File: | build/libdecnumber/decNumber.c |
Warning: | line 4636, column 6 Value stored to 'accunits' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Decimal number arithmetic module for the decNumber C Library. |
2 | Copyright (C) 2005-2023 Free Software Foundation, Inc. |
3 | Contributed by IBM Corporation. Author Mike Cowlishaw. |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify it under |
8 | the terms of the GNU General Public License as published by the Free |
9 | Software Foundation; either version 3, or (at your option) any later |
10 | version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
15 | for more details. |
16 | |
17 | Under Section 7 of GPL version 3, you are granted additional |
18 | permissions described in the GCC Runtime Library Exception, version |
19 | 3.1, as published by the Free Software Foundation. |
20 | |
21 | You should have received a copy of the GNU General Public License and |
22 | a copy of the GCC Runtime Library Exception along with this program; |
23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
24 | <http://www.gnu.org/licenses/>. */ |
25 | |
26 | /* ------------------------------------------------------------------ */ |
27 | /* Decimal Number arithmetic module */ |
28 | /* ------------------------------------------------------------------ */ |
29 | /* This module comprises the routines for arbitrary-precision General */ |
30 | /* Decimal Arithmetic as defined in the specification which may be */ |
31 | /* found on the General Decimal Arithmetic pages. It implements both */ |
32 | /* the full ('extended') arithmetic and the simpler ('subset') */ |
33 | /* arithmetic. */ |
34 | /* */ |
35 | /* Usage notes: */ |
36 | /* */ |
37 | /* 1. This code is ANSI C89 except: */ |
38 | /* */ |
39 | /* a) C99 line comments (double forward slash) are used. (Most C */ |
40 | /* compilers accept these. If yours does not, a simple script */ |
41 | /* can be used to convert them to ANSI C comments.) */ |
42 | /* */ |
43 | /* b) Types from C99 stdint.h are used. If you do not have this */ |
44 | /* header file, see the User's Guide section of the decNumber */ |
45 | /* documentation; this lists the necessary definitions. */ |
46 | /* */ |
47 | /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */ |
48 | /* uint64_t types may be used. To avoid these, set DECUSE64=0 */ |
49 | /* and DECDPUN<=4 (see documentation). */ |
50 | /* */ |
51 | /* The code also conforms to C99 restrictions; in particular, */ |
52 | /* strict aliasing rules are observed. */ |
53 | /* */ |
54 | /* 2. The decNumber format which this library uses is optimized for */ |
55 | /* efficient processing of relatively short numbers; in particular */ |
56 | /* it allows the use of fixed sized structures and minimizes copy */ |
57 | /* and move operations. It does, however, support arbitrary */ |
58 | /* precision (up to 999,999,999 digits) and arbitrary exponent */ |
59 | /* range (Emax in the range 0 through 999,999,999 and Emin in the */ |
60 | /* range -999,999,999 through 0). Mathematical functions (for */ |
61 | /* example decNumberExp) as identified below are restricted more */ |
62 | /* tightly: digits, emax, and -emin in the context must be <= */ |
63 | /* DEC_MAX_MATH (999999), and their operand(s) must be within */ |
64 | /* these bounds. */ |
65 | /* */ |
66 | /* 3. Logical functions are further restricted; their operands must */ |
67 | /* be finite, positive, have an exponent of zero, and all digits */ |
68 | /* must be either 0 or 1. The result will only contain digits */ |
69 | /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */ |
70 | /* */ |
71 | /* 4. Operands to operator functions are never modified unless they */ |
72 | /* are also specified to be the result number (which is always */ |
73 | /* permitted). Other than that case, operands must not overlap. */ |
74 | /* */ |
75 | /* 5. Error handling: the type of the error is ORed into the status */ |
76 | /* flags in the current context (decContext structure). The */ |
77 | /* SIGFPE signal is then raised if the corresponding trap-enabler */ |
78 | /* flag in the decContext is set (is 1). */ |
79 | /* */ |
80 | /* It is the responsibility of the caller to clear the status */ |
81 | /* flags as required. */ |
82 | /* */ |
83 | /* The result of any routine which returns a number will always */ |
84 | /* be a valid number (which may be a special value, such as an */ |
85 | /* Infinity or NaN). */ |
86 | /* */ |
87 | /* 6. The decNumber format is not an exchangeable concrete */ |
88 | /* representation as it comprises fields which may be machine- */ |
89 | /* dependent (packed or unpacked, or special length, for example). */ |
90 | /* Canonical conversions to and from strings are provided; other */ |
91 | /* conversions are available in separate modules. */ |
92 | /* */ |
93 | /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */ |
94 | /* to 1 for extended operand checking (including NULL operands). */ |
95 | /* Results are undefined if a badly-formed structure (or a NULL */ |
96 | /* pointer to a structure) is provided, though with DECCHECK */ |
97 | /* enabled the operator routines are protected against exceptions. */ |
98 | /* (Except if the result pointer is NULL, which is unrecoverable.) */ |
99 | /* */ |
100 | /* However, the routines will never cause exceptions if they are */ |
101 | /* given well-formed operands, even if the value of the operands */ |
102 | /* is inappropriate for the operation and DECCHECK is not set. */ |
103 | /* (Except for SIGFPE, as and where documented.) */ |
104 | /* */ |
105 | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */ |
106 | /* ------------------------------------------------------------------ */ |
107 | /* Implementation notes for maintenance of this module: */ |
108 | /* */ |
109 | /* 1. Storage leak protection: Routines which use malloc are not */ |
110 | /* permitted to use return for fastpath or error exits (i.e., */ |
111 | /* they follow strict structured programming conventions). */ |
112 | /* Instead they have a do{}while(0); construct surrounding the */ |
113 | /* code which is protected -- break may be used to exit this. */ |
114 | /* Other routines can safely use the return statement inline. */ |
115 | /* */ |
116 | /* Storage leak accounting can be enabled using DECALLOC. */ |
117 | /* */ |
118 | /* 2. All loops use the for(;;) construct. Any do construct does */ |
119 | /* not loop; it is for allocation protection as just described. */ |
120 | /* */ |
121 | /* 3. Setting status in the context must always be the very last */ |
122 | /* action in a routine, as non-0 status may raise a trap and hence */ |
123 | /* the call to set status may not return (if the handler uses long */ |
124 | /* jump). Therefore all cleanup must be done first. In general, */ |
125 | /* to achieve this status is accumulated and is only applied just */ |
126 | /* before return by calling decContextSetStatus (via decStatus). */ |
127 | /* */ |
128 | /* Routines which allocate storage cannot, in general, use the */ |
129 | /* 'top level' routines which could cause a non-returning */ |
130 | /* transfer of control. The decXxxxOp routines are safe (do not */ |
131 | /* call decStatus even if traps are set in the context) and should */ |
132 | /* be used instead (they are also a little faster). */ |
133 | /* */ |
134 | /* 4. Exponent checking is minimized by allowing the exponent to */ |
135 | /* grow outside its limits during calculations, provided that */ |
136 | /* the decFinalize function is called later. Multiplication and */ |
137 | /* division, and intermediate calculations in exponentiation, */ |
138 | /* require more careful checks because of the risk of 31-bit */ |
139 | /* overflow (the most negative valid exponent is -1999999997, for */ |
140 | /* a 999999999-digit number with adjusted exponent of -999999999). */ |
141 | /* */ |
142 | /* 5. Rounding is deferred until finalization of results, with any */ |
143 | /* 'off to the right' data being represented as a single digit */ |
144 | /* residue (in the range -1 through 9). This avoids any double- */ |
145 | /* rounding when more than one shortening takes place (for */ |
146 | /* example, when a result is subnormal). */ |
147 | /* */ |
148 | /* 6. The digits count is allowed to rise to a multiple of DECDPUN */ |
