Bug Summary

File:build/gcc/cfgloopmanip.cc
Warning:line 567, column 4
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-suse-linux -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name cfgloopmanip.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -resource-dir /usr/lib64/clang/15.0.7 -D IN_GCC -D HAVE_CONFIG_H -I . -I . -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/. -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcpp/include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcody -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber/bid -I ../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libbacktrace -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13 -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/x86_64-suse-linux -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/backward -internal-isystem /usr/lib64/clang/15.0.7/include -internal-isystem /usr/local/include -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../x86_64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-narrowing -Wwrite-strings -Wno-long-long -Wno-variadic-macros -Wno-overlength-strings -fdeprecated-macro -fdebug-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=plist-html -analyzer-config silence-checkers=core.NullDereference -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /buildworker/marxinbox-gcc-clang-static-analyzer/objdir/clang-static-analyzer/2023-03-27-141847-20772-1/report-cTfdom.plist -x c++ /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc

1/* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "cfghooks.h"
28#include "cfganal.h"
29#include "cfgloop.h"
30#include "gimple-iterator.h"
31#include "gimplify-me.h"
32#include "tree-ssa-loop-manip.h"
33#include "dumpfile.h"
34
35static void copy_loops_to (class loop **, int,
36 class loop *);
37static void loop_redirect_edge (edge, basic_block);
38static void remove_bbs (basic_block *, int);
39static bool rpe_enum_p (const_basic_block, const void *);
40static int find_path (edge, basic_block **);
41static void fix_loop_placements (class loop *, bool *);
42static bool fix_bb_placement (basic_block);
43static void fix_bb_placements (basic_block, bool *, bitmap);
44
45/* Checks whether basic block BB is dominated by DATA. */
46static bool
47rpe_enum_p (const_basic_block bb, const void *data)
48{
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50}
51
52/* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54static void
55remove_bbs (basic_block *bbs, int nbbs)
56{
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61}
62
63/* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69static int
70find_path (edge e, basic_block **bbs)
71{
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1)((void)(!(vec_safe_length (e->dest->preds) <= 1) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 72, __FUNCTION__), 0 : 0))
;
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun))((basic_block *) xmalloc (sizeof (basic_block) * ((((cfun + 0
))->cfg->x_n_basic_blocks))))
;
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks), e->dest);
78}
79
80/* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87static bool
88fix_bb_placement (basic_block bb)
89{
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops((cfun + 0)->x_current_loops)->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114}
115
116/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124static bool
125fix_loop_placement (class loop *loop, bool *irred_invalidated)
126{
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops((cfun + 0)->x_current_loops)->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)for (i = 0; (exits).iterate ((i), &(e)); ++(i))
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)for (i = 0; (exits).iterate ((i), &(e)); ++(i))
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 return ret;
161}
162
163/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
171
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
174
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
177
178static void
179fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
182{
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
186
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
193
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops((cfun + 0)->x_current_loops)->tree_root
199 || from == base_loop->header)
200 return;
201
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun)(((cfun + 0))->cfg->x_last_basic_block));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
207
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1)((basic_block *) xmalloc (sizeof (basic_block) * (base_loop->
num_nodes + 1)))
;
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
213
214 while (qbeg != qend)
215 {
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
222
223 if (from->loop_father->header == from)
224 {
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
230 {
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
235 }
236 }
237 else
238 {
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 }
246
247 FOR_EACH_EDGE (e, ei, from->succs)for ((ei) = ei_start_1 (&((from->succs))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
248 {
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
251 }
252
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)for ((ei) = ei_start_1 (&((from->preds))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
255 {
256 basic_block pred = e->src;
257 class loop *nca;
258
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
261
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
264
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 {
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
280 }
281
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
284
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
291 }
292 }
293 free (queue);
294}
295
296/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299bool
300remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
302{
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
310
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
313
314 if (!can_remove_branch_p (e))
315 return false;
316
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
324
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
331
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
337 {
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341 }
342
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
345
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun))((basic_block *) xmalloc (sizeof (basic_block) * ((((cfun + 0
))->cfg->x_n_basic_blocks))))
;
348 auto_sbitmap seen (last_basic_block_for_fn (cfun)(((cfun + 0))->cfg->x_last_basic_block));
349 bitmap_clear (seen);
350
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)for ((ei) = ei_start_1 (&((e->src->succs))); ei_cond
((ei), &(ae)); ei_next (&(ei)))
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 {
360 *irred_invalidated = true;
361 break;
362 }
363
364 for (i = 0; i < nrem; i++)
365 {
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)for ((ei) = ei_start_1 (&((rem_bbs[i]->succs))); ei_cond
((ei), &(ae)); ei_next (&(ei)))
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr)
368 && !bitmap_bit_p (seen, ae->dest->index))
369 {
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
372
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
375 }
376 }
377
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
382
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
387
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
390
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
394 {
395 basic_block ldom;
396
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
401
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
407 }
408
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
418
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
422
423 return true;
424}
425
426/* Creates place for a new LOOP in loops structure of FN. */
427
428void
429place_new_loop (struct function *fn, class loop *loop)
430{
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
433}
434
435/* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
438
439void
440add_loop (class loop *loop, class loop *outer)
441{
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
447
448 /* Add it to loop structure. */
449 place_new_loop (cfun(cfun + 0), loop);
450 flow_loop_tree_node_add (outer, loop);
451
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun))((basic_block *) xmalloc (sizeof (basic_block) * ((((cfun + 0
))->cfg->x_n_basic_blocks))))
;
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks));
455
456 for (i = 0; i < n; i++)
457 {
458 if (bbs[i]->loop_father == outer)
459 {
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
463 }
464
465 loop->num_nodes++;
466
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
471 {
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
474 }
475 }
476
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
479 {
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)for ((ei) = ei_start_1 (&((bbs[i]->succs))); ei_cond (
(ei), &(e)); ei_next (&(ei)))
481 {
482 rescan_loop_exit (e, false, false);
483 }
484 }
485
486 free (bbs);
487}
488
489/* Scale profile of loop by P. */
490
491void
492scale_loop_frequencies (class loop *loop, profile_probability p)
493{
494 basic_block *bbs;
495
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
499}
500
501/* Scale profile in LOOP by P.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
508
509void
510scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
512{
513 edge e, preheader_e;
514 edge_iterator ei;
515
516 if (dump_file && (dump_flags & TDF_DETAILS))
1
Assuming 'dump_file' is null
517 {
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, " bounding iterations to %i\n",
522 (int)iteration_bound);
523 }
524
525 /* Scale the probabilities. */
526 scale_loop_frequencies (loop, p);
527
528 if (iteration_bound == 0)
2
Assuming 'iteration_bound' is not equal to 0
3
Taking false branch
529 return;
530
531 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULLnullptr, true);
532
533 if (dump_file && (dump_flags & TDF_DETAILS))
4
Assuming 'dump_file' is null
534 {
535 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 (int)iterations);
537 }
538
539 /* See if loop is predicted to iterate too many times. */
540 if (iterations <= iteration_bound)
5
Assuming 'iterations' is > 'iteration_bound'
6
Taking false branch
541 return;
542
543 preheader_e = loop_preheader_edge (loop);
544
545 /* We could handle also loops without preheaders, but bounding is
546 currently used only by optimizers that have preheaders constructed. */
547 gcc_checking_assert (preheader_e)((void)(!(preheader_e) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 547, __FUNCTION__), 0 : 0))
;
7
Assuming 'preheader_e' is non-null
8
'?' condition is false
548 profile_count count_in = preheader_e->count ();
549
550 if (count_in > profile_count::zero ()
9
Taking true branch
551 && loop->header->count.initialized_p ())
552 {
553 profile_count count_delta = profile_count::zero ();
554
555 e = single_exit (loop);
556 if (e)
10
Assuming 'e' is non-null
11
Taking true branch
557 {
558 edge other_e;
559 FOR_EACH_EDGE (other_e, ei, e->src->succs)for ((ei) = ei_start_1 (&((e->src->succs))); ei_cond
((ei), &(other_e)); ei_next (&(ei)))
12
Calling 'ei_cond'
15
Returning from 'ei_cond'
16
Loop condition is false. Execution continues on line 565
560 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 && e != other_e)
562 break;
563
564 /* Probability of exit must be 1/iterations. */
565 count_delta = e->count ();
566 e->probability = profile_probability::always () / iteration_bound;
567 other_e->probability = e->probability.invert ();
17
Called C++ object pointer is null
568
569 /* In code below we only handle the following two updates. */
570 if (other_e->dest != loop->header
571 && other_e->dest != loop->latch
572 && (dump_file && (dump_flags & TDF_DETAILS)))
573 {
574 fprintf (dump_file, ";; giving up on update of paths from "
575 "exit condition to latch\n");
576 }
577 }
578 else
579 if (dump_file && (dump_flags & TDF_DETAILS))
580 fprintf (dump_file, ";; Loop has multiple exit edges; "
581 "giving up on exit condition update\n");
582
583 /* Roughly speaking we want to reduce the loop body profile by the
584 difference of loop iterations. We however can do better if
585 we look at the actual profile, if it is available. */
586 p = profile_probability::always ();
587
588 count_in *= iteration_bound;
589 p = count_in.probability_in (loop->header->count);
590 if (!(p > profile_probability::never ()))
591 p = profile_probability::very_unlikely ();
592
593 if (p == profile_probability::always ()
594 || !p.initialized_p ())
595 return;
596
597 /* If latch exists, change its count, since we changed
598 probability of exit. Theoretically we should update everything from
599 source of exit edge to latch, but for vectorizer this is enough. */
600 if (loop->latch && loop->latch != e->src)
601 loop->latch->count += count_delta;
602
603 /* Scale the probabilities. */
604 scale_loop_frequencies (loop, p);
605
606 /* Change latch's count back. */
607 if (loop->latch && loop->latch != e->src)
608 loop->latch->count -= count_delta;
609
610 if (dump_file && (dump_flags & TDF_DETAILS))
611 fprintf (dump_file, ";; guessed iterations are now %i\n",
612 (int)expected_loop_iterations_unbounded (loop, NULLnullptr, true));
613 }
614}
615
616/* Recompute dominance information for basic blocks outside LOOP. */
617
618static void
619update_dominators_in_loop (class loop *loop)
620{
621 vec<basic_block> dom_bbs = vNULL;
622 basic_block *body;
623 unsigned i;
624
625 auto_sbitmap seen (last_basic_block_for_fn (cfun)(((cfun + 0))->cfg->x_last_basic_block));
626 bitmap_clear (seen);
627 body = get_loop_body (loop);
628
629 for (i = 0; i < loop->num_nodes; i++)
630 bitmap_set_bit (seen, body[i]->index);
631
632 for (i = 0; i < loop->num_nodes; i++)
633 {
634 basic_block ldom;
635
636 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
637 ldom;
638 ldom = next_dom_son (CDI_DOMINATORS, ldom))
639 if (!bitmap_bit_p (seen, ldom->index))
640 {
641 bitmap_set_bit (seen, ldom->index);
642 dom_bbs.safe_push (ldom);
643 }
644 }
645
646 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
647 free (body);
648 dom_bbs.release ();
649}
650
651/* Creates an if region as shown above. CONDITION is used to create
652 the test for the if.
