc_expr *e, gfc_expr *k) |
6186 | { |
6187 | return simplify_nint ("NINT", e, k); |
6188 | } |
6189 | |
6190 | |
6191 | gfc_expr * |
6192 | gfc_simplify_idnint (gfc_expr *e) |
6193 | { |
6194 | return simplify_nint ("IDNINT", e, NULL__null); |
6195 | } |
6196 | |
6197 | static int norm2_scale; |
6198 | |
6199 | static gfc_expr * |
6200 | norm2_add_squared (gfc_expr *result, gfc_expr *e) |
6201 | { |
6202 | mpfr_t tmp; |
6203 | |
6204 | gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6204, __FUNCTION__), 0 : 0)); |
6205 | gcc_assert (result->ts.type == BT_REAL((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6206, __FUNCTION__), 0 : 0)) |
6206 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6206, __FUNCTION__), 0 : 0)); |
6207 | |
6208 | gfc_set_model_kind (result->ts.kind); |
6209 | int index = gfc_validate_kind (BT_REAL, result->ts.kind, false); |
6210 | mpfr_exp_t exp; |
6211 | if (mpfr_regular_p (result->value.real)(((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr) ( result->value.real)))->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6212 | { |
6213 | exp = mpfr_get_exp (result->value.real)(0 ? (((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr ) (result->value.real)))->_mpfr_exp) : (((mpfr_srcptr) ( 0 ? (result->value.real) : (mpfr_srcptr) (result->value .real)))->_mpfr_exp)); |
6214 | /* If result is getting close to overflowing, scale down. */ |
6215 | if (exp >= gfc_real_kinds[index].max_exponent - 4 |
6216 | && norm2_scale <= gfc_real_kinds[index].max_exponent - 2) |
6217 | { |
6218 | norm2_scale += 2; |
6219 | mpfr_div_ui (result->value.real, result->value.real, 16, |
6220 | GFC_RND_MODEMPFR_RNDN); |
6221 | } |
6222 | } |
6223 | |
6224 | mpfr_init (tmp); |
6225 | if (mpfr_regular_p (e->value.real)(((mpfr_srcptr) (0 ? (e->value.real) : (mpfr_srcptr) (e-> value.real)))->_mpfr_exp > (2 - ((mpfr_exp_t) (((mpfr_uexp_t ) -1) >> 1))))) |
6226 | { |
6227 | exp = mpfr_get_exp (e->value.real)(0 ? (((mpfr_srcptr) (0 ? (e->value.real) : (mpfr_srcptr) ( e->value.real)))->_mpfr_exp) : (((mpfr_srcptr) (0 ? (e-> value.real) : (mpfr_srcptr) (e->value.real)))->_mpfr_exp )); |
6228 | /* If e**2 would overflow or close to overflowing, scale down. */ |
6229 | if (exp - norm2_scale >= gfc_real_kinds[index].max_exponent / 2 - 2) |
6230 | { |
6231 | int new_scale = gfc_real_kinds[index].max_exponent / 2 + 4; |
6232 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6233 | mpfr_set_exp (tmp, new_scale - norm2_scale); |
6234 | mpfr_div (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6235 | mpfr_div (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6236 | norm2_scale = new_scale; |
6237 | } |
6238 | } |
6239 | if (norm2_scale) |
6240 | { |
6241 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6242 | mpfr_set_exp (tmp, norm2_scale); |
6243 | mpfr_div (tmp, e->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6244 | } |
6245 | else |
6246 | mpfr_set (tmp, e->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (e->value.real); mpfr_set4 (tmp,_p,MPFR_RNDN,((_p)->_mpfr_sign)); }); |
6247 | mpfr_pow_ui (tmp, tmp, 2, GFC_RND_MODEMPFR_RNDN); |
6248 | mpfr_add (result->value.real, result->value.real, tmp, |
6249 | GFC_RND_MODEMPFR_RNDN); |
6250 | mpfr_clear (tmp); |
6251 | |
6252 | return result; |
6253 | } |
6254 | |
6255 | |
6256 | static gfc_expr * |
6257 | norm2_do_sqrt (gfc_expr *result, gfc_expr *e) |