149 | /* during many operations, so whole Units are handled and exact */ |
150 | /* accounting of digits is not needed. The correct digits value */ |
151 | /* is found by decGetDigits, which accounts for leading zeros. */ |
152 | /* This must be called before any rounding if the number of digits */ |
153 | /* is not known exactly. */ |
154 | /* */ |
155 | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */ |
156 | /* numbers up to four digits, using appropriate constants. This */ |
157 | /* is not useful for longer numbers because overflow of 32 bits */ |
158 | /* would lead to 4 multiplies, which is almost as expensive as */ |
159 | /* a divide (unless a floating-point or 64-bit multiply is */ |
160 | /* assumed to be available). */ |
161 | /* */ |
162 | /* 8. Unusual abbreviations that may be used in the commentary: */ |
163 | /* lhs -- left hand side (operand, of an operation) */ |
164 | /* lsd -- least significant digit (of coefficient) */ |
165 | /* lsu -- least significant Unit (of coefficient) */ |
166 | /* msd -- most significant digit (of coefficient) */ |
167 | /* msi -- most significant item (in an array) */ |
168 | /* msu -- most significant Unit (of coefficient) */ |
169 | /* rhs -- right hand side (operand, of an operation) */ |
170 | /* +ve -- positive */ |
171 | /* -ve -- negative */ |
172 | /* ** -- raise to the power */ |
173 | /* ------------------------------------------------------------------ */ |
174 | |
175 | #include <stdlib.h> /* for malloc, free, etc. */ |
176 | #include <stdio.h> /* for printf [if needed] */ |
177 | #include <string.h> /* for strcpy */ |
178 | #include <ctype.h> /* for lower */ |
179 | #include "dconfig.h" /* for GCC definitions */ |
180 | #include "decNumber.h" /* base number library */ |
181 | #include "decNumberLocal.h" /* decNumber local types, etc. */ |
182 | |
183 | /* Constants */ |
184 | /* Public lookup table used by the D2U macro */ |
185 | const uByteuint8_t d2utable[DECMAXD2U49+1]=D2UTABLE{0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, 8,8,8,9,9,9,10, 10,10,11,11,11,12,12,12,13,13, 13,14,14,14,15,15,15,16,16,16, 17}; |
186 | |
187 | #define DECVERB1 1 /* set to 1 for verbose DECCHECK */ |
188 | #define powersDECPOWERS DECPOWERS /* old internal name */ |
189 | |
190 | /* Local constants */ |
191 | #define DIVIDE0x80 0x80 /* Divide operators */ |
192 | #define REMAINDER0x40 0x40 /* .. */ |
193 | #define DIVIDEINT0x20 0x20 /* .. */ |
194 | #define REMNEAR0x10 0x10 /* .. */ |
195 | #define COMPARE0x01 0x01 /* Compare operators */ |
196 | #define COMPMAX0x02 0x02 /* .. */ |
197 | #define COMPMIN0x03 0x03 /* .. */ |
198 | #define COMPTOTAL0x04 0x04 /* .. */ |
199 | #define COMPNAN0x05 0x05 /* .. [NaN processing] */ |
200 | #define COMPSIG0x06 0x06 /* .. [signaling COMPARE] */ |
201 | #define COMPMAXMAG0x07 0x07 /* .. */ |
202 | #define COMPMINMAG0x08 0x08 /* .. */ |
203 | |
204 | #define DEC_sNaN0x40000000 0x40000000 /* local status: sNaN signal */ |
205 | #define BADINT(int32_t)0x80000000 (Intint32_t)0x80000000 /* most-negative Int; error indicator */ |
206 | /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ |
207 | #define BIGEVEN(int32_t)0x80000002 (Intint32_t)0x80000002 |
208 | #define BIGODD(int32_t)0x80000003 (Intint32_t)0x80000003 |
209 | |
210 | static Unituint16_t uarrone[1]={1}; /* Unit array of 1, used for incrementing */ |
211 | |
212 | /* Granularity-dependent code */ |
213 | #if DECDPUN3<=4 |
214 | #define eIntint32_t Intint32_t /* extended integer */ |
215 | #define ueIntuint32_t uIntuint32_t /* unsigned extended integer */ |
216 | /* Constant multipliers for divide-by-power-of five using reciprocal */ |
217 | /* multiply, after removing powers of 2 by shifting, and final shift */ |
218 | /* of 17 [we only need up to **4] */ |
219 | static const uIntuint32_t multies[]={131073, 26215, 5243, 1049, 210}; |
220 | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ |
221 | #define QUOT10(u, n)((((uint32_t)(u)>>(n))*multies[n])>>17) ((((uIntuint32_t)(u)>>(n))*multies[n])>>17) |
222 | #else |
223 | /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ |
224 | #if !DECUSE641 |
225 | #error decNumber.c: DECUSE641 must be 1 when DECDPUN3>4 |
226 | #endif |
227 | #define eIntint32_t Longint64_t /* extended integer */ |
228 | #define ueIntuint32_t uLonguint64_t /* unsigned extended integer */ |
229 | #endif |
230 | |
231 | /* Local routines */ |
232 | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, |
233 | decContext *, uByteuint8_t, uIntuint32_t *); |
234 | static Flaguint8_t decBiStr(const char *, const char *, const char *); |
235 | static uIntuint32_t decCheckMath(const decNumber *, decContext *, uIntuint32_t *); |
236 | static void decApplyRound(decNumber *, decContext *, Intint32_t, uIntuint32_t *); |
237 | static Intint32_t decCompare(const decNumber *lhs, const decNumber *rhs, Flaguint8_t); |
238 | static decNumber * decCompareOp(decNumber *, const decNumber *, |
239 | const decNumber *, decContext *, |
240 | Flaguint8_t, uIntuint32_t *); |
241 | static void decCopyFit(decNumber *, const decNumber *, decContext *, |
242 | Intint32_t *, uIntuint32_t *); |
243 | static decNumber * decDecap(decNumber *, Intint32_t); |
244 | static decNumber * decDivideOp(decNumber *, const decNumber *, |
245 | const decNumber *, decContext *, Flaguint8_t, uIntuint32_t *); |
246 | static decNumber * decExpOp(decNumber *, const decNumber *, |
247 | decContext *, uIntuint32_t *); |
248 | static void decFinalize(decNumber *, decContext *, Intint32_t *, uIntuint32_t *); |
249 | static Intint32_t decGetDigits(Unituint16_t *, Intint32_t); |
250 | static Intint32_t decGetInt(const decNumber *); |
251 | static decNumber * decLnOp(decNumber *, const decNumber *, |
252 | decContext *, uIntuint32_t *); |
253 | static decNumber * decMultiplyOp(decNumber *, const decNumber *, |
254 | const decNumber *, decContext *, |
255 | uIntuint32_t *); |
256 | static decNumber * decNaNs(decNumber *, const decNumber *, |
257 | const decNumber *, decContext *, uIntuint32_t *); |
258 | static decNumber * decQuantizeOp(decNumber *, const decNumber *, |
259 | const decNumber *, decContext *, Flaguint8_t, |
260 | uIntuint32_t *); |
261 | static void decReverse(Unituint16_t *, Unituint16_t *); |
262 | static void decSetCoeff(decNumber *, decContext *, const Unituint16_t *, |
263 | Intint32_t, Intint32_t *, uIntuint32_t *); |
264 | static void decSetMaxValue(decNumber *, decContext *); |
265 | static void decSetOverflow(decNumber *, decContext *, uIntuint32_t *); |
266 | static void decSetSubnormal(decNumber *, decContext *, Intint32_t *, uIntuint32_t *); |
267 | static Intint32_t decShiftToLeast(Unituint16_t *, Intint32_t, Intint32_t); |
268 | static Intint32_t decShiftToMost(Unituint16_t *, Intint32_t, Intint32_t); |
269 | static void decStatus(decNumber *, uIntuint32_t, decContext *); |
270 | static void decToString(const decNumber *, char[], Flaguint8_t); |
271 | static decNumber * decTrim(decNumber *, decContext *, Flaguint8_t, Flaguint8_t, Intint32_t *); |
272 | static Intint32_t decUnitAddSub(const Unituint16_t *, Intint32_t, const Unituint16_t *, Intint32_t, Intint32_t, |
273 | Unituint16_t *, Intint32_t); |
274 | static Intint32_t decUnitCompare(const Unituint16_t *, Intint32_t, const Unituint16_t *, Intint32_t, Intint32_t); |
275 | |
276 | #if !DECSUBSET0 |
277 | /* decFinish == decFinalize when no subset arithmetic needed */ |
278 | #define decFinish(a,b,c,d)decFinalize(a,b,c,d) decFinalize(a,b,c,d) |
279 | #else |
280 | static void decFinish(decNumber *, decContext *, Int *, uInt *)decFinalize(decNumber *,decContext *,int32_t *,uint32_t *); |
281 | static decNumber * decRoundOperand(const decNumber *, decContext *, uIntuint32_t *); |
282 | #endif |
283 | |
284 | /* Local macros */ |
285 | /* masked special-values bits */ |
286 | #define SPECIALARG(rhs->bits & (0x40|0x20|0x10)) (rhs->bits & DECSPECIAL(0x40|0x20|0x10)) |
287 | #define SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) ((lhs->bits | rhs->bits) & DECSPECIAL(0x40|0x20|0x10)) |
288 | |
289 | /* Diagnostic macros, etc. */ |
290 | #if DECALLOC0 |
291 | /* Handle malloc/free accounting. If enabled, our accountable routines */ |
292 | /* are used; otherwise the code just goes straight to the system malloc */ |
293 | /* and free routines. */ |