653
654 |
655 | ------------- -------------
656 | | pred_bb | | pred_bb |
657 | ------------- -------------
658 | | |
659 | | | ENTRY_EDGE
660 | | ENTRY_EDGE V
661 | | ====> -------------
662 | | | cond_bb |
663 | | | CONDITION |
664 | | -------------
665 | V / \
666 | ------------- e_false / \ e_true
667 | | succ_bb | V V
668 | ------------- ----------- -----------
669 | | false_bb | | true_bb |
670 | ----------- -----------
671 | \ /
672 | \ /
673 | V V
674 | -------------
675 | | join_bb |
676 | -------------
677 | | exit_edge (result)
678 | V
679 | -----------
680 | | succ_bb |
681 | -----------
682 |
683 */
684
685edge
686create_empty_if_region_on_edge (edge entry_edge, tree condition)
687{
688
689 basic_block cond_bb, true_bb, false_bb, join_bb;
690 edge e_true, e_false, exit_edge;
691 gcond *cond_stmt;
692 tree simple_cond;
693 gimple_stmt_iterator gsi;
694
695 cond_bb = split_edge (entry_edge);
696
697 /* Insert condition in cond_bb. */
698 gsi = gsi_last_bb (cond_bb);
699 simple_cond =
700 force_gimple_operand_gsi (&gsi, condition, true, NULLnullptr,
701 false, GSI_NEW_STMT);
702 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE(tree) nullptr, NULL_TREE(tree) nullptr);
703 gsi = gsi_last_bb (cond_bb);
704 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
705
706 join_bb = split_edge (single_succ_edge (cond_bb));
707
708 e_true = single_succ_edge (cond_bb);
709 true_bb = split_edge (e_true);
710
711 e_false = make_edge (cond_bb, join_bb, 0);
712 false_bb = split_edge (e_false);
713
714 e_true->flags &= ~EDGE_FALLTHRU;
715 e_true->flags |= EDGE_TRUE_VALUE;
716 e_false->flags &= ~EDGE_FALLTHRU;
717 e_false->flags |= EDGE_FALSE_VALUE;
718
719 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
720 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
721 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
723
724 exit_edge = single_succ_edge (join_bb);
725
726 if (single_pred_p (exit_edge->dest))
727 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
728
729 return exit_edge;
730}
731
732/* create_empty_loop_on_edge
733 |
734 | - pred_bb - ------ pred_bb ------
735 | | | | iv0 = initial_value |
736 | -----|----- ---------|-----------
737 | | ______ | entry_edge
738 | | entry_edge / | |
739 | | ====> | -V---V- loop_header -------------
740 | V | | iv_before = phi (iv0, iv_after) |
741 | - succ_bb - | ---|-----------------------------
742 | | | | |
743 | ----------- | ---V--- loop_body ---------------
744 | | | iv_after = iv_before + stride |
745 | | | if (iv_before < upper_bound) |
746 | | ---|--------------\--------------
747 | | | \ exit_e
748 | | V \
749 | | - loop_latch - V- succ_bb -
750 | | | | | |
751 | | /------------- -----------
752 | \ ___ /
753
754 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
755 that is used before the increment of IV. IV_BEFORE should be used for
756 adding code to the body that uses the IV. OUTER is the outer loop in
757 which the new loop should be inserted.
758
759 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
760 inserted on the loop entry edge. This implies that this function
761 should be used only when the UPPER_BOUND expression is a loop
762 invariant. */
763
764class loop *
765create_empty_loop_on_edge (edge entry_edge,
766 tree initial_value,
767 tree stride, tree upper_bound,
768 tree iv,
769 tree *iv_before,
770 tree *iv_after,
771 class loop *outer)
772{
773 basic_block loop_header, loop_latch, succ_bb, pred_bb;
774 class loop *loop;
775 gimple_stmt_iterator gsi;
776 gimple_seq stmts;
777 gcond *cond_expr;
778 tree exit_test;
779 edge exit_e;
780
781 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv)((void)(!(entry_edge && initial_value && stride
&& upper_bound && iv) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 781, __FUNCTION__), 0 : 0))
;
782
783 /* Create header, latch and wire up the loop. */
784 pred_bb = entry_edge->src;
785 loop_header = split_edge (entry_edge);
786 loop_latch = split_edge (single_succ_edge (loop_header));
787 succ_bb = single_succ (loop_latch);
788 make_edge (loop_header, succ_bb, 0);
789 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
790
791 /* Set immediate dominator information. */
792 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
793 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
794 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
795
796 /* Initialize a loop structure and put it in a loop hierarchy. */
797 loop = alloc_loop ();
798 loop->header = loop_header;
799 loop->latch = loop_latch;
800 add_loop (loop, outer);
801
802 /* TODO: Fix counts. */
803 scale_loop_frequencies (loop, profile_probability::even ());
804
805 /* Update dominators. */
806 update_dominators_in_loop (loop);
807
808 /* Modify edge flags. */
809 exit_e = single_exit (loop);
810 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
811 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
812
813 /* Construct IV code in loop. */
814 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
815 if (stmts)
816 {
817 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
818 gsi_commit_edge_inserts ();
819 }
820
821 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULLnullptr);
822 if (stmts)
823 {
824 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
825 gsi_commit_edge_inserts ();
826 }
827
828 gsi = gsi_last_bb (loop_header);
829 create_iv (initial_value, stride, iv, loop, &gsi, false,
830 iv_before, iv_after);
831
832 /* Insert loop exit condition. */
833 cond_expr = gimple_build_cond
834 (LT_EXPR, *iv_before, upper_bound, NULL_TREE(tree) nullptr, NULL_TREE(tree) nullptr);
835
836 exit_test = gimple_cond_lhs (cond_expr);
837 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULLnullptr,
838 false, GSI_NEW_STMT);
839 gimple_cond_set_lhs (cond_expr, exit_test);
840 gsi = gsi_last_bb (exit_e->src);
841 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
842
843 split_block_after_labels (loop_header);
844
845 return loop;
846}
847
848/* Remove the latch edge of a LOOP and update loops to indicate that
849 the LOOP was removed. After this function, original loop latch will
850 have no successor, which caller is expected to fix somehow.
851
852 If this may cause the information about irreducible regions to become
853 invalid, IRRED_INVALIDATED is set to true.
854
855 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
856 basic blocks that had non-trivial update on their loop_father.*/
857
858void
859unloop (class loop *loop, bool *irred_invalidated,
860 bitmap loop_closed_ssa_invalidated)
861{
862 basic_block *body;
863 class loop *ploop;
864 unsigned i, n;
865 basic_block latch = loop->latch;
866 bool dummy = false;
867
868 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
869 *irred_invalidated = true;
870
871 /* This is relatively straightforward. The dominators are unchanged, as
872 loop header dominates loop latch, so the only thing we have to care of
873 is the placement of loops and basic blocks inside the loop tree. We
874 move them all to the loop->outer, and then let fix_bb_placements do
875 its work. */
876
877 body = get_loop_body (loop);
878 n = loop->num_nodes;
879 for (i = 0; i < n; i++)
880 if (body[i]->loop_father == loop)
881 {
882 remove_bb_from_loops (body[i]);
883 add_bb_to_loop (body[i], loop_outer (loop));
884 }
885 free (body);
886
887 while (loop->inner)
888 {
889 ploop = loop->inner;
890 flow_loop_tree_node_remove (ploop);
891 flow_loop_tree_node_add (loop_outer (loop), ploop);
892 }
893
894 /* Remove the loop and free its data. */
895 delete_loop (loop);
896
897 remove_edge (single_succ_edge (latch));
898
899 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
900 there is an irreducible region inside the cancelled loop, the flags will
901 be still correct. */
902 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
903}
904
905/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
906 condition stated in description of fix_loop_placement holds for them.