6258 | { |
6259 | gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6259, __FUNCTION__), 0 : 0)); |
6260 | gcc_assert (result->ts.type == BT_REAL((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6261, __FUNCTION__), 0 : 0)) |
6261 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_REAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6261, __FUNCTION__), 0 : 0)); |
6262 | |
6263 | if (result != e) |
6264 | mpfr_set (result->value.real, e->value.real, GFC_RND_MODE)__extension__ ({ mpfr_srcptr _p = (e->value.real); mpfr_set4 (result->value.real,_p,MPFR_RNDN,((_p)->_mpfr_sign)); } ); |
6265 | mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
6266 | if (norm2_scale && mpfr_regular_p (result->value.real)(((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr) ( result->value.real)))->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6267 | { |
6268 | mpfr_t tmp; |
6269 | mpfr_init (tmp); |
6270 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6271 | mpfr_set_exp (tmp, norm2_scale); |
6272 | mpfr_mul (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6273 | mpfr_clear (tmp); |
6274 | } |
6275 | norm2_scale = 0; |
6276 | |
6277 | return result; |
6278 | } |
6279 | |
6280 | |
6281 | gfc_expr * |
6282 | gfc_simplify_norm2 (gfc_expr *e, gfc_expr *dim) |
6283 | { |
6284 | gfc_expr *result; |
6285 | bool size_zero; |
6286 | |
6287 | size_zero = gfc_is_size_zero_array (e); |
6288 | |
6289 | if (!(is_constant_array_expr (e) || size_zero) |
6290 | || (dim != NULL__null && !gfc_is_constant_expr (dim))) |
6291 | return NULL__null; |
6292 | |
6293 | result = transformational_result (e, dim, e->ts.type, e->ts.kind, &e->where); |
6294 | init_result_expr (result, 0, NULL__null); |
6295 | |
6296 | if (size_zero) |
6297 | return result; |
6298 | |
6299 | norm2_scale = 0; |
6300 | if (!dim || e->rank == 1) |
6301 | { |
6302 | result = simplify_transformation_to_scalar (result, e, NULL__null, |
6303 | norm2_add_squared); |
6304 | mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODEMPFR_RNDN); |
6305 | if (norm2_scale && mpfr_regular_p (result->value.real)(((mpfr_srcptr) (0 ? (result->value.real) : (mpfr_srcptr) ( result->value.real)))->_mpfr_exp > (2 - ((mpfr_exp_t ) (((mpfr_uexp_t) -1) >> 1))))) |
6306 | { |
6307 | mpfr_t tmp; |
6308 | mpfr_init (tmp); |
6309 | mpfr_set_ui (tmp, 1, GFC_RND_MODEMPFR_RNDN); |
6310 | mpfr_set_exp (tmp, norm2_scale); |
6311 | mpfr_mul (result->value.real, result->value.real, tmp, GFC_RND_MODEMPFR_RNDN); |
6312 | mpfr_clear (tmp); |
6313 | } |
6314 | norm2_scale = 0; |
6315 | } |
6316 | else |
6317 | result = simplify_transformation_to_array (result, e, dim, NULL__null, |
6318 | norm2_add_squared, |
6319 | norm2_do_sqrt); |
6320 | |
6321 | return result; |
6322 | } |
6323 | |
6324 | |
6325 | gfc_expr * |
6326 | gfc_simplify_not (gfc_expr *e) |
6327 | { |
6328 | gfc_expr *result; |
6329 | |
6330 | if (e->expr_type != EXPR_CONSTANT) |
6331 | return NULL__null; |
6332 | |
6333 | result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where); |
6334 | mpz_com__gmpz_com (result->value.integer, e->value.integer); |
6335 | |
6336 | return range_check (result, "NOT"); |
6337 | } |
6338 | |
6339 | |
6340 | gfc_expr * |
6341 | gfc_simplify_null (gfc_expr *mold) |
6342 | { |
6343 | gfc_expr *result; |
6344 | |
6345 | if (mold) |
6346 | { |
6347 | result = gfc_copy_expr (mold); |