294 | #define malloc(a) decMalloc(a) |
295 | #define free(a) decFree(a) |
296 | #define DECFENCE 0x5a /* corruption detector */ |
297 | /* 'Our' malloc and free: */ |
298 | static void *decMalloc(size_t); |
299 | static void decFree(void *); |
300 | uIntuint32_t decAllocBytes=0; /* count of bytes allocated */ |
301 | /* Note that DECALLOC code only checks for storage buffer overflow. */ |
302 | /* To check for memory leaks, the decAllocBytes variable must be */ |
303 | /* checked to be 0 at appropriate times (e.g., after the test */ |
304 | /* harness completes a set of tests). This checking may be unreliable */ |
305 | /* if the testing is done in a multi-thread environment. */ |
306 | #endif |
307 | |
308 | #if DECCHECK0 |
309 | /* Optional checking routines. Enabling these means that decNumber */ |
310 | /* and decContext operands to operator routines are checked for */ |
311 | /* correctness. This roughly doubles the execution time of the */ |
312 | /* fastest routines (and adds 600+ bytes), so should not normally be */ |
313 | /* used in 'production'. */ |
314 | /* decCheckInexact is used to check that inexact results have a full */ |
315 | /* complement of digits (where appropriate -- this is not the case */ |
316 | /* for Quantize, for example) */ |
317 | #define DECUNRESU ((decNumber *)(void *)0xffffffff) |
318 | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) |
319 | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) |
320 | static Flaguint8_t decCheckOperands(decNumber *, const decNumber *, |
321 | const decNumber *, decContext *); |
322 | static Flaguint8_t decCheckNumber(const decNumber *); |
323 | static void decCheckInexact(const decNumber *, decContext *); |
324 | #endif |
325 | |
326 | #if DECTRACE0 || DECCHECK0 |
327 | /* Optional trace/debugging routines (may or may not be used) */ |
328 | void decNumberShow(const decNumber *); /* displays the components of a number */ |
329 | static void decDumpAr(char, const Unituint16_t *, Intint32_t); |
330 | #endif |
331 | |
332 | /* ================================================================== */ |
333 | /* Conversions */ |
334 | /* ================================================================== */ |
335 | |
336 | /* ------------------------------------------------------------------ */ |
337 | /* from-int32 -- conversion from Int or uInt */ |
338 | /* */ |
339 | /* dn is the decNumber to receive the integer */ |
340 | /* in or uin is the integer to be converted */ |
341 | /* returns dn */ |
342 | /* */ |
343 | /* No error is possible. */ |
344 | /* ------------------------------------------------------------------ */ |
345 | decNumber * decNumberFromInt32(decNumber *dn, Intint32_t in) { |
346 | uIntuint32_t unsig; |
347 | if (in>=0) unsig=in; |
348 | else { /* negative (possibly BADINT) */ |
349 | if (in==BADINT(int32_t)0x80000000) unsig=(uIntuint32_t)1073741824*2; /* special case */ |
350 | else unsig=-in; /* invert */ |
351 | } |
352 | /* in is now positive */ |
353 | decNumberFromUInt32(dn, unsig); |
354 | if (in<0) dn->bits=DECNEG0x80; /* sign needed */ |
355 | return dn; |
356 | } /* decNumberFromInt32 */ |
357 | |
358 | decNumber * decNumberFromUInt32(decNumber *dn, uIntuint32_t uin) { |
359 | Unituint16_t *up; /* work pointer */ |
360 | decNumberZero(dn); /* clean */ |
361 | if (uin==0) return dn; /* [or decGetDigits bad call] */ |
362 | for (up=dn->lsu; uin>0; up++) { |
363 | *up=(Unituint16_t)(uin%(DECDPUNMAX999+1)); |
364 | uin=uin/(DECDPUNMAX999+1); |
365 | } |
366 | dn->digits=decGetDigits(dn->lsu, up-dn->lsu); |
367 | return dn; |
368 | } /* decNumberFromUInt32 */ |
369 | |
370 | /* ------------------------------------------------------------------ */ |
371 | /* to-int32 -- conversion to Int or uInt */ |
372 | /* */ |
373 | /* dn is the decNumber to convert */ |
374 | /* set is the context for reporting errors */ |
375 | /* returns the converted decNumber, or 0 if Invalid is set */ |
376 | /* */ |
377 | /* Invalid is set if the decNumber does not have exponent==0 or if */ |
378 | /* it is a NaN, Infinite, or out-of-range. */ |
379 | /* ------------------------------------------------------------------ */ |
380 | Intint32_t decNumberToInt32(const decNumber *dn, decContext *set) { |
381 | #if DECCHECK0 |
382 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
383 | #endif |
384 | |
385 | /* special or too many digits, or bad exponent */ |
386 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10) || dn->digits>10 || dn->exponent!=0) ; /* bad */ |
387 | else { /* is a finite integer with 10 or fewer digits */ |
388 | Intint32_t d; /* work */ |
389 | const Unituint16_t *up; /* .. */ |
390 | uIntuint32_t hi=0, lo; /* .. */ |
391 | up=dn->lsu; /* -> lsu */ |
392 | lo=*up; /* get 1 to 9 digits */ |
393 | #if DECDPUN3>1 /* split to higher */ |
394 | hi=lo/10; |
395 | lo=lo%10; |
396 | #endif |
397 | up++; |
398 | /* collect remaining Units, if any, into hi */ |
399 | for (d=DECDPUN3; d<dn->digits; up++, d+=DECDPUN3) hi+=*up*powersDECPOWERS[d-1]; |
400 | /* now low has the lsd, hi the remainder */ |
401 | if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ |
402 | /* most-negative is a reprieve */ |
403 | if (dn->bits&DECNEG0x80 && hi==214748364 && lo==8) return 0x80000000; |
404 | /* bad -- drop through */ |
405 | } |
406 | else { /* in-range always */ |
407 | Intint32_t i=X10(hi)(((hi)<<1)+((hi)<<3))+lo; |
408 | if (dn->bits&DECNEG0x80) return -i; |
409 | return i; |
410 | } |
411 | } /* integer */ |
412 | decContextSetStatus(set, DEC_Invalid_operation0x00000080); /* [may not return] */ |
413 | return 0; |
414 | } /* decNumberToInt32 */ |
415 | |
416 | uIntuint32_t decNumberToUInt32(const decNumber *dn, decContext *set) { |
417 | #if DECCHECK0 |
418 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
419 | #endif |
420 | /* special or too many digits, or bad exponent, or negative (<0) */ |
421 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10) || dn->digits>10 || dn->exponent!=0 |
422 | || (dn->bits&DECNEG0x80 && !ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0)))); /* bad */ |
423 | else { /* is a finite integer with 10 or fewer digits */ |
424 | Intint32_t d; /* work */ |
425 | const Unituint16_t *up; /* .. */ |
426 | uIntuint32_t hi=0, lo; /* .. */ |
427 | up=dn->lsu; /* -> lsu */ |
428 | lo=*up; /* get 1 to 9 digits */ |
429 | #if DECDPUN3>1 /* split to higher */ |
430 | hi=lo/10; |
431 | lo=lo%10; |
432 | #endif |
433 | up++; |
434 | /* collect remaining Units, if any, into hi */ |
435 | for (d=DECDPUN3; d<dn->digits; up++, d+=DECDPUN3) hi+=*up*powersDECPOWERS[d-1]; |
436 | |
437 | /* now low has the lsd, hi the remainder */ |
438 | if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ |
439 | else return X10(hi)(((hi)<<1)+((hi)<<3))+lo; |
440 | } /* integer */ |
441 | decContextSetStatus(set, DEC_Invalid_operation0x00000080); /* [may not return] */ |
442 | return 0; |
443 | } /* decNumberToUInt32 */ |
444 | |
445 | /* ------------------------------------------------------------------ */ |
446 | /* to-scientific-string -- conversion to numeric string */ |
447 | /* to-engineering-string -- conversion to numeric string */ |
448 | /* */ |
449 | /* decNumberToString(dn, string); */ |
450 | /* decNumberToEngString(dn, string); */ |
451 | /* */ |
452 | /* dn is the decNumber to convert */ |
453 | /* string is the string where the result will be laid out */ |
454 | /* */ |
455 | /* string must be at least dn->digits+14 characters long */ |
456 | /* */ |
457 | /* No error is possible, and no status can be set. */ |
458 | /* ------------------------------------------------------------------ */ |
459 | char * decNumberToString(const decNumber *dn, char *string){ |
460 | decToString(dn, string, 0); |
461 | return string; |
462 | } /* DecNumberToString */ |
463 | |
464 | char * decNumberToEngString(const decNumber *dn, char *string){ |
465 | decToString(dn, string, 1); |
466 | return string; |
467 | } /* DecNumberToEngString */ |
468 | |
469 | /* ------------------------------------------------------------------ */ |
470 | /* to-number -- conversion from numeric string */ |
471 | /* */ |
472 | /* decNumberFromString -- convert string to decNumber */ |
473 | /* dn -- the number structure to fill */ |
474 | /* chars[] -- the string to convert ('\0' terminated) */ |