907 It is used in case when we removed some edges coming out of LOOP, which
908 may cause the right placement of LOOP inside loop tree to change.
909
910 IRRED_INVALIDATED is set to true if a change in the loop structures might
911 invalidate the information about irreducible regions. */
912
913static void
914fix_loop_placements (class loop *loop, bool *irred_invalidated)
915{
916 class loop *outer;
917
918 while (loop_outer (loop))
919 {
920 outer = loop_outer (loop);
921 if (!fix_loop_placement (loop, irred_invalidated))
922 break;
923
924 /* Changing the placement of a loop in the loop tree may alter the
925 validity of condition 2) of the description of fix_bb_placement
926 for its preheader, because the successor is the header and belongs
927 to the loop. So call fix_bb_placements to fix up the placement
928 of the preheader and (possibly) of its predecessors. */
929 fix_bb_placements (loop_preheader_edge (loop)->src,
930 irred_invalidated, NULLnullptr);
931 loop = outer;
932 }
933}
934
935/* Duplicate loop bounds and other information we store about
936 the loop into its duplicate. */
937
938void
939copy_loop_info (class loop *loop, class loop *target)
940{
941 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate)((void)(!(!target->any_upper_bound && !target->
any_estimate) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 941, __FUNCTION__), 0 : 0))
;
942 target->any_upper_bound = loop->any_upper_bound;
943 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
944 target->any_likely_upper_bound = loop->any_likely_upper_bound;
945 target->nb_iterations_likely_upper_bound
946 = loop->nb_iterations_likely_upper_bound;
947 target->any_estimate = loop->any_estimate;
948 target->nb_iterations_estimate = loop->nb_iterations_estimate;
949 target->estimate_state = loop->estimate_state;
950 target->safelen = loop->safelen;
951 target->simdlen = loop->simdlen;
952 target->constraints = loop->constraints;
953 target->can_be_parallel = loop->can_be_parallel;
954 target->warned_aggressive_loop_optimizations
955 |= loop->warned_aggressive_loop_optimizations;
956 target->dont_vectorize = loop->dont_vectorize;
957 target->force_vectorize = loop->force_vectorize;
958 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
959 target->finite_p = loop->finite_p;
960 target->unroll = loop->unroll;
961 target->owned_clique = loop->owned_clique;
962}
963
964/* Copies copy of LOOP as subloop of TARGET loop, placing newly
965 created loop into loops structure. If AFTER is non-null
966 the new loop is added at AFTER->next, otherwise in front of TARGETs
967 sibling list. */
968class loop *
969duplicate_loop (class loop *loop, class loop *target, class loop *after)
970{
971 class loop *cloop;
972 cloop = alloc_loop ();
973 place_new_loop (cfun(cfun + 0), cloop);
974
975 copy_loop_info (loop, cloop);
976
977 /* Mark the new loop as copy of LOOP. */
978 set_loop_copy (loop, cloop);
979
980 /* Add it to target. */
981 flow_loop_tree_node_add (target, cloop, after);
982
983 return cloop;
984}
985
986/* Copies structure of subloops of LOOP into TARGET loop, placing
987 newly created loops into loop tree at the end of TARGETs sibling
988 list in the original order. */
989void
990duplicate_subloops (class loop *loop, class loop *target)
991{
992 class loop *aloop, *cloop, *tail;
993
994 for (tail = target->inner; tail && tail->next; tail = tail->next)
995 ;
996 for (aloop = loop->inner; aloop; aloop = aloop->next)
997 {
998 cloop = duplicate_loop (aloop, target, tail);
999 tail = cloop;
1000 gcc_assert(!tail->next)((void)(!(!tail->next) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1000, __FUNCTION__), 0 : 0))
;
1001 duplicate_subloops (aloop, cloop);
1002 }
1003}
1004
1005/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1006 into TARGET loop, placing newly created loops into loop tree adding
1007 them to TARGETs sibling list at the end in order. */
1008static void
1009copy_loops_to (class loop **copied_loops, int n, class loop *target)
1010{
1011 class loop *aloop, *tail;
1012 int i;
1013
1014 for (tail = target->inner; tail && tail->next; tail = tail->next)
1015 ;
1016 for (i = 0; i < n; i++)
1017 {
1018 aloop = duplicate_loop (copied_loops[i], target, tail);
1019 tail = aloop;
1020 gcc_assert(!tail->next)((void)(!(!tail->next) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1020, __FUNCTION__), 0 : 0))
;
1021 duplicate_subloops (copied_loops[i], aloop);
1022 }
1023}
1024
1025/* Redirects edge E to basic block DEST. */
1026static void
1027loop_redirect_edge (edge e, basic_block dest)
1028{
1029 if (e->dest == dest)
1030 return;
1031
1032 redirect_edge_and_branch_force (e, dest);
1033}
1034
1035/* Check whether LOOP's body can be duplicated. */
1036bool
1037can_duplicate_loop_p (const class loop *loop)
1038{
1039 int ret;
1040 basic_block *bbs = get_loop_body (loop);
1041
1042 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1043 free (bbs);
1044
1045 return ret;
1046}
1047
1048/* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1049 loop structure and dominators (order of inner subloops is retained).
1050 E's destination must be LOOP header for this to work, i.e. it must be entry
1051 or latch edge of this loop; these are unique, as the loops must have
1052 preheaders for this function to work correctly (in case E is latch, the
1053 function unrolls the loop, if E is entry edge, it peels the loop). Store
1054 edges created by copying ORIG edge from copies corresponding to set bits in
1055 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1056 are numbered in order given by control flow through them) into TO_REMOVE
1057 array. Returns false if duplication is
1058 impossible. */
1059
1060bool
1061duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1062 unsigned int ndupl, sbitmap wont_exit,
1063 edge orig, vec<edge> *to_remove, int flags)
1064{
1065 class loop *target, *aloop;
1066 class loop **orig_loops;
1067 unsigned n_orig_loops;
1068 basic_block header = loop->header, latch = loop->latch;
1069 basic_block *new_bbs, *bbs, *first_active;
1070 basic_block new_bb, bb, first_active_latch = NULLnullptr;
1071 edge ae, latch_edge;
1072 edge spec_edges[2], new_spec_edges[2];
1073 const int SE_LATCH = 0;
1074 const int SE_ORIG = 1;
1075 unsigned i, j, n;
1076 int is_latch = (latch == e->src);
1077 profile_probability *scale_step = NULLnullptr;
1078 profile_probability scale_main = profile_probability::always ();
1079 profile_probability scale_act = profile_probability::always ();
1080 profile_count after_exit_num = profile_count::zero (),
1081 after_exit_den = profile_count::zero ();
1082 bool scale_after_exit = false;
1083 int add_irreducible_flag;
1084 basic_block place_after;
1085 bitmap bbs_to_scale = NULLnullptr;
1086 bitmap_iterator bi;
1087
1088 gcc_assert (e->dest == loop->header)((void)(!(e->dest == loop->header) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1088, __FUNCTION__), 0 : 0))
;
1089 gcc_assert (ndupl > 0)((void)(!(ndupl > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1089, __FUNCTION__), 0 : 0))
;
1090
1091 if (orig)
1092 {
1093 /* Orig must be edge out of the loop. */
1094 gcc_assert (flow_bb_inside_loop_p (loop, orig->src))((void)(!(flow_bb_inside_loop_p (loop, orig->src)) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1094, __FUNCTION__), 0 : 0))
;
1095 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest))((void)(!(!flow_bb_inside_loop_p (loop, orig->dest)) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1095, __FUNCTION__), 0 : 0))
;
1096 }
1097
1098 n = loop->num_nodes;
1099 bbs = get_loop_body_in_dom_order (loop);
1100 gcc_assert (bbs[0] == loop->header)((void)(!(bbs[0] == loop->header) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1100, __FUNCTION__), 0 : 0))
;
1101 gcc_assert (bbs[n - 1] == loop->latch)((void)(!(bbs[n - 1] == loop->latch) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1101, __FUNCTION__), 0 : 0))
;
1102
1103 /* Check whether duplication is possible. */
1104 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1105 {
1106 free (bbs);
1107 return false;
1108 }
1109 new_bbs = XNEWVEC (basic_block, loop->num_nodes)((basic_block *) xmalloc (sizeof (basic_block) * (loop->num_nodes
)))
;
1110
1111 /* In case we are doing loop peeling and the loop is in the middle of
1112 irreducible region, the peeled copies will be inside it too. */
1113 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1114 gcc_assert (!is_latch || !add_irreducible_flag)((void)(!(!is_latch || !add_irreducible_flag) ? fancy_abort (
"/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1114, __FUNCTION__), 0 : 0))
;
1115
1116 /* Find edge from latch. */
1117 latch_edge = loop_latch_edge (loop);
1118
1119 if (flags & DLTHE_FLAG_UPDATE_FREQ1)
1120 {
1121 /* Calculate coefficients by that we have to scale counts
1122 of duplicated loop bodies. */
1123 profile_count count_in = header->count;
1124 profile_count count_le = latch_edge->count ();
1125 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1126 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1127 profile_probability prob_pass_wont_exit =
1128 (count_le + count_out_orig).probability_in (count_in);
1129
1130 if (orig && orig->probability.initialized_p ()
1131 && !(orig->probability == profile_probability::always ()))
1132 {
1133 /* The blocks that are dominated by a removed exit edge ORIG have
1134 frequencies scaled by this. */
1135 if (orig->count ().initialized_p ())
1136 {
1137 after_exit_num = orig->src->count;
1138 after_exit_den = after_exit_num - orig->count ();
1139 scale_after_exit = true;
1140 }
1141 bbs_to_scale = BITMAP_ALLOCbitmap_alloc (NULLnullptr);
1142 for (i = 0; i < n; i++)
1143 {
1144 if (bbs[i] != orig->src
1145 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1146 bitmap_set_bit (bbs_to_scale, i);
1147 }
1148 }
1149
1150 scale_step = XNEWVEC (profile_probability, ndupl)((profile_probability *) xmalloc (sizeof (profile_probability
) * (ndupl)))
;
1151
1152 for (i = 1; i <= ndupl; i++)
1153 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1154 ? prob_pass_wont_exit
1155 : prob_pass_thru;
1156
1157 /* Complete peeling is special as the probability of exit in last
1158 copy becomes 1. */
1159 if (flags & DLTHE_FLAG_COMPLETTE_PEEL4)
1160 {
1161 profile_count wanted_count = e->count ();
1162
1163 gcc_assert (!is_latch)((void)(!(!is_latch) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1163, __FUNCTION__), 0 : 0))
;
1164 /* First copy has count of incoming edge. Each subsequent
1165 count should be reduced by prob_pass_wont_exit. Caller
1166 should've managed the flags so all except for original loop
1167 has won't exist set. */
1168 scale_act = wanted_count.probability_in (count_in);
1169 /* Now simulate the duplication adjustments and compute header
1170 frequency of the last copy. */
1171 for (i = 0; i < ndupl; i++)
1172 wanted_count = wanted_count.apply_probability (scale_step [i]);
1173 scale_main = wanted_count.probability_in (count_in);
1174 }
1175 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1176 First iteration will be original loop followed by duplicated bodies.