6348 | result->expr_type = EXPR_NULL; |
6349 | } |
6350 | else |
6351 | result = gfc_get_null_expr (NULL__null); |
6352 | |
6353 | return result; |
6354 | } |
6355 | |
6356 | |
6357 | gfc_expr * |
6358 | gfc_simplify_num_images (gfc_expr *distance ATTRIBUTE_UNUSED__attribute__ ((__unused__)), gfc_expr *failed) |
6359 | { |
6360 | gfc_expr *result; |
6361 | |
6362 | if (flag_coarrayglobal_options.x_flag_coarray == GFC_FCOARRAY_NONE) |
6363 | { |
6364 | gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable"); |
6365 | return &gfc_bad_expr; |
6366 | } |
6367 | |
6368 | if (flag_coarrayglobal_options.x_flag_coarray != GFC_FCOARRAY_SINGLE) |
6369 | return NULL__null; |
6370 | |
6371 | if (failed && failed->expr_type != EXPR_CONSTANT) |
6372 | return NULL__null; |
6373 | |
6374 | /* FIXME: gfc_current_locus is wrong. */ |
6375 | result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind, |
6376 | &gfc_current_locus); |
6377 | |
6378 | if (failed && failed->value.logical != 0) |
6379 | mpz_set_si__gmpz_set_si (result->value.integer, 0); |
6380 | else |
6381 | mpz_set_si__gmpz_set_si (result->value.integer, 1); |
6382 | |
6383 | return result; |
6384 | } |
6385 | |
6386 | |
6387 | gfc_expr * |
6388 | gfc_simplify_or (gfc_expr *x, gfc_expr *y) |
6389 | { |
6390 | gfc_expr *result; |
6391 | int kind; |
6392 | |
6393 | if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) |
6394 | return NULL__null; |
6395 | |
6396 | kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind; |
6397 | |
6398 | switch (x->ts.type) |
6399 | { |
6400 | case BT_INTEGER: |
6401 | result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where); |
6402 | mpz_ior__gmpz_ior (result->value.integer, x->value.integer, y->value.integer); |
6403 | return range_check (result, "OR"); |
6404 | |
6405 | case BT_LOGICAL: |
6406 | return gfc_get_logical_expr (kind, &x->where, |
6407 | x->value.logical || y->value.logical); |
6408 | default: |
6409 | gcc_unreachable()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6409, __FUNCTION__)); |
6410 | } |
6411 | } |
6412 | |
6413 | |
6414 | gfc_expr * |
6415 | gfc_simplify_pack (gfc_expr *array, gfc_expr *mask, gfc_expr *vector) |
6416 | { |
6417 | gfc_expr *result; |
6418 | gfc_constructor *array_ctor, *mask_ctor, *vector_ctor; |
6419 | |
6420 | if (!is_constant_array_expr (array) |
6421 | || !is_constant_array_expr (vector) |
6422 | || (!gfc_is_constant_expr (mask) |
6423 | && !is_constant_array_expr (mask))) |
6424 | return NULL__null; |
6425 | |
6426 | result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where); |
6427 | if (array->ts.type == BT_DERIVED) |
6428 | result->ts.u.derived = array->ts.u.derived; |
6429 | |
6430 | array_ctor = gfc_constructor_first (array->value.constructor); |
6431 | vector_ctor = vector |
6432 | ? gfc_constructor_first (vector->value.constructor) |
6433 | : NULL__null; |
6434 | |
6435 | if (mask->expr_type == EXPR_CONSTANT |
6436 | && mask->value.logical) |
6437 | { |
6438 | /* Copy all elements of ARRAY to RESULT. */ |
6439 | while (array_ctor) |
6440 | { |
6441 | gfc_constructor_append_expr (&result->value.constructor, |
6442 | gfc_copy_expr (array_ctor->expr), |
6443 | NULL__null); |
6444 | |
6445 | array_ctor = gfc_constructor_next (array_ctor); |
6446 | vector_ctor = gfc_constructor_next (vector_ctor); |
6447 | } |
6448 | } |