475 | /* set -- the context used for processing any error, */ |
476 | /* determining the maximum precision available */ |
477 | /* (set.digits), determining the maximum and minimum */ |
478 | /* exponent (set.emax and set.emin), determining if */ |
479 | /* extended values are allowed, and checking the */ |
480 | /* rounding mode if overflow occurs or rounding is */ |
481 | /* needed. */ |
482 | /* */ |
483 | /* The length of the coefficient and the size of the exponent are */ |
484 | /* checked by this routine, so the correct error (Underflow or */ |
485 | /* Overflow) can be reported or rounding applied, as necessary. */ |
486 | /* */ |
487 | /* If bad syntax is detected, the result will be a quiet NaN. */ |
488 | /* ------------------------------------------------------------------ */ |
489 | decNumber * decNumberFromString(decNumber *dn, const char chars[], |
490 | decContext *set) { |
491 | Intint32_t exponent=0; /* working exponent [assume 0] */ |
492 | uByteuint8_t bits=0; /* working flags [assume +ve] */ |
493 | Unituint16_t *res; /* where result will be built */ |
494 | Unituint16_t resbuff[SD2U(DECBUFFER+9)(((36 +9)+3 -1)/3)];/* local buffer in case need temporary */ |
495 | /* [+9 allows for ln() constants] */ |
496 | Unituint16_t *allocres=NULL((void*)0); /* -> allocated result, iff allocated */ |
497 | Intint32_t d=0; /* count of digits found in decimal part */ |
498 | const char *dotchar=NULL((void*)0); /* where dot was found */ |
499 | const char *cfirst=chars; /* -> first character of decimal part */ |
500 | const char *last=NULL((void*)0); /* -> last digit of decimal part */ |
501 | const char *c; /* work */ |
502 | Unituint16_t *up; /* .. */ |
503 | #if DECDPUN3>1 |
504 | Intint32_t cut, out; /* .. */ |
505 | #endif |
506 | Intint32_t residue; /* rounding residue */ |
507 | uIntuint32_t status=0; /* error code */ |
508 | |
509 | #if DECCHECK0 |
510 | if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) |
511 | return decNumberZero(dn); |
512 | #endif |
513 | |
514 | do { /* status & malloc protection */ |
515 | for (c=chars;; c++) { /* -> input character */ |
516 | if (*c>='0' && *c<='9') { /* test for Arabic digit */ |
517 | last=c; |
518 | d++; /* count of real digits */ |
519 | continue; /* still in decimal part */ |
520 | } |
521 | if (*c=='.' && dotchar==NULL((void*)0)) { /* first '.' */ |
522 | dotchar=c; /* record offset into decimal part */ |
523 | if (c==cfirst) cfirst++; /* first digit must follow */ |
524 | continue;} |
525 | if (c==chars) { /* first in string... */ |
526 | if (*c=='-') { /* valid - sign */ |
527 | cfirst++; |
528 | bits=DECNEG0x80; |
529 | continue;} |
530 | if (*c=='+') { /* valid + sign */ |
531 | cfirst++; |
532 | continue;} |
533 | } |
534 | /* *c is not a digit, or a valid +, -, or '.' */ |
535 | break; |
536 | } /* c */ |
537 | |
538 | if (last==NULL((void*)0)) { /* no digits yet */ |
539 | status=DEC_Conversion_syntax0x00000001;/* assume the worst */ |
540 | if (*c=='\0') break; /* and no more to come... */ |
541 | #if DECSUBSET0 |
542 | /* if subset then infinities and NaNs are not allowed */ |
543 | if (!set->extended) break; /* hopeless */ |
544 | #endif |
545 | /* Infinities and NaNs are possible, here */ |
546 | if (dotchar!=NULL((void*)0)) break; /* .. unless had a dot */ |
547 | decNumberZero(dn); /* be optimistic */ |
548 | if (decBiStr(c, "infinity", "INFINITY") |
549 | || decBiStr(c, "inf", "INF")) { |
550 | dn->bits=bits | DECINF0x40; |
551 | status=0; /* is OK */ |
552 | break; /* all done */ |
553 | } |
554 | /* a NaN expected */ |
555 | /* 2003.09.10 NaNs are now permitted to have a sign */ |
556 | dn->bits=bits | DECNAN0x20; /* assume simple NaN */ |
557 | if (*c=='s' || *c=='S') { /* looks like an sNaN */ |
558 | c++; |
559 | dn->bits=bits | DECSNAN0x10; |
560 | } |
561 | if (*c!='n' && *c!='N') break; /* check caseless "NaN" */ |
562 | c++; |
563 | if (*c!='a' && *c!='A') break; /* .. */ |
564 | c++; |
565 | if (*c!='n' && *c!='N') break; /* .. */ |
566 | c++; |
567 | /* now either nothing, or nnnn payload, expected */ |
568 | /* -> start of integer and skip leading 0s [including plain 0] */ |
569 | for (cfirst=c; *cfirst=='0';) cfirst++; |
570 | if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */ |
571 | status=0; /* it's good */ |
572 | break; /* .. */ |
573 | } |
574 | /* something other than 0s; setup last and d as usual [no dots] */ |
575 | for (c=cfirst;; c++, d++) { |
576 | if (*c<'0' || *c>'9') break; /* test for Arabic digit */ |
577 | last=c; |
578 | } |
579 | if (*c!='\0') break; /* not all digits */ |
580 | if (d>set->digits-1) { |
581 | /* [NB: payload in a decNumber can be full length unless */ |
582 | /* clamped, in which case can only be digits-1] */ |
583 | if (set->clamp) break; |
584 | if (d>set->digits) break; |
585 | } /* too many digits? */ |
586 | /* good; drop through to convert the integer to coefficient */ |
587 | status=0; /* syntax is OK */ |
588 | bits=dn->bits; /* for copy-back */ |
589 | } /* last==NULL */ |
590 | |
591 | else if (*c!='\0') { /* more to process... */ |
592 | /* had some digits; exponent is only valid sequence now */ |
593 | Flaguint8_t nege; /* 1=negative exponent */ |
594 | const char *firstexp; /* -> first significant exponent digit */ |
595 | status=DEC_Conversion_syntax0x00000001;/* assume the worst */ |
596 | if (*c!='e' && *c!='E') break; |
597 | /* Found 'e' or 'E' -- now process explicit exponent */ |
598 | /* 1998.07.11: sign no longer required */ |
599 | nege=0; |
600 | c++; /* to (possible) sign */ |
601 | if (*c=='-') {nege=1; c++;} |
602 | else if (*c=='+') c++; |
603 | if (*c=='\0') break; |
604 | |
605 | for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */ |
606 | firstexp=c; /* save exponent digit place */ |
607 | for (; ;c++) { |
608 | if (*c<'0' || *c>'9') break; /* not a digit */ |
609 | exponent=X10(exponent)(((exponent)<<1)+((exponent)<<3))+(Intint32_t)*c-(Intint32_t)'0'; |
610 | } /* c */ |
611 | /* if not now on a '\0', *c must not be a digit */ |
612 | if (*c!='\0') break; |
613 | |
614 | /* (this next test must be after the syntax checks) */ |
615 | /* if it was too long the exponent may have wrapped, so check */ |
616 | /* carefully and set it to a certain overflow if wrap possible */ |
617 | if (c>=firstexp+9+1) { |
618 | if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE999999999*2; |
619 | /* [up to 1999999999 is OK, for example 1E-1000000998] */ |
620 | } |
621 | if (nege) exponent=-exponent; /* was negative */ |
622 | status=0; /* is OK */ |
623 | } /* stuff after digits */ |
624 | |
625 | /* Here when whole string has been inspected; syntax is good */ |
626 | /* cfirst->first digit (never dot), last->last digit (ditto) */ |
627 | |
628 | /* strip leading zeros/dot [leave final 0 if all 0's] */ |
629 | if (*cfirst=='0') { /* [cfirst has stepped over .] */ |
630 | for (c=cfirst; c<last; c++, cfirst++) { |
631 | if (*c=='.') continue; /* ignore dots */ |
632 | if (*c!='0') break; /* non-zero found */ |
633 | d--; /* 0 stripped */ |
634 | } /* c */ |
635 | #if DECSUBSET0 |
636 | /* make a rapid exit for easy zeros if !extended */ |
637 | if (*cfirst=='0' && !set->extended) { |
638 | decNumberZero(dn); /* clean result */ |
639 | break; /* [could be return] */ |
640 | } |
641 | #endif |
642 | } /* at least one leading 0 */ |
643 | |
644 | /* Handle decimal point... */ |
645 | if (dotchar!=NULL((void*)0) && dotchar<last) /* non-trailing '.' found? */ |
646 | exponent-=(last-dotchar); /* adjust exponent */ |
647 | /* [we can now ignore the .] */ |
648 | |
649 | /* OK, the digits string is good. Assemble in the decNumber, or in */ |
650 | /* a temporary units array if rounding is needed */ |
651 | if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */ |
652 | else { /* rounding needed */ |
653 | Intint32_t needbytes=D2U(d)((d)<=49?d2utable[d]:((d)+3 -1)/3)*sizeof(Unituint16_t);/* bytes needed */ |
654 | res=resbuff; /* assume use local buffer */ |
655 | if (needbytes>(Intint32_t)sizeof(resbuff)) { /* too big for local */ |
656 | allocres=(Unituint16_t *)malloc(needbytes); |
657 | if (allocres==NULL((void*)0)) {status|=DEC_Insufficient_storage0x00000010; break;} |
658 | res=allocres; |
659 | } |
660 | } |
661 | /* res now -> number lsu, buffer, or allocated storage for Unit array */ |
662 | |