1177 It is necessary to scale down the original so we get right overall
1178 number of iterations. */
1179 else if (is_latch)
1180 {
1181 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1182 ? prob_pass_wont_exit
1183 : prob_pass_thru;
1184 profile_probability p = prob_pass_main;
1185 profile_count scale_main_den = count_in;
1186 for (i = 0; i < ndupl; i++)
1187 {
1188 scale_main_den += count_in.apply_probability (p);
1189 p = p * scale_step[i];
1190 }
1191 /* If original loop is executed COUNT_IN times, the unrolled
1192 loop will account SCALE_MAIN_DEN times. */
1193 scale_main = count_in.probability_in (scale_main_den);
1194 scale_act = scale_main * prob_pass_main;
1195 }
1196 else
1197 {
1198 profile_count preheader_count = e->count ();
1199 for (i = 0; i < ndupl; i++)
1200 scale_main = scale_main * scale_step[i];
1201 scale_act = preheader_count.probability_in (count_in);
1202 }
1203 }
1204
1205 /* Loop the new bbs will belong to. */
1206 target = e->src->loop_father;
1207
1208 /* Original loops. */
1209 n_orig_loops = 0;
1210 for (aloop = loop->inner; aloop; aloop = aloop->next)
1211 n_orig_loops++;
1212 orig_loops = XNEWVEC (class loop *, n_orig_loops)((class loop * *) xmalloc (sizeof (class loop *) * (n_orig_loops
)))
;
1213 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1214 orig_loops[i] = aloop;
1215
1216 set_loop_copy (loop, target);
1217
1218 first_active = XNEWVEC (basic_block, n)((basic_block *) xmalloc (sizeof (basic_block) * (n)));
1219 if (is_latch)
1220 {
1221 memcpy (first_active, bbs, n * sizeof (basic_block));
1222 first_active_latch = latch;
1223 }
1224
1225 spec_edges[SE_ORIG] = orig;
1226 spec_edges[SE_LATCH] = latch_edge;
1227
1228 place_after = e->src;
1229 for (j = 0; j < ndupl; j++)
1230 {
1231 /* Copy loops. */
1232 copy_loops_to (orig_loops, n_orig_loops, target);
1233
1234 /* Copy bbs. */
1235 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1236 place_after, true);
1237 place_after = new_spec_edges[SE_LATCH]->src;
1238
1239 if (flags & DLTHE_RECORD_COPY_NUMBER2)
1240 for (i = 0; i < n; i++)
1241 {
1242 gcc_assert (!new_bbs[i]->aux)((void)(!(!new_bbs[i]->aux) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1242, __FUNCTION__), 0 : 0))
;
1243 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1244 }
1245
1246 /* Note whether the blocks and edges belong to an irreducible loop. */
1247 if (add_irreducible_flag)
1248 {
1249 for (i = 0; i < n; i++)
1250 new_bbs[i]->flags |= BB_DUPLICATED;
1251 for (i = 0; i < n; i++)
1252 {
1253 edge_iterator ei;
1254 new_bb = new_bbs[i];
1255 if (new_bb->loop_father == target)
1256 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1257
1258 FOR_EACH_EDGE (ae, ei, new_bb->succs)for ((ei) = ei_start_1 (&((new_bb->succs))); ei_cond (
(ei), &(ae)); ei_next (&(ei)))
1259 if ((ae->dest->flags & BB_DUPLICATED)
1260 && (ae->src->loop_father == target
1261 || ae->dest->loop_father == target))
1262 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1263 }
1264 for (i = 0; i < n; i++)
1265 new_bbs[i]->flags &= ~BB_DUPLICATED;
1266 }
1267
1268 /* Redirect the special edges. */
1269 if (is_latch)
1270 {
1271 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1272 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1273 loop->header);
1274 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1275 latch = loop->latch = new_bbs[n - 1];
1276 e = latch_edge = new_spec_edges[SE_LATCH];
1277 }
1278 else
1279 {
1280 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1281 loop->header);
1282 redirect_edge_and_branch_force (e, new_bbs[0]);
1283 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1284 e = new_spec_edges[SE_LATCH];
1285 }
1286
1287 /* Record exit edge in this copy. */
1288 if (orig && bitmap_bit_p (wont_exit, j + 1))
1289 {
1290 if (to_remove)
1291 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1292 force_edge_cold (new_spec_edges[SE_ORIG], true);
1293
1294 /* Scale the frequencies of the blocks dominated by the exit. */
1295 if (bbs_to_scale && scale_after_exit)
1296 {
1297 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)for (bmp_iter_set_init (&(bi), (bbs_to_scale), (0), &
(i)); bmp_iter_set (&(bi), &(i)); bmp_iter_next (&
(bi), &(i)))
1298 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1299 after_exit_den);
1300 }
1301 }
1302
1303 /* Record the first copy in the control flow order if it is not
1304 the original loop (i.e. in case of peeling). */
1305 if (!first_active_latch)
1306 {
1307 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1308 first_active_latch = new_bbs[n - 1];
1309 }
1310
1311 /* Set counts and frequencies. */
1312 if (flags & DLTHE_FLAG_UPDATE_FREQ1)
1313 {
1314 scale_bbs_frequencies (new_bbs, n, scale_act);
1315 scale_act = scale_act * scale_step[j];
1316 }
1317 }
1318 free (new_bbs);
1319 free (orig_loops);
1320
1321 /* Record the exit edge in the original loop body, and update the frequencies. */
1322 if (orig && bitmap_bit_p (wont_exit, 0))
1323 {
1324 if (to_remove)
1325 to_remove->safe_push (orig);
1326 force_edge_cold (orig, true);
1327
1328 /* Scale the frequencies of the blocks dominated by the exit. */
1329 if (bbs_to_scale && scale_after_exit)
1330 {
1331 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)for (bmp_iter_set_init (&(bi), (bbs_to_scale), (0), &
(i)); bmp_iter_set (&(bi), &(i)); bmp_iter_next (&
(bi), &(i)))
1332 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1333 after_exit_den);
1334 }
1335 }
1336
1337 /* Update the original loop. */
1338 if (!is_latch)
1339 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1340 if (flags & DLTHE_FLAG_UPDATE_FREQ1)
1341 {
1342 scale_bbs_frequencies (bbs, n, scale_main);
1343 free (scale_step);
1344 }
1345
1346 /* Update dominators of outer blocks if affected. */
1347 for (i = 0; i < n; i++)
1348 {
1349 basic_block dominated, dom_bb;
1350 unsigned j;
1351
1352 bb = bbs[i];
1353
1354 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1355 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)for (j = 0; (dom_bbs).iterate ((j), &(dominated)); ++(j))
1356 {
1357 if (flow_bb_inside_loop_p (loop, dominated))
1358 continue;
1359 dom_bb = nearest_common_dominator (
1360 CDI_DOMINATORS, first_active[i], first_active_latch);
1361 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1362 }
1363 }
1364 free (first_active);
1365
1366 free (bbs);
1367 BITMAP_FREE (bbs_to_scale)((void) (bitmap_obstack_free ((bitmap) bbs_to_scale), (bbs_to_scale
) = (bitmap) nullptr))
;
1368
1369 return true;
1370}
1371
1372/* A callback for make_forwarder block, to redirect all edges except for
1373 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1374 whether to redirect it. */
1375
1376edge mfb_kj_edge;
1377bool
1378mfb_keep_just (edge e)
1379{
1380 return e != mfb_kj_edge;
1381}
1382
1383/* True when a candidate preheader BLOCK has predecessors from LOOP. */
1384
1385static bool
1386has_preds_from_loop (basic_block block, class loop *loop)
1387{
1388 edge e;
1389 edge_iterator ei;
1390
1391 FOR_EACH_EDGE (e, ei, block->preds)for ((ei) = ei_start_1 (&((block->preds))); ei_cond ((
ei), &(e)); ei_next (&(ei)))
1392 if (e->src->loop_father == loop)
1393 return true;
1394 return false;
1395}
1396
1397/* Creates a pre-header for a LOOP. Returns newly created block. Unless
1398 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1399 entry; otherwise we also force preheader block to have only one successor.