6449 | else if (mask->expr_type == EXPR_ARRAY) |
6450 | { |
6451 | /* Copy only those elements of ARRAY to RESULT whose |
6452 | MASK equals .TRUE.. */ |
6453 | mask_ctor = gfc_constructor_first (mask->value.constructor); |
6454 | while (mask_ctor && array_ctor) |
6455 | { |
6456 | if (mask_ctor->expr->value.logical) |
6457 | { |
6458 | gfc_constructor_append_expr (&result->value.constructor, |
6459 | gfc_copy_expr (array_ctor->expr), |
6460 | NULL__null); |
6461 | vector_ctor = gfc_constructor_next (vector_ctor); |
6462 | } |
6463 | |
6464 | array_ctor = gfc_constructor_next (array_ctor); |
6465 | mask_ctor = gfc_constructor_next (mask_ctor); |
6466 | } |
6467 | } |
6468 | |
6469 | /* Append any left-over elements from VECTOR to RESULT. */ |
6470 | while (vector_ctor) |
6471 | { |
6472 | gfc_constructor_append_expr (&result->value.constructor, |
6473 | gfc_copy_expr (vector_ctor->expr), |
6474 | NULL__null); |
6475 | vector_ctor = gfc_constructor_next (vector_ctor); |
6476 | } |
6477 | |
6478 | result->shape = gfc_get_shape (1)(((mpz_t *) xcalloc (((1)), sizeof (mpz_t)))); |
6479 | gfc_array_size (result, &result->shape[0]); |
6480 | |
6481 | if (array->ts.type == BT_CHARACTER) |
6482 | result->ts.u.cl = array->ts.u.cl; |
6483 | |
6484 | return result; |
6485 | } |
6486 | |
6487 | |
6488 | static gfc_expr * |
6489 | do_xor (gfc_expr *result, gfc_expr *e) |
6490 | { |
6491 | gcc_assert (e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT)((void)(!(e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6491, __FUNCTION__), 0 : 0)); |
6492 | gcc_assert (result->ts.type == BT_LOGICAL((void)(!(result->ts.type == BT_LOGICAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6493, __FUNCTION__), 0 : 0)) |
6493 | && result->expr_type == EXPR_CONSTANT)((void)(!(result->ts.type == BT_LOGICAL && result-> expr_type == EXPR_CONSTANT) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/fortran/simplify.cc" , 6493, __FUNCTION__), 0 : 0)); |
6494 | |
6495 | result->value.logical = result->value.logical != e->value.logical; |
6496 | return result; |
6497 | } |
6498 | |
6499 | |
6500 | gfc_expr * |
6501 | gfc_simplify_is_contiguous (gfc_expr *array) |
6502 | { |
6503 | if (gfc_is_simply_contiguous (array, false, true)) |
6504 | return gfc_get_logical_expr (gfc_default_logical_kind, &array->where, 1); |
6505 | |
6506 | if (gfc_is_not_contiguous (array)) |
6507 | return gfc_get_logical_expr (gfc_default_logical_kind, &array->where, 0); |
6508 | |
6509 | return NULL__null; |
6510 | } |
6511 | |
6512 | |
6513 | gfc_expr * |
6514 | gfc_simplify_parity (gfc_expr *e, gfc_expr *dim) |
6515 | { |
6516 | return simplify_transformation (e, dim, NULL__null, 0, do_xor); |
6517 | } |
6518 | |
6519 | |
6520 | gfc_expr * |
6521 | gfc_simplify_popcnt (gfc_expr *e) |
6522 | { |
6523 | int res, k; |
6524 | mpz_t x; |
6525 | |
6526 | if (e->expr_type != EXPR_CONSTANT) |
6527 | return NULL__null; |
6528 | |
6529 | k = gfc_validate_kind (e->ts.type, e->ts.kind, false); |
6530 | |
6531 | /* Convert argument to unsigned, then count the '1' bits. */ |
6532 | mpz_init_set__gmpz_init_set (x, e->value.integer); |
6533 | convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size); |
6534 | res = mpz_popcount__gmpz_popcount (x); |
6535 | mpz_clear__gmpz_clear (x); |
6536 | |
6537 | return gfc_get_int_expr (gfc_default_integer_kind, &e->where, res); |
6538 | } |
6539 | |
6540 | |