663 | /* Place the coefficient into the selected Unit array */ |
664 | /* [this is often 70% of the cost of this function when DECDPUN>1] */ |
665 | #if DECDPUN3>1 |
666 | out=0; /* accumulator */ |
667 | up=res+D2U(d)((d)<=49?d2utable[d]:((d)+3 -1)/3)-1; /* -> msu */ |
668 | cut=d-(up-res)*DECDPUN3; /* digits in top unit */ |
669 | for (c=cfirst;; c++) { /* along the digits */ |
670 | if (*c=='.') continue; /* ignore '.' [don't decrement cut] */ |
671 | out=X10(out)(((out)<<1)+((out)<<3))+(Intint32_t)*c-(Intint32_t)'0'; |
672 | if (c==last) break; /* done [never get to trailing '.'] */ |
673 | cut--; |
674 | if (cut>0) continue; /* more for this unit */ |
675 | *up=(Unituint16_t)out; /* write unit */ |
676 | up--; /* prepare for unit below.. */ |
677 | cut=DECDPUN3; /* .. */ |
678 | out=0; /* .. */ |
679 | } /* c */ |
680 | *up=(Unituint16_t)out; /* write lsu */ |
681 | |
682 | #else |
683 | /* DECDPUN==1 */ |
684 | up=res; /* -> lsu */ |
685 | for (c=last; c>=cfirst; c--) { /* over each character, from least */ |
686 | if (*c=='.') continue; /* ignore . [don't step up] */ |
687 | *up=(Unituint16_t)((Intint32_t)*c-(Intint32_t)'0'); |
688 | up++; |
689 | } /* c */ |
690 | #endif |
691 | |
692 | dn->bits=bits; |
693 | dn->exponent=exponent; |
694 | dn->digits=d; |
695 | |
696 | /* if not in number (too long) shorten into the number */ |
697 | if (d>set->digits) { |
698 | residue=0; |
699 | decSetCoeff(dn, set, res, d, &residue, &status); |
700 | /* always check for overflow or subnormal and round as needed */ |
701 | decFinalize(dn, set, &residue, &status); |
702 | } |
703 | else { /* no rounding, but may still have overflow or subnormal */ |
704 | /* [these tests are just for performance; finalize repeats them] */ |
705 | if ((dn->exponent-1<set->emin-dn->digits) |
706 | || (dn->exponent-1>set->emax-set->digits)) { |
707 | residue=0; |
708 | decFinalize(dn, set, &residue, &status); |
709 | } |
710 | } |
711 | /* decNumberShow(dn); */ |
712 | } while(0); /* [for break] */ |
713 | |
714 | free(allocres); /* drop any storage used */ |
715 | if (status!=0) decStatus(dn, status, set); |
716 | return dn; |
717 | } /* decNumberFromString */ |
718 | |
719 | /* ================================================================== */ |
720 | /* Operators */ |
721 | /* ================================================================== */ |
722 | |
723 | /* ------------------------------------------------------------------ */ |
724 | /* decNumberAbs -- absolute value operator */ |
725 | /* */ |
726 | /* This computes C = abs(A) */ |
727 | /* */ |
728 | /* res is C, the result. C may be A */ |
729 | /* rhs is A */ |
730 | /* set is the context */ |
731 | /* */ |
732 | /* See also decNumberCopyAbs for a quiet bitwise version of this. */ |
733 | /* C must have space for set->digits digits. */ |
734 | /* ------------------------------------------------------------------ */ |
735 | /* This has the same effect as decNumberPlus unless A is negative, */ |
736 | /* in which case it has the same effect as decNumberMinus. */ |
737 | /* ------------------------------------------------------------------ */ |
738 | decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, |
739 | decContext *set) { |
740 | decNumber dzero; /* for 0 */ |
741 | uIntuint32_t status=0; /* accumulator */ |
742 | |
743 | #if DECCHECK0 |
744 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
745 | #endif |
746 | |
747 | decNumberZero(&dzero); /* set 0 */ |
748 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
749 | decAddOp(res, &dzero, rhs, set, (uByteuint8_t)(rhs->bits & DECNEG0x80), &status); |
750 | if (status!=0) decStatus(res, status, set); |
751 | #if DECCHECK0 |
752 | decCheckInexact(res, set); |
753 | #endif |
754 | return res; |
755 | } /* decNumberAbs */ |
756 | |
757 | /* ------------------------------------------------------------------ */ |
758 | /* decNumberAdd -- add two Numbers */ |
759 | /* */ |
760 | /* This computes C = A + B */ |
761 | /* */ |
762 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
763 | /* lhs is A */ |
764 | /* rhs is B */ |
765 | /* set is the context */ |
766 | /* */ |
767 | /* C must have space for set->digits digits. */ |
768 | /* ------------------------------------------------------------------ */ |
769 | /* This just calls the routine shared with Subtract */ |
770 | decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, |
771 | const decNumber *rhs, decContext *set) { |
772 | uIntuint32_t status=0; /* accumulator */ |
773 | decAddOp(res, lhs, rhs, set, 0, &status); |
774 | if (status!=0) decStatus(res, status, set); |
775 | #if DECCHECK0 |
776 | decCheckInexact(res, set); |
777 | #endif |
778 | return res; |
779 | } /* decNumberAdd */ |
780 | |
781 | /* ------------------------------------------------------------------ */ |
782 | /* decNumberAnd -- AND two Numbers, digitwise */ |
783 | /* */ |
784 | /* This computes C = A & B */ |
785 | /* */ |
786 | /* res is C, the result. C may be A and/or B (e.g., X=X&X) */ |
787 | /* lhs is A */ |
788 | /* rhs is B */ |
789 | /* set is the context (used for result length and error report) */ |
790 | /* */ |
791 | /* C must have space for set->digits digits. */ |
792 | /* */ |
793 | /* Logical function restrictions apply (see above); a NaN is */ |
794 | /* returned with Invalid_operation if a restriction is violated. */ |
795 | /* ------------------------------------------------------------------ */ |
796 | decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, |
797 | const decNumber *rhs, decContext *set) { |
798 | const Unituint16_t *ua, *ub; /* -> operands */ |
799 | const Unituint16_t *msua, *msub; /* -> operand msus */ |
800 | Unituint16_t *uc, *msuc; /* -> result and its msu */ |
801 | Intint32_t msudigs; /* digits in res msu */ |
802 | #if DECCHECK0 |
803 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
804 | #endif |
805 | |
806 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) |
807 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
808 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
809 | return res; |
810 | } |
811 | |
812 | /* operands are valid */ |
813 | ua=lhs->lsu; /* bottom-up */ |
814 | ub=rhs->lsu; /* .. */ |
815 | uc=res->lsu; /* .. */ |
816 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)-1; /* -> msu of lhs */ |
817 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1; /* -> msu of rhs */ |
818 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+3 -1)/3)-1; /* -> msu of result */ |
819 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
820 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
821 | Unituint16_t a, b; /* extract units */ |
822 | if (ua>msua) a=0; |
823 | else a=*ua; |
824 | if (ub>msub) b=0; |
825 | else b=*ub; |
826 | *uc=0; /* can now write back */ |
827 | if (a|b) { /* maybe 1 bits to examine */ |
828 | Intint32_t i, j; |
829 | *uc=0; /* can now write back */ |
830 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
831 | for (i=0; i<DECDPUN3; i++) { |
832 | if (a&b&1) *uc=*uc+(Unituint16_t)powersDECPOWERS[i]; /* effect AND */ |
833 | j=a%10; |
834 | a=a/10; |
835 | j|=b%10; |
836 | b=b/10; |
837 | if (j>1) { |
838 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
839 | return res; |
840 | } |
841 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
842 | } /* each digit */ |
843 | } /* both OK */ |
844 | } /* each unit */ |
845 | /* [here uc-1 is the msu of the result] */ |
846 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
847 | res->exponent=0; /* integer */ |
848 | res->bits=0; /* sign=0 */ |
849 | return res; /* [no status to set] */ |
850 | } /* decNumberAnd */ |
851 | |
852 | /* ------------------------------------------------------------------ */ |
853 | /* decNumberCompare -- compare two Numbers */ |
854 | /* */ |
855 | /* This computes C = A ? B */ |
856 | /* */ |
857 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
858 | /* lhs is A */ |
859 | /* rhs is B */ |
860 | /* set is the context */ |
861 | /* */ |
862 | /* C must have space for one digit (or NaN). */ |
863 | /* ------------------------------------------------------------------ */ |
864 | decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, |
865 | const decNumber *rhs, decContext *set) { |
866 | uIntuint32_t status=0; /* accumulator */ |