1400 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1401 to be a fallthru predecessor to the loop header and to have only
1402 predecessors from outside of the loop.
1403 The function also updates dominators. */
1404
1405basic_block
1406create_preheader (class loop *loop, int flags)
1407{
1408 edge e;
1409 basic_block dummy;
1410 int nentry = 0;
1411 bool irred = false;
1412 bool latch_edge_was_fallthru;
1413 edge one_succ_pred = NULLnullptr, single_entry = NULLnullptr;
1414 edge_iterator ei;
1415
1416 FOR_EACH_EDGE (e, ei, loop->header->preds)for ((ei) = ei_start_1 (&((loop->header->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
1417 {
1418 if (e->src == loop->latch)
1419 continue;
1420 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1421 nentry++;
1422 single_entry = e;
1423 if (single_succ_p (e->src))
1424 one_succ_pred = e;
1425 }
1426 gcc_assert (nentry)((void)(!(nentry) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1426, __FUNCTION__), 0 : 0))
;
1427 if (nentry == 1)
1428 {
1429 bool need_forwarder_block = false;
1430
1431 /* We do not allow entry block to be the loop preheader, since we
1432 cannot emit code there. */
1433 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr))
1434 need_forwarder_block = true;
1435 else
1436 {
1437 /* If we want simple preheaders, also force the preheader to have
1438 just a single successor and a normal edge. */
1439 if ((flags & CP_SIMPLE_PREHEADERS)
1440 && ((single_entry->flags & EDGE_COMPLEX(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE
)
)
1441 || !single_succ_p (single_entry->src)))
1442 need_forwarder_block = true;
1443 /* If we want fallthru preheaders, also create forwarder block when
1444 preheader ends with a jump or has predecessors from loop. */
1445 else if ((flags & CP_FALLTHRU_PREHEADERS)
1446 && (JUMP_P (BB_END (single_entry->src))(((enum rtx_code) ((single_entry->src)->il.x.rtl->end_
)->code) == JUMP_INSN)
1447 || has_preds_from_loop (single_entry->src, loop)))
1448 need_forwarder_block = true;
1449 }
1450 if (! need_forwarder_block)
1451 return NULLnullptr;
1452 }
1453
1454 mfb_kj_edge = loop_latch_edge (loop);
1455 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1456 if (nentry == 1
1457 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1458 || (single_entry->flags & EDGE_CROSSING) == 0))
1459 dummy = split_edge (single_entry);
1460 else
1461 {
1462 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULLnullptr);
1463 dummy = fallthru->src;
1464 loop->header = fallthru->dest;
1465 }
1466
1467 /* Try to be clever in placing the newly created preheader. The idea is to
1468 avoid breaking any "fallthruness" relationship between blocks.
1469
1470 The preheader was created just before the header and all incoming edges
1471 to the header were redirected to the preheader, except the latch edge.
1472 So the only problematic case is when this latch edge was a fallthru
1473 edge: it is not anymore after the preheader creation so we have broken
1474 the fallthruness. We're therefore going to look for a better place. */
1475 if (latch_edge_was_fallthru)
1476 {
1477 if (one_succ_pred)
1478 e = one_succ_pred;
1479 else
1480 e = EDGE_PRED (dummy, 0)(*(dummy)->preds)[(0)];
1481
1482 move_block_after (dummy, e->src);
1483 }
1484
1485 if (irred)
1486 {
1487 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1488 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1489 }
1490
1491 if (dump_file)
1492 fprintf (dump_file, "Created preheader block for loop %i\n",
1493 loop->num);
1494
1495 if (flags & CP_FALLTHRU_PREHEADERS)
1496 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)((void)(!((single_succ_edge (dummy)->flags & EDGE_FALLTHRU
) && !(((enum rtx_code) ((dummy)->il.x.rtl->end_
)->code) == JUMP_INSN)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1497, __FUNCTION__), 0 : 0))
1497 && !JUMP_P (BB_END (dummy)))((void)(!((single_succ_edge (dummy)->flags & EDGE_FALLTHRU
) && !(((enum rtx_code) ((dummy)->il.x.rtl->end_
)->code) == JUMP_INSN)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1497, __FUNCTION__), 0 : 0))
;
1498
1499 return dummy;
1500}
1501
1502/* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1503
1504void
1505create_preheaders (int flags)
1506{
1507 if (!current_loops((cfun + 0)->x_current_loops))
1508 return;
1509
1510 for (auto loop : loops_list (cfun(cfun + 0), 0))
1511 create_preheader (loop, flags);
1512 loops_state_set (LOOPS_HAVE_PREHEADERS);
1513}
1514
1515/* Forces all loop latches to have only single successor. */
1516
1517void
1518force_single_succ_latches (void)
1519{
1520 edge e;
1521
1522 for (auto loop : loops_list (cfun(cfun + 0), 0))
1523 {
1524 if (loop->latch != loop->header && single_succ_p (loop->latch))
1525 continue;
1526
1527 e = find_edge (loop->latch, loop->header);
1528 gcc_checking_assert (e != NULL)((void)(!(e != nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1528, __FUNCTION__), 0 : 0))
;
1529
1530 split_edge (e);
1531 }
1532 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1533}
1534
1535/* This function is called from loop_version. It splits the entry edge
1536 of the loop we want to version, adds the versioning condition, and
1537 adjust the edges to the two versions of the loop appropriately.
1538 e is an incoming edge. Returns the basic block containing the
1539 condition.
1540
1541 --- edge e ---- > [second_head]
1542
1543 Split it and insert new conditional expression and adjust edges.
1544
1545 --- edge e ---> [cond expr] ---> [first_head]
1546 |
1547 +---------> [second_head]
1548
1549 THEN_PROB is the probability of then branch of the condition.
1550 ELSE_PROB is the probability of else branch. Note that they may be both
1551 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1552 IFN_LOOP_DIST_ALIAS. */
1553
1554static basic_block
1555lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1556 edge e, void *cond_expr,
1557 profile_probability then_prob,
1558 profile_probability else_prob)
1559{
1560 basic_block new_head = NULLnullptr;
1561 edge e1;
1562
1563 gcc_assert (e->dest == second_head)((void)(!(e->dest == second_head) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/cfgloopmanip.cc"
, 1563, __FUNCTION__), 0 : 0))
;
1564
1565 /* Split edge 'e'. This will create a new basic block, where we can
1566 insert conditional expr. */
1567 new_head = split_edge (e);
1568
1569 lv_add_condition_to_bb (first_head, second_head, new_head,
1570 cond_expr);
1571
1572 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1573 e = single_succ_edge (new_head);
1574 e1 = make_edge (new_head, first_head,
1575 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1576 e1->probability = then_prob;
1577 e->probability = else_prob;
1578
1579 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1580 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1581
1582 /* Adjust loop header phi nodes. */
1583 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1584
1585 return new_head;
1586}
1587
1588/* Main entry point for Loop Versioning transformation.
1589
1590 This transformation given a condition and a loop, creates
1591 -if (condition) { loop_copy1 } else { loop_copy2 },
1592 where loop_copy1 is the loop transformed in one way, and loop_copy2
1593 is the loop transformed in another way (or unchanged). COND_EXPR
1594 may be a run time test for things that were not resolved by static
1595 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1596
1597 If non-NULL, CONDITION_BB is set to the basic block containing the
1598 condition.
1599
1600 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1601 is the ratio by that the frequencies in the original loop should
1602 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1603 new loop should be scaled.
1604
1605 If PLACE_AFTER is true, we place the new loop after LOOP in the
1606 instruction stream, otherwise it is placed before LOOP. */
1607
1608class loop *
1609loop_version (class loop *loop,
1610 void *cond_expr, basic_block *condition_bb,
1611 profile_probability then_prob, profile_probability else_prob,
1612 profile_probability then_scale, profile_probability else_scale,
1613 bool place_after)
1614{
1615 basic_block first_head, second_head;
1616 edge entry, latch_edge;
1617 int irred_flag;
1618 class loop *nloop;
1619 basic_block cond_bb;
1620
1621 /* Record entry and latch edges for the loop */
1622 entry = loop_preheader_edge (loop);
1623 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1624 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1625
1626 /* Note down head of loop as first_head. */
1627 first_head = entry->dest;
1628
1629 /* 1) Duplicate loop on the entry edge. */
1630 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULLnullptr, NULLnullptr,
1631 NULLnullptr, 0))
1632 {
1633 entry->flags |= irred_flag;
1634 return NULLnullptr;
1635 }
1636
1637 /* 2) loopify the duplicated new loop. */
1638 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1639 nloop = alloc_loop ();
1640 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1641 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1642 nloop->header = new_header_edge->dest;
1643 nloop->latch = latch_edge->src;
1644 loop_redirect_edge (latch_edge, nloop->header);
1645
1646 /* Compute new loop. */
1647 add_loop (nloop, outer);
1648 copy_loop_info (loop, nloop);
1649 set_loop_copy (loop, nloop);
1650
1651 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1652 lv_flush_pending_stmts (latch_edge);
1653
1654 /* After duplication entry edge now points to new loop head block.