867 | decCompareOp(res, lhs, rhs, set, COMPARE0x01, &status); |
868 | if (status!=0) decStatus(res, status, set); |
869 | return res; |
870 | } /* decNumberCompare */ |
871 | |
872 | /* ------------------------------------------------------------------ */ |
873 | /* decNumberCompareSignal -- compare, signalling on all NaNs */ |
874 | /* */ |
875 | /* This computes C = A ? B */ |
876 | /* */ |
877 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
878 | /* lhs is A */ |
879 | /* rhs is B */ |
880 | /* set is the context */ |
881 | /* */ |
882 | /* C must have space for one digit (or NaN). */ |
883 | /* ------------------------------------------------------------------ */ |
884 | decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, |
885 | const decNumber *rhs, decContext *set) { |
886 | uIntuint32_t status=0; /* accumulator */ |
887 | decCompareOp(res, lhs, rhs, set, COMPSIG0x06, &status); |
888 | if (status!=0) decStatus(res, status, set); |
889 | return res; |
890 | } /* decNumberCompareSignal */ |
891 | |
892 | /* ------------------------------------------------------------------ */ |
893 | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ |
894 | /* */ |
895 | /* This computes C = A ? B, under total ordering */ |
896 | /* */ |
897 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
898 | /* lhs is A */ |
899 | /* rhs is B */ |
900 | /* set is the context */ |
901 | /* */ |
902 | /* C must have space for one digit; the result will always be one of */ |
903 | /* -1, 0, or 1. */ |
904 | /* ------------------------------------------------------------------ */ |
905 | decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, |
906 | const decNumber *rhs, decContext *set) { |
907 | uIntuint32_t status=0; /* accumulator */ |
908 | decCompareOp(res, lhs, rhs, set, COMPTOTAL0x04, &status); |
909 | if (status!=0) decStatus(res, status, set); |
910 | return res; |
911 | } /* decNumberCompareTotal */ |
912 | |
913 | /* ------------------------------------------------------------------ */ |
914 | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */ |
915 | /* */ |
916 | /* This computes C = |A| ? |B|, under total ordering */ |
917 | /* */ |
918 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
919 | /* lhs is A */ |
920 | /* rhs is B */ |
921 | /* set is the context */ |
922 | /* */ |
923 | /* C must have space for one digit; the result will always be one of */ |
924 | /* -1, 0, or 1. */ |
925 | /* ------------------------------------------------------------------ */ |
926 | decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, |
927 | const decNumber *rhs, decContext *set) { |
928 | uIntuint32_t status=0; /* accumulator */ |
929 | uIntuint32_t needbytes; /* for space calculations */ |
930 | decNumber bufa[D2N(DECBUFFER+1)(((((((36 +1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))];/* +1 in case DECBUFFER=0 */ |
931 | decNumber *allocbufa=NULL((void*)0); /* -> allocated bufa, iff allocated */ |
932 | decNumber bufb[D2N(DECBUFFER+1)(((((((36 +1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
933 | decNumber *allocbufb=NULL((void*)0); /* -> allocated bufb, iff allocated */ |
934 | decNumber *a, *b; /* temporary pointers */ |
935 | |
936 | #if DECCHECK0 |
937 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
938 | #endif |
939 | |
940 | do { /* protect allocated storage */ |
941 | /* if either is negative, take a copy and absolute */ |
942 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { /* lhs<0 */ |
943 | a=bufa; |
944 | needbytes=sizeof(decNumber)+(D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)-1)*sizeof(Unituint16_t); |
945 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
946 | allocbufa=(decNumber *)malloc(needbytes); |
947 | if (allocbufa==NULL((void*)0)) { /* hopeless -- abandon */ |
948 | status|=DEC_Insufficient_storage0x00000010; |
949 | break;} |
950 | a=allocbufa; /* use the allocated space */ |
951 | } |
952 | decNumberCopy(a, lhs); /* copy content */ |
953 | a->bits&=~DECNEG0x80; /* .. and clear the sign */ |
954 | lhs=a; /* use copy from here on */ |
955 | } |
956 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* rhs<0 */ |
957 | b=bufb; |
958 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1)*sizeof(Unituint16_t); |
959 | if (needbytes>sizeof(bufb)) { /* need malloc space */ |
960 | allocbufb=(decNumber *)malloc(needbytes); |
961 | if (allocbufb==NULL((void*)0)) { /* hopeless -- abandon */ |
962 | status|=DEC_Insufficient_storage0x00000010; |
963 | break;} |
964 | b=allocbufb; /* use the allocated space */ |
965 | } |
966 | decNumberCopy(b, rhs); /* copy content */ |
967 | b->bits&=~DECNEG0x80; /* .. and clear the sign */ |
968 | rhs=b; /* use copy from here on */ |
969 | } |
970 | decCompareOp(res, lhs, rhs, set, COMPTOTAL0x04, &status); |
971 | } while(0); /* end protected */ |
972 | |
973 | free(allocbufa); /* drop any storage used */ |
974 | free(allocbufb); /* .. */ |
975 | if (status!=0) decStatus(res, status, set); |
976 | return res; |
977 | } /* decNumberCompareTotalMag */ |
978 | |
979 | /* ------------------------------------------------------------------ */ |
980 | /* decNumberDivide -- divide one number by another */ |
981 | /* */ |
982 | /* This computes C = A / B */ |
983 | /* */ |
984 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
985 | /* lhs is A */ |
986 | /* rhs is B */ |
987 | /* set is the context */ |
988 | /* */ |
989 | /* C must have space for set->digits digits. */ |
990 | /* ------------------------------------------------------------------ */ |
991 | decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, |
992 | const decNumber *rhs, decContext *set) { |
993 | uIntuint32_t status=0; /* accumulator */ |
994 | decDivideOp(res, lhs, rhs, set, DIVIDE0x80, &status); |
995 | if (status!=0) decStatus(res, status, set); |
996 | #if DECCHECK0 |
997 | decCheckInexact(res, set); |
998 | #endif |
999 | return res; |
1000 | } /* decNumberDivide */ |
1001 | |
1002 | /* ------------------------------------------------------------------ */ |
1003 | /* decNumberDivideInteger -- divide and return integer quotient */ |
1004 | /* */ |
1005 | /* This computes C = A # B, where # is the integer divide operator */ |
1006 | /* */ |
1007 | /* res is C, the result. C may be A and/or B (e.g., X=X#X) */ |
1008 | /* lhs is A */ |
1009 | /* rhs is B */ |
1010 | /* set is the context */ |
1011 | /* */ |
1012 | /* C must have space for set->digits digits. */ |
1013 | /* ------------------------------------------------------------------ */ |
1014 | decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, |
1015 | const decNumber *rhs, decContext *set) { |
1016 | uIntuint32_t status=0; /* accumulator */ |
1017 | decDivideOp(res, lhs, rhs, set, DIVIDEINT0x20, &status); |
1018 | if (status!=0) decStatus(res, status, set); |
1019 | return res; |
1020 | } /* decNumberDivideInteger */ |
1021 | |
1022 | /* ------------------------------------------------------------------ */ |
1023 | /* decNumberExp -- exponentiation */ |
1024 | /* */ |
1025 | /* This computes C = exp(A) */ |
1026 | /* */ |
1027 | /* res is C, the result. C may be A */ |
1028 | /* rhs is A */ |
1029 | /* set is the context; note that rounding mode has no effect */ |
1030 | /* */ |
1031 | /* C must have space for set->digits digits. */ |
1032 | /* */ |
1033 | /* Mathematical function restrictions apply (see above); a NaN is */ |
1034 | /* returned with Invalid_operation if a restriction is violated. */ |
1035 | /* */ |
1036 | /* Finite results will always be full precision and Inexact, except */ |
1037 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
1038 | /* */ |
1039 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1040 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1041 | /* error in rare cases. */ |
1042 | /* ------------------------------------------------------------------ */ |
1043 | /* This is a wrapper for decExpOp which can handle the slightly wider */ |
1044 | /* (double) range needed by Ln (which has to be able to calculate */ |
1045 | /* exp(-a) where a can be the tiniest number (Ntiny). */ |
1046 | /* ------------------------------------------------------------------ */ |
1047 | decNumber * decNumberExp(decNumber *res, const decNumber *rhs, |
1048 | decContext *set) { |
1049 | uIntuint32_t status=0; /* accumulator */ |