1655 Note down new head as second_head. */
1656 second_head = entry->dest;
1657
1658 /* 3) Split loop entry edge and insert new block with cond expr. */
1659 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1660 entry, cond_expr, then_prob, else_prob);
1661 if (condition_bb)
1662 *condition_bb = cond_bb;
1663
1664 if (!cond_bb)
1665 {
1666 entry->flags |= irred_flag;
1667 return NULLnullptr;
1668 }
1669
1670 /* Add cond_bb to appropriate loop. */
1671 if (cond_bb->loop_father)
1672 remove_bb_from_loops (cond_bb);
1673 add_bb_to_loop (cond_bb, outer);
1674
1675 /* 4) Scale the original loop and new loop frequency. */
1676 scale_loop_frequencies (loop, then_scale);
1677 scale_loop_frequencies (nloop, else_scale);
1678 update_dominators_in_loop (loop);
1679 update_dominators_in_loop (nloop);
1680
1681 /* Adjust irreducible flag. */
1682 if (irred_flag)
1683 {
1684 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1685 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1686 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1687 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1688 }
1689
1690 if (place_after)
1691 {
1692 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1693 unsigned i;
1694
1695 after = loop->latch;
1696
1697 for (i = 0; i < nloop->num_nodes; i++)
1698 {
1699 move_block_after (bbs[i], after);
1700 after = bbs[i];
1701 }
1702 free (bbs);
1703 }
1704
1705 /* At this point condition_bb is loop preheader with two successors,
1706 first_head and second_head. Make sure that loop preheader has only
1707 one successor. */
1708 split_edge (loop_preheader_edge (loop));
1709 split_edge (loop_preheader_edge (nloop));
1710
1711 return nloop;
1712}

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h

1/* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_BASIC_BLOCK_H
21#define GCC_BASIC_BLOCK_H
22
23#include <profile-count.h>
24
25/* Control flow edge information. */
26class GTY((user)) edge_def {
27public:
28 /* The two blocks at the ends of the edge. */
29 basic_block src;
30 basic_block dest;
31
32 /* Instructions queued on the edge. */
33 union edge_def_insns {
34 gimple_seq g;
35 rtx_insn *r;
36 } insns;
37
38 /* Auxiliary info specific to a pass. */
39 void *aux;
40
41 /* Location of any goto implicit in the edge. */
42 location_t goto_locus;
43
44 /* The index number corresponding to this edge in the edge vector
45 dest->preds. */
46 unsigned int dest_idx;
47
48 int flags; /* see cfg-flags.def */
49 profile_probability probability;
50
51 /* Return count of edge E. */
52 inline profile_count count () const;
53};
54
55/* Masks for edge.flags. */
56#define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
57enum cfg_edge_flags {
58#include "cfg-flags.def"
59 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
60};
61#undef DEF_EDGE_FLAG
62
63/* Bit mask for all edge flags. */
64#define EDGE_ALL_FLAGS((LAST_CFG_EDGE_FLAG - 1) * 2 - 1) ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
65
66/* The following four flags all indicate something special about an edge.
67 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
68 control flow transfers. */
69#define EDGE_COMPLEX(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE
)
\
70 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
71
72struct GTY(()) rtl_bb_info {
73 /* The first insn of the block is embedded into bb->il.x. */
74 /* The last insn of the block. */
75 rtx_insn *end_;
76
77 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
78 and after the block. */
79 rtx_insn *header_;
80 rtx_insn *footer_;
81};
82
83struct GTY(()) gimple_bb_info {
84 /* Sequence of statements in this block. */
85 gimple_seq seq;
86
87 /* PHI nodes for this block. */
88 gimple_seq phi_nodes;
89};
90
91/* A basic block is a sequence of instructions with only one entry and
92 only one exit. If any one of the instructions are executed, they
93 will all be executed, and in sequence from first to last.
94
95 There may be COND_EXEC instructions in the basic block. The
96 COND_EXEC *instructions* will be executed -- but if the condition
97 is false the conditionally executed *expressions* will of course
98 not be executed. We don't consider the conditionally executed
99 expression (which might have side-effects) to be in a separate
100 basic block because the program counter will always be at the same
101 location after the COND_EXEC instruction, regardless of whether the
102 condition is true or not.
103
104 Basic blocks need not start with a label nor end with a jump insn.
105 For example, a previous basic block may just "conditionally fall"
106 into the succeeding basic block, and the last basic block need not
107 end with a jump insn. Block 0 is a descendant of the entry block.
108
109 A basic block beginning with two labels cannot have notes between
110 the labels.
111
112 Data for jump tables are stored in jump_insns that occur in no
113 basic block even though these insns can follow or precede insns in
114 basic blocks. */
115
116/* Basic block information indexed by block number. */
117struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
118 /* The edges into and out of the block. */
119 vec<edge, va_gc> *preds;
120 vec<edge, va_gc> *succs;
121
122 /* Auxiliary info specific to a pass. */
123 void *GTY ((skip (""))) aux;
124
125 /* Innermost loop containing the block. */
126 class loop *loop_father;
127
128 /* The dominance and postdominance information node. */
129 struct et_node * GTY ((skip (""))) dom[2];
130
131 /* Previous and next blocks in the chain. */
132 basic_block prev_bb;
133 basic_block next_bb;
134
135 union basic_block_il_dependent {
136 struct gimple_bb_info GTY ((tag ("0"))) gimple;
137 struct {
138 rtx_insn *head_;
139 struct rtl_bb_info * rtl;
140 } GTY ((tag ("1"))) x;
141 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
142
143 /* Various flags. See cfg-flags.def. */
144 int flags;
145
146 /* The index of this block. */
147 int index;
148
149 /* Expected number of executions: calculated in profile.cc. */
150 profile_count count;
151};
152
153/* This ensures that struct gimple_bb_info is smaller than
154 struct rtl_bb_info, so that inlining the former into basic_block_def
155 is the better choice. */
156STATIC_ASSERT (sizeof (rtl_bb_info) >= sizeof (gimple_bb_info))static_assert ((sizeof (rtl_bb_info) >= sizeof (gimple_bb_info
)), "sizeof (rtl_bb_info) >= sizeof (gimple_bb_info)")
;
157
158#define BB_FREQ_MAX10000 10000
159
160/* Masks for basic_block.flags. */
161#define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
162enum cfg_bb_flags
163{
164#include "cfg-flags.def"
165 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
166};
167#undef DEF_BASIC_BLOCK_FLAG
168
169/* Bit mask for all basic block flags. */
170#define BB_ALL_FLAGS((LAST_CFG_BB_FLAG - 1) * 2 - 1) ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
171
172/* Bit mask for all basic block flags that must be preserved. These are
173 the bit masks that are *not* cleared by clear_bb_flags. */
174#define BB_FLAGS_TO_PRESERVE(BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET | BB_HOT_PARTITION
| BB_COLD_PARTITION)
\
175 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
176 | BB_HOT_PARTITION | BB_COLD_PARTITION)
177
178/* Dummy bitmask for convenience in the hot/cold partitioning code. */
179#define BB_UNPARTITIONED0 0
180
181/* Partitions, to be used when partitioning hot and cold basic blocks into
182 separate sections. */
183#define BB_PARTITION(bb)((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION)) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
184#define BB_SET_PARTITION(bb, part)do { basic_block bb_ = (bb); bb_->flags = ((bb_->flags &
~(BB_HOT_PARTITION|BB_COLD_PARTITION)) | (part)); } while (0
)
do { \
185 basic_block bb_ = (bb); \
186 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
187 | (part)); \
188} while (0)
189
190#define BB_COPY_PARTITION(dstbb, srcbb)do { basic_block bb_ = (dstbb); bb_->flags = ((bb_->flags
& ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) | (((srcbb)->
flags & (BB_HOT_PARTITION|BB_COLD_PARTITION)))); } while (
0)
\
191 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))do { basic_block bb_ = (dstbb); bb_->flags = ((bb_->flags
& ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) | (((srcbb)->
flags & (BB_HOT_PARTITION|BB_COLD_PARTITION)))); } while (
0)
192
193/* Defines for accessing the fields of the CFG structure for function FN. */
194#define ENTRY_BLOCK_PTR_FOR_FN(FN)((FN)->cfg->x_entry_block_ptr) ((FN)->cfg->x_entry_block_ptr)