1050 | #if DECSUBSET0 |
1051 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rounded rhs allocated */ |
1052 | #endif |
1053 | |
1054 | #if DECCHECK0 |
1055 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1056 | #endif |
1057 | |
1058 | /* Check restrictions; these restrictions ensure that if h=8 (see */ |
1059 | /* decExpOp) then the result will either overflow or underflow to 0. */ |
1060 | /* Other math functions restrict the input range, too, for inverses. */ |
1061 | /* If not violated then carry out the operation. */ |
1062 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
1063 | #if DECSUBSET0 |
1064 | if (!set->extended) { |
1065 | /* reduce operand and set lostDigits status, as needed */ |
1066 | if (rhs->digits>set->digits) { |
1067 | allocrhs=decRoundOperand(rhs, set, &status); |
1068 | if (allocrhs==NULL((void*)0)) break; |
1069 | rhs=allocrhs; |
1070 | } |
1071 | } |
1072 | #endif |
1073 | decExpOp(res, rhs, set, &status); |
1074 | } while(0); /* end protected */ |
1075 | |
1076 | #if DECSUBSET0 |
1077 | free(allocrhs); /* drop any storage used */ |
1078 | #endif |
1079 | /* apply significant status */ |
1080 | if (status!=0) decStatus(res, status, set); |
1081 | #if DECCHECK0 |
1082 | decCheckInexact(res, set); |
1083 | #endif |
1084 | return res; |
1085 | } /* decNumberExp */ |
1086 | |
1087 | /* ------------------------------------------------------------------ */ |
1088 | /* decNumberFMA -- fused multiply add */ |
1089 | /* */ |
1090 | /* This computes D = (A * B) + C with only one rounding */ |
1091 | /* */ |
1092 | /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */ |
1093 | /* lhs is A */ |
1094 | /* rhs is B */ |
1095 | /* fhs is C [far hand side] */ |
1096 | /* set is the context */ |
1097 | /* */ |
1098 | /* Mathematical function restrictions apply (see above); a NaN is */ |
1099 | /* returned with Invalid_operation if a restriction is violated. */ |
1100 | /* */ |
1101 | /* C must have space for set->digits digits. */ |
1102 | /* ------------------------------------------------------------------ */ |
1103 | decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, |
1104 | const decNumber *rhs, const decNumber *fhs, |
1105 | decContext *set) { |
1106 | uIntuint32_t status=0; /* accumulator */ |
1107 | decContext dcmul; /* context for the multiplication */ |
1108 | uIntuint32_t needbytes; /* for space calculations */ |
1109 | decNumber bufa[D2N(DECBUFFER*2+1)(((((((36*2+1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; |
1110 | decNumber *allocbufa=NULL((void*)0); /* -> allocated bufa, iff allocated */ |
1111 | decNumber *acc; /* accumulator pointer */ |
1112 | decNumber dzero; /* work */ |
1113 | |
1114 | #if DECCHECK0 |
1115 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1116 | if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; |
1117 | #endif |
1118 | |
1119 | do { /* protect allocated storage */ |
1120 | #if DECSUBSET0 |
1121 | if (!set->extended) { /* [undefined if subset] */ |
1122 | status|=DEC_Invalid_operation0x00000080; |
1123 | break;} |
1124 | #endif |
1125 | /* Check math restrictions [these ensure no overflow or underflow] */ |
1126 | if ((!decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(lhs, set, &status)) |
1127 | || (!decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(rhs, set, &status)) |
1128 | || (!decNumberIsSpecial(fhs)(((fhs)->bits&(0x40|0x20|0x10))!=0) && decCheckMath(fhs, set, &status))) break; |
1129 | /* set up context for multiply */ |
1130 | dcmul=*set; |
1131 | dcmul.digits=lhs->digits+rhs->digits; /* just enough */ |
1132 | /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ |
1133 | dcmul.emax=DEC_MAX_EMAX999999999; /* effectively unbounded .. */ |
1134 | dcmul.emin=DEC_MIN_EMIN-999999999; /* [thanks to Math restrictions] */ |
1135 | /* set up decNumber space to receive the result of the multiply */ |
1136 | acc=bufa; /* may fit */ |
1137 | needbytes=sizeof(decNumber)+(D2U(dcmul.digits)((dcmul.digits)<=49?d2utable[dcmul.digits]:((dcmul.digits) +3 -1)/3)-1)*sizeof(Unituint16_t); |
1138 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
1139 | allocbufa=(decNumber *)malloc(needbytes); |
1140 | if (allocbufa==NULL((void*)0)) { /* hopeless -- abandon */ |
1141 | status|=DEC_Insufficient_storage0x00000010; |
1142 | break;} |
1143 | acc=allocbufa; /* use the allocated space */ |
1144 | } |
1145 | /* multiply with extended range and necessary precision */ |
1146 | /*printf("emin=%ld\n", dcmul.emin); */ |
1147 | decMultiplyOp(acc, lhs, rhs, &dcmul, &status); |
1148 | /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ |
1149 | /* status; if either is seen than ignore fhs (in case it is */ |
1150 | /* another sNaN) and set acc to NaN unless we had an sNaN */ |
1151 | /* [decMultiplyOp leaves that to caller] */ |
1152 | /* Note sNaN has to go through addOp to shorten payload if */ |
1153 | /* necessary */ |
1154 | if ((status&DEC_Invalid_operation0x00000080)!=0) { |
1155 | if (!(status&DEC_sNaN0x40000000)) { /* but be true invalid */ |
1156 | decNumberZero(res); /* acc not yet set */ |
1157 | res->bits=DECNAN0x20; |
1158 | break; |
1159 | } |
1160 | decNumberZero(&dzero); /* make 0 (any non-NaN would do) */ |
1161 | fhs=&dzero; /* use that */ |
1162 | } |
1163 | #if DECCHECK0 |
1164 | else { /* multiply was OK */ |
1165 | if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); |
1166 | } |
1167 | #endif |
1168 | /* add the third operand and result -> res, and all is done */ |
1169 | decAddOp(res, acc, fhs, set, 0, &status); |
1170 | } while(0); /* end protected */ |
1171 | |
1172 | free(allocbufa); /* drop any storage used */ |
1173 | if (status!=0) decStatus(res, status, set); |
1174 | #if DECCHECK0 |
1175 | decCheckInexact(res, set); |
1176 | #endif |
1177 | return res; |
1178 | } /* decNumberFMA */ |
1179 | |
1180 | /* ------------------------------------------------------------------ */ |
1181 | /* decNumberInvert -- invert a Number, digitwise */ |
1182 | /* */ |
1183 | /* This computes C = ~A */ |
1184 | /* */ |
1185 | /* res is C, the result. C may be A (e.g., X=~X) */ |
1186 | /* rhs is A */ |
1187 | /* set is the context (used for result length and error report) */ |
1188 | /* */ |
1189 | /* C must have space for set->digits digits. */ |
1190 | /* */ |
1191 | /* Logical function restrictions apply (see above); a NaN is */ |
1192 | /* returned with Invalid_operation if a restriction is violated. */ |
1193 | /* ------------------------------------------------------------------ */ |
1194 | decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, |
1195 | decContext *set) { |
1196 | const Unituint16_t *ua, *msua; /* -> operand and its msu */ |
1197 | Unituint16_t *uc, *msuc; /* -> result and its msu */ |
1198 | Intint32_t msudigs; /* digits in res msu */ |
1199 | #if DECCHECK0 |
1200 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1201 | #endif |
1202 | |
1203 | if (rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
1204 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
1205 | return res; |
1206 | } |
1207 | /* operand is valid */ |
1208 | ua=rhs->lsu; /* bottom-up */ |
1209 | uc=res->lsu; /* .. */ |
1210 | msua=ua+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1; /* -> msu of rhs */ |
1211 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+3 -1)/3)-1; /* -> msu of result */ |
1212 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
1213 | for (; uc<=msuc; ua++, uc++) { /* Unit loop */ |
1214 | Unituint16_t a; /* extract unit */ |
1215 | Intint32_t i, j; /* work */ |
1216 | if (ua>msua) a=0; |
1217 | else a=*ua; |
1218 | *uc=0; /* can now write back */ |
1219 | /* always need to examine all bits in rhs */ |
1220 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
1221 | for (i=0; i<DECDPUN3; i++) { |
1222 | if ((~a)&1) *uc=*uc+(Unituint16_t)powersDECPOWERS[i]; /* effect INVERT */ |
1223 | j=a%10; |
1224 | a=a/10; |
1225 | if (j>1) { |
1226 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
1227 | return res; |
1228 | } |
1229 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
1230 | } /* each digit */ |
1231 | } /* each unit */ |
1232 | /* [here uc-1 is the msu of the result] */ |
1233 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
1234 | res->exponent=0; /* integer */ |
1235 | res->bits=0; /* sign=0 */ |