195#define EXIT_BLOCK_PTR_FOR_FN(FN)((FN)->cfg->x_exit_block_ptr) ((FN)->cfg->x_exit_block_ptr)
196#define basic_block_info_for_fn(FN)((FN)->cfg->x_basic_block_info) ((FN)->cfg->x_basic_block_info)
197#define n_basic_blocks_for_fn(FN)((FN)->cfg->x_n_basic_blocks) ((FN)->cfg->x_n_basic_blocks)
198#define n_edges_for_fn(FN)((FN)->cfg->x_n_edges) ((FN)->cfg->x_n_edges)
199#define last_basic_block_for_fn(FN)((FN)->cfg->x_last_basic_block) ((FN)->cfg->x_last_basic_block)
200#define label_to_block_map_for_fn(FN)((FN)->cfg->x_label_to_block_map) ((FN)->cfg->x_label_to_block_map)
201#define profile_status_for_fn(FN)((FN)->cfg->x_profile_status) ((FN)->cfg->x_profile_status)
202
203#define BASIC_BLOCK_FOR_FN(FN,N)((*((FN)->cfg->x_basic_block_info))[(N)]) \
204 ((*basic_block_info_for_fn (FN)((FN)->cfg->x_basic_block_info))[(N)])
205#define SET_BASIC_BLOCK_FOR_FN(FN,N,BB)((*((FN)->cfg->x_basic_block_info))[(N)] = (BB)) \
206 ((*basic_block_info_for_fn (FN)((FN)->cfg->x_basic_block_info))[(N)] = (BB))
207
208/* For iterating over basic blocks. */
209#define FOR_BB_BETWEEN(BB, FROM, TO, DIR)for (BB = FROM; BB != TO; BB = BB->DIR) \
210 for (BB = FROM; BB != TO; BB = BB->DIR)
211
212#define FOR_EACH_BB_FN(BB, FN)for (BB = (FN)->cfg->x_entry_block_ptr->next_bb; BB !=
(FN)->cfg->x_exit_block_ptr; BB = BB->next_bb)
\
213 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)for (BB = (FN)->cfg->x_entry_block_ptr->next_bb; BB !=
(FN)->cfg->x_exit_block_ptr; BB = BB->next_bb)
214
215#define FOR_EACH_BB_REVERSE_FN(BB, FN)for (BB = (FN)->cfg->x_exit_block_ptr->prev_bb; BB !=
(FN)->cfg->x_entry_block_ptr; BB = BB->prev_bb)
\
216 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)for (BB = (FN)->cfg->x_exit_block_ptr->prev_bb; BB !=
(FN)->cfg->x_entry_block_ptr; BB = BB->prev_bb)
217
218/* For iterating over insns in basic block. */
219#define FOR_BB_INSNS(BB, INSN)for ((INSN) = (BB)->il.x.head_; (INSN) && (INSN) !=
NEXT_INSN ((BB)->il.x.rtl->end_); (INSN) = NEXT_INSN (
INSN))
\
220 for ((INSN) = BB_HEAD (BB)(BB)->il.x.head_; \
221 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)(BB)->il.x.rtl->end_); \
222 (INSN) = NEXT_INSN (INSN))
223
224/* For iterating over insns in basic block when we might remove the
225 current insn. */
226#define FOR_BB_INSNS_SAFE(BB, INSN, CURR)for ((INSN) = (BB)->il.x.head_, (CURR) = (INSN) ? NEXT_INSN
((INSN)): nullptr; (INSN) && (INSN) != NEXT_INSN ((BB
)->il.x.rtl->end_); (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN
((INSN)) : nullptr)
\
227 for ((INSN) = BB_HEAD (BB)(BB)->il.x.head_, (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULLnullptr; \
228 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)(BB)->il.x.rtl->end_); \
229 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULLnullptr)
230
231#define FOR_BB_INSNS_REVERSE(BB, INSN)for ((INSN) = (BB)->il.x.rtl->end_; (INSN) && (
INSN) != PREV_INSN ((BB)->il.x.head_); (INSN) = PREV_INSN (
INSN))
\
232 for ((INSN) = BB_END (BB)(BB)->il.x.rtl->end_; \
233 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)(BB)->il.x.head_); \
234 (INSN) = PREV_INSN (INSN))
235
236#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)for ((INSN) = (BB)->il.x.rtl->end_,(CURR) = (INSN) ? PREV_INSN
((INSN)) : nullptr; (INSN) && (INSN) != PREV_INSN ((
BB)->il.x.head_); (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN
((INSN)) : nullptr)
\
237 for ((INSN) = BB_END (BB)(BB)->il.x.rtl->end_,(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULLnullptr; \
238 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)(BB)->il.x.head_); \
239 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULLnullptr)
240
241/* Cycles through _all_ basic blocks, even the fake ones (entry and
242 exit block). */
243
244#define FOR_ALL_BB_FN(BB, FN)for (BB = ((FN)->cfg->x_entry_block_ptr); BB; BB = BB->
next_bb)
\
245 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN)((FN)->cfg->x_entry_block_ptr); BB; BB = BB->next_bb)
246
247
248/* Stuff for recording basic block info. */
249
250/* For now, these will be functions (so that they can include checked casts
251 to rtx_insn. Once the underlying fields are converted from rtx
252 to rtx_insn, these can be converted back to macros. */
253
254#define BB_HEAD(B)(B)->il.x.head_ (B)->il.x.head_
255#define BB_END(B)(B)->il.x.rtl->end_ (B)->il.x.rtl->end_
256#define BB_HEADER(B)(B)->il.x.rtl->header_ (B)->il.x.rtl->header_
257#define BB_FOOTER(B)(B)->il.x.rtl->footer_ (B)->il.x.rtl->footer_
258
259/* Special block numbers [markers] for entry and exit.
260 Neither of them is supposed to hold actual statements. */
261#define ENTRY_BLOCK(0) (0)
262#define EXIT_BLOCK(1) (1)
263
264/* The two blocks that are always in the cfg. */
265#define NUM_FIXED_BLOCKS(2) (2)
266
267/* This is the value which indicates no edge is present. */
268#define EDGE_INDEX_NO_EDGE-1 -1
269
270/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
271 if there is no edge between the 2 basic blocks. */
272#define EDGE_INDEX(el, pred, succ)(find_edge_index ((el), (pred), (succ))) (find_edge_index ((el), (pred), (succ)))
273
274/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
275 block which is either the pred or succ end of the indexed edge. */
276#define INDEX_EDGE_PRED_BB(el, index)((el)->index_to_edge[(index)]->src) ((el)->index_to_edge[(index)]->src)
277#define INDEX_EDGE_SUCC_BB(el, index)((el)->index_to_edge[(index)]->dest) ((el)->index_to_edge[(index)]->dest)
278
279/* INDEX_EDGE returns a pointer to the edge. */
280#define INDEX_EDGE(el, index)((el)->index_to_edge[(index)]) ((el)->index_to_edge[(index)])
281
282/* Number of edges in the compressed edge list. */
283#define NUM_EDGES(el)((el)->num_edges) ((el)->num_edges)
284
285/* BB is assumed to contain conditional jump. Return the fallthru edge. */
286#define FALLTHRU_EDGE(bb)((*((bb))->succs)[(0)]->flags & EDGE_FALLTHRU ? (*(
(bb))->succs)[(0)] : (*((bb))->succs)[(1)])
(EDGE_SUCC ((bb), 0)(*((bb))->succs)[(0)]->flags & EDGE_FALLTHRU \
287 ? EDGE_SUCC ((bb), 0)(*((bb))->succs)[(0)] : EDGE_SUCC ((bb), 1)(*((bb))->succs)[(1)])
288
289/* BB is assumed to contain conditional jump. Return the branch edge. */
290#define BRANCH_EDGE(bb)((*((bb))->succs)[(0)]->flags & EDGE_FALLTHRU ? (*(
(bb))->succs)[(1)] : (*((bb))->succs)[(0)])
(EDGE_SUCC ((bb), 0)(*((bb))->succs)[(0)]->flags & EDGE_FALLTHRU \
291 ? EDGE_SUCC ((bb), 1)(*((bb))->succs)[(1)] : EDGE_SUCC ((bb), 0)(*((bb))->succs)[(0)])
292
293/* Return expected execution frequency of the edge E. */
294#define EDGE_FREQUENCY(e)e->count ().to_frequency ((cfun + 0)) e->count ().to_frequency (cfun(cfun + 0))
295
296/* Compute a scale factor (or probability) suitable for scaling of
297 gcov_type values via apply_probability() and apply_scale(). */
298#define GCOV_COMPUTE_SCALE(num,den)((den) ? ((((num) * 10000) + ((den)) / 2) / ((den))) : 10000) \
299 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den))((((num) * 10000) + ((den)) / 2) / ((den))) : REG_BR_PROB_BASE10000)
300
301/* Return nonzero if edge is critical. */
302#define EDGE_CRITICAL_P(e)(vec_safe_length ((e)->src->succs) >= 2 && vec_safe_length
((e)->dest->preds) >= 2)
(EDGE_COUNT ((e)->src->succs)vec_safe_length ((e)->src->succs) >= 2 \
303 && EDGE_COUNT ((e)->dest->preds)vec_safe_length ((e)->dest->preds) >= 2)
304
305#define EDGE_COUNT(ev)vec_safe_length (ev) vec_safe_length (ev)
306#define EDGE_I(ev,i)(*ev)[(i)] (*ev)[(i)]
307#define EDGE_PRED(bb,i)(*(bb)->preds)[(i)] (*(bb)->preds)[(i)]
308#define EDGE_SUCC(bb,i)(*(bb)->succs)[(i)] (*(bb)->succs)[(i)]
309
310/* Returns true if BB has precisely one successor. */
311
312inline bool
313single_succ_p (const_basic_block bb)
314{
315 return EDGE_COUNT (bb->succs)vec_safe_length (bb->succs) == 1;
316}
317
318/* Returns true if BB has precisely one predecessor. */
319
320inline bool
321single_pred_p (const_basic_block bb)
322{
323 return EDGE_COUNT (bb->preds)vec_safe_length (bb->preds) == 1;
324}
325
326/* Returns the single successor edge of basic block BB. Aborts if
327 BB does not have exactly one successor. */
328
329inline edge
330single_succ_edge (const_basic_block bb)
331{
332 gcc_checking_assert (single_succ_p (bb))((void)(!(single_succ_p (bb)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 332, __FUNCTION__), 0 : 0))
;
333 return EDGE_SUCC (bb, 0)(*(bb)->succs)[(0)];
334}
335
336/* Returns the single predecessor edge of basic block BB. Aborts
337 if BB does not have exactly one predecessor. */
338
339inline edge
340single_pred_edge (const_basic_block bb)
341{
342 gcc_checking_assert (single_pred_p (bb))((void)(!(single_pred_p (bb)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 342, __FUNCTION__), 0 : 0))
;
343 return EDGE_PRED (bb, 0)(*(bb)->preds)[(0)];
344}
345
346/* Returns the single successor block of basic block BB. Aborts
347 if BB does not have exactly one successor. */
348
349inline basic_block
350single_succ (const_basic_block bb)
351{
352 return single_succ_edge (bb)->dest;
353}
354
355/* Returns the single predecessor block of basic block BB. Aborts
356 if BB does not have exactly one predecessor.*/
357
358inline basic_block
359single_pred (const_basic_block bb)
360{
361 return single_pred_edge (bb)->src;
362}
363
364/* Iterator object for edges. */
365
366struct edge_iterator {
367 unsigned index;
368 vec<edge, va_gc> **container;
369};
370
371inline vec<edge, va_gc> *
372ei_container (edge_iterator i)
373{
374 gcc_checking_assert (i.container)((void)(!(i.container) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 374, __FUNCTION__), 0 : 0))
;
375 return *i.container;
376}
377
378#define ei_start(iter)ei_start_1 (&(iter)) ei_start_1 (&(iter))
379#define ei_last(iter)ei_last_1 (&(iter)) ei_last_1 (&(iter))
380
381/* Return an iterator pointing to the start of an edge vector. */
382inline edge_iterator
383ei_start_1 (vec<edge, va_gc> **ev)
384{
385 edge_iterator i;
386
387 i.index = 0;
388 i.container = ev;
389
390 return i;
391}
392
393/* Return an iterator pointing to the last element of an edge
394 vector. */
395inline edge_iterator
396ei_last_1 (vec<edge, va_gc> **ev)
397{
398 edge_iterator i;
399
400 i.index = EDGE_COUNT (*ev)vec_safe_length (*ev) - 1;
401 i.container = ev;
402
403 return i;
404}
405
406/* Is the iterator `i' at the end of the sequence? */
407inline bool
408ei_end_p (edge_iterator i)
409{
410 return (i.index == EDGE_COUNT (ei_container (i))vec_safe_length (ei_container (i)));
411}
412
413/* Is the iterator `i' at one position before the end of the
414 sequence? */
415inline bool
416ei_one_before_end_p (edge_iterator i)
417{
418 return (i.index + 1 == EDGE_COUNT (ei_container (i))vec_safe_length (ei_container (i)));
419}
420
421/* Advance the iterator to the next element. */
422inline void
423ei_next (edge_iterator *i)
424{
425 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)))((void)(!(i->index < vec_safe_length (ei_container (*i)
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 425, __FUNCTION__), 0 : 0))
;
426 i->index++;
427}
428
429/* Move the iterator to the previous element. */
430inline void
431ei_prev (edge_iterator *i)
432{
433 gcc_checking_assert (i->index > 0)((void)(!(i->index > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 433, __FUNCTION__), 0 : 0))
;
434 i->index--;
435}
436
437/* Return the edge pointed to by the iterator `i'. */
438inline edge
439ei_edge (edge_iterator i)
440{
441 return EDGE_I (ei_container (i), i.index)(*ei_container (i))[(i.index)];
442}
443
444/* Return an edge pointed to by the iterator. Do it safely so that
445 NULL is returned when the iterator is pointing at the end of the
446 sequence. */
447inline edge
448ei_safe_edge (edge_iterator i)
449{
450 return !ei_end_p (i) ? ei_edge (i) : NULLnullptr;
451}
452
453/* Return 1 if we should continue to iterate. Return 0 otherwise.
454 *Edge P is set to the next edge if we are to continue to iterate
455 and NULL otherwise. */
456
457inline bool
458ei_cond (edge_iterator ei, edge *p)
459{
460 if (!ei_end_p (ei))
13
Taking false branch
461 {
462 *p = ei_edge (ei);
463 return 1;
464 }
465 else
466 {
467 *p = NULLnullptr;
14
Null pointer value stored to 'other_e'
468 return 0;
469 }
470}
471
472/* This macro serves as a convenient way to iterate each edge in a
473 vector of predecessor or successor edges. It must not be used when
474 an element might be removed during the traversal, otherwise
475 elements will be missed. Instead, use a for-loop like that shown
476 in the following pseudo-code:
477
478 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
479 {
480 IF (e != taken_edge)
481 remove_edge (e);
482 ELSE
483 ei_next (&ei);
484 }
485*/
486
487#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)for ((ITER) = ei_start_1 (&((EDGE_VEC))); ei_cond ((ITER)
, &(EDGE)); ei_next (&(ITER)))
\
488 for ((ITER) = ei_start ((EDGE_VEC))ei_start_1 (&((EDGE_VEC))); \
489 ei_cond ((ITER), &(EDGE)); \
490 ei_next (&(ITER)))
491
492#define CLEANUP_EXPENSIVE1 1 /* Do relatively expensive optimizations
493 except for edge forwarding */
494#define CLEANUP_CROSSJUMP2 2 /* Do crossjumping. */
495#define CLEANUP_POST_REGSTACK4 4 /* We run after reg-stack and need
496 to care REG_DEAD notes. */
497#define CLEANUP_THREADING8 8 /* Do jump threading. */
498#define CLEANUP_NO_INSN_DEL16 16 /* Do not try to delete trivially dead
499 insns. */
500#define CLEANUP_CFGLAYOUT32 32 /* Do cleanup in cfglayout mode. */
501#define CLEANUP_CFG_CHANGED64 64 /* The caller changed the CFG. */
502#define CLEANUP_NO_PARTITIONING128 128 /* Do not try to fix partitions. */
503#define CLEANUP_FORCE_FAST_DCE0x100 0x100 /* Force run_fast_dce to be called
504 at least once. */
505
506/* Return true if BB is in a transaction. */
507
508inline bool
509bb_in_transaction (basic_block bb)
510{
511 return bb->flags & BB_IN_TRANSACTION;
512}
513
514/* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
515inline bool
516bb_has_eh_pred (basic_block bb)
517{
518 edge e;
519 edge_iterator ei;
520
521 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
522 {
523 if (e->flags & EDGE_EH)
524 return true;
525 }
526 return false;
527}
528
529/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
530inline bool
531bb_has_abnormal_pred (basic_block bb)
532{
533 edge e;
534 edge_iterator ei;
535
536 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
537 {
538 if (e->flags & EDGE_ABNORMAL)
539 return true;
540 }
541 return false;
542}
543
544/* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
545inline edge
546find_fallthru_edge (vec<edge, va_gc> *edges)
547{
548 edge e;
549 edge_iterator ei;
550
551 FOR_EACH_EDGE (e, ei, edges)for ((ei) = ei_start_1 (&((edges))); ei_cond ((ei), &
(e)); ei_next (&(ei)))
552 if (e->flags & EDGE_FALLTHRU)
553 break;
554
555 return e;
556}
557
558/* Check tha probability is sane. */
559
560inline void
561check_probability (int prob)
562{
563 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE)((void)(!(prob >= 0 && prob <= 10000) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/basic-block.h"
, 563, __FUNCTION__), 0 : 0))
;
564}
565
566/* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
567 Used to combine BB probabilities. */
568
569inline int
570combine_probabilities (int prob1, int prob2)
571{
572 check_probability (prob1);
573 check_probability (prob2);
574 return RDIV (prob1 * prob2, REG_BR_PROB_BASE)(((prob1 * prob2) + (10000) / 2) / (10000));
575}
576
577/* Apply scale factor SCALE on frequency or count FREQ. Use this
578 interface when potentially scaling up, so that SCALE is not
579 constrained to be < REG_BR_PROB_BASE. */
580
581inline gcov_type
582apply_scale (gcov_type freq, gcov_type scale)
583{
584 return RDIV (freq * scale, REG_BR_PROB_BASE)(((freq * scale) + (10000) / 2) / (10000));
585}
586
587/* Apply probability PROB on frequency or count FREQ. */
588
589inline gcov_type
590apply_probability (gcov_type freq, int prob)
591{
592 check_probability (prob);
593 return apply_scale (freq, prob);
594}
595
596/* Return inverse probability for PROB. */
597
598inline int
599inverse_probability (int prob1)
600{
601 check_probability (prob1);
602 return REG_BR_PROB_BASE10000 - prob1;
603}
604
605/* Return true if BB has at least one abnormal outgoing edge. */
606
607inline bool
608has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
609{
610 edge e;
611 edge_iterator ei;
612
613 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
614 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
615 return true;
616
617 return false;
618}
619
620/* Return true when one of the predecessor edges of BB is marked with
621 EDGE_ABNORMAL_CALL or EDGE_EH. */
622
623inline bool
624has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
625{
626 edge e;
627 edge_iterator ei;
628
629 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
630 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
631 return true;
632
633 return false;
634}
635
636/* Return count of edge E. */
637inline profile_count edge_def::count () const
638{
639 return src->count.apply_probability (probability);
640}
641
642#endif /* GCC_BASIC_BLOCK_H */