1236 | return res; /* [no status to set] */ |
1237 | } /* decNumberInvert */ |
1238 | |
1239 | /* ------------------------------------------------------------------ */ |
1240 | /* decNumberLn -- natural logarithm */ |
1241 | /* */ |
1242 | /* This computes C = ln(A) */ |
1243 | /* */ |
1244 | /* res is C, the result. C may be A */ |
1245 | /* rhs is A */ |
1246 | /* set is the context; note that rounding mode has no effect */ |
1247 | /* */ |
1248 | /* C must have space for set->digits digits. */ |
1249 | /* */ |
1250 | /* Notable cases: */ |
1251 | /* A<0 -> Invalid */ |
1252 | /* A=0 -> -Infinity (Exact) */ |
1253 | /* A=+Infinity -> +Infinity (Exact) */ |
1254 | /* A=1 exactly -> 0 (Exact) */ |
1255 | /* */ |
1256 | /* Mathematical function restrictions apply (see above); a NaN is */ |
1257 | /* returned with Invalid_operation if a restriction is violated. */ |
1258 | /* */ |
1259 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1260 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1261 | /* error in rare cases. */ |
1262 | /* ------------------------------------------------------------------ */ |
1263 | /* This is a wrapper for decLnOp which can handle the slightly wider */ |
1264 | /* (+11) range needed by Ln, Log10, etc. (which may have to be able */ |
1265 | /* to calculate at p+e+2). */ |
1266 | /* ------------------------------------------------------------------ */ |
1267 | decNumber * decNumberLn(decNumber *res, const decNumber *rhs, |
1268 | decContext *set) { |
1269 | uIntuint32_t status=0; /* accumulator */ |
1270 | #if DECSUBSET0 |
1271 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rounded rhs allocated */ |
1272 | #endif |
1273 | |
1274 | #if DECCHECK0 |
1275 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1276 | #endif |
1277 | |
1278 | /* Check restrictions; this is a math function; if not violated */ |
1279 | /* then carry out the operation. */ |
1280 | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ |
1281 | #if DECSUBSET0 |
1282 | if (!set->extended) { |
1283 | /* reduce operand and set lostDigits status, as needed */ |
1284 | if (rhs->digits>set->digits) { |
1285 | allocrhs=decRoundOperand(rhs, set, &status); |
1286 | if (allocrhs==NULL((void*)0)) break; |
1287 | rhs=allocrhs; |
1288 | } |
1289 | /* special check in subset for rhs=0 */ |
1290 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* +/- zeros -> error */ |
1291 | status|=DEC_Invalid_operation0x00000080; |
1292 | break;} |
1293 | } /* extended=0 */ |
1294 | #endif |
1295 | decLnOp(res, rhs, set, &status); |
1296 | } while(0); /* end protected */ |
1297 | |
1298 | #if DECSUBSET0 |
1299 | free(allocrhs); /* drop any storage used */ |
1300 | #endif |
1301 | /* apply significant status */ |
1302 | if (status!=0) decStatus(res, status, set); |
1303 | #if DECCHECK0 |
1304 | decCheckInexact(res, set); |
1305 | #endif |
1306 | return res; |
1307 | } /* decNumberLn */ |
1308 | |
1309 | /* ------------------------------------------------------------------ */ |
1310 | /* decNumberLogB - get adjusted exponent, by 754 rules */ |
1311 | /* */ |
1312 | /* This computes C = adjustedexponent(A) */ |
1313 | /* */ |
1314 | /* res is C, the result. C may be A */ |
1315 | /* rhs is A */ |
1316 | /* set is the context, used only for digits and status */ |
1317 | /* */ |
1318 | /* C must have space for 10 digits (A might have 10**9 digits and */ |
1319 | /* an exponent of +999999999, or one digit and an exponent of */ |
1320 | /* -1999999999). */ |
1321 | /* */ |
1322 | /* This returns the adjusted exponent of A after (in theory) padding */ |
1323 | /* with zeros on the right to set->digits digits while keeping the */ |
1324 | /* same value. The exponent is not limited by emin/emax. */ |
1325 | /* */ |
1326 | /* Notable cases: */ |
1327 | /* A<0 -> Use |A| */ |
1328 | /* A=0 -> -Infinity (Division by zero) */ |
1329 | /* A=Infinite -> +Infinity (Exact) */ |
1330 | /* A=1 exactly -> 0 (Exact) */ |
1331 | /* NaNs are propagated as usual */ |
1332 | /* ------------------------------------------------------------------ */ |
1333 | decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, |
1334 | decContext *set) { |
1335 | uIntuint32_t status=0; /* accumulator */ |
1336 | |
1337 | #if DECCHECK0 |
1338 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1339 | #endif |
1340 | |
1341 | /* NaNs as usual; Infinities return +Infinity; 0->oops */ |
1342 | if (decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) decNaNs(res, rhs, NULL((void*)0), set, &status); |
1343 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) decNumberCopyAbs(res, rhs); |
1344 | else if (decNumberIsZero(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { |
1345 | decNumberZero(res); /* prepare for Infinity */ |
1346 | res->bits=DECNEG0x80|DECINF0x40; /* -Infinity */ |
1347 | status|=DEC_Division_by_zero0x00000002; /* as per 754 */ |
1348 | } |
1349 | else { /* finite non-zero */ |
1350 | Intint32_t ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
1351 | decNumberFromInt32(res, ae); /* lay it out */ |
1352 | } |
1353 | |
1354 | if (status!=0) decStatus(res, status, set); |
1355 | return res; |
1356 | } /* decNumberLogB */ |
1357 | |
1358 | /* ------------------------------------------------------------------ */ |
1359 | /* decNumberLog10 -- logarithm in base 10 */ |
1360 | /* */ |
1361 | /* This computes C = log10(A) */ |
1362 | /* */ |
1363 | /* res is C, the result. C may be A */ |
1364 | /* rhs is A */ |
1365 | /* set is the context; note that rounding mode has no effect */ |
1366 | /* */ |
1367 | /* C must have space for set->digits digits. */ |
1368 | /* */ |
1369 | /* Notable cases: */ |
1370 | /* A<0 -> Invalid */ |
1371 | /* A=0 -> -Infinity (Exact) */ |
1372 | /* A=+Infinity -> +Infinity (Exact) */ |
1373 | /* A=10**n (if n is an integer) -> n (Exact) */ |
1374 | /* */ |
1375 | /* Mathematical function restrictions apply (see above); a NaN is */ |
1376 | /* returned with Invalid_operation if a restriction is violated. */ |
1377 | /* */ |
1378 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
1379 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1380 | /* error in rare cases. */ |
1381 | /* ------------------------------------------------------------------ */ |
1382 | /* This calculates ln(A)/ln(10) using appropriate precision. For */ |
1383 | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */ |
1384 | /* requested digits and t is the number of digits in the exponent */ |
1385 | /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */ |
1386 | /* fastpath in decLnOp. The final division is done to the requested */ |
1387 | /* precision. */ |
1388 | /* ------------------------------------------------------------------ */ |
1389 | decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, |
1390 | decContext *set) { |
1391 | uIntuint32_t status=0, ignore=0; /* status accumulators */ |
1392 | uIntuint32_t needbytes; /* for space calculations */ |
1393 | Intint32_t p; /* working precision */ |
1394 | Intint32_t t; /* digits in exponent of A */ |
1395 | |
1396 | /* buffers for a and b working decimals */ |
1397 | /* (adjustment calculator, same size) */ |
1398 | decNumber bufa[D2N(DECBUFFER+2)(((((((36 +2)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
1399 | decNumber *allocbufa=NULL((void*)0); /* -> allocated bufa, iff allocated */ |
1400 | decNumber *a=bufa; /* temporary a */ |
1401 | decNumber bufb[D2N(DECBUFFER+2)(((((((36 +2)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
1402 | decNumber *allocbufb=NULL((void*)0); /* -> allocated bufb, iff allocated */ |
1403 | decNumber *b=bufb; /* temporary b */ |
1404 | decNumber bufw[D2N(10)(((((((10)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber)*2- 1)/sizeof(decNumber))]; /* working 2-10 digit number */ |
1405 | decNumber *w=bufw; /* .. */ |
1406 | #if DECSUBSET0 |
1407 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rounded rhs allocated */ |
1408 | #endif |
1409 | |
1410 | decContext aset; /* working context */ |
1411 | |
1412 | #if DECCHECK0 |
1413 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1414 | #endif |
1415 | |
1416 | /* Check restrictions; this is a math function; if not violated */ |
1417 | /* then carry out the operation. */ |
1418 | if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ |
1419 | #if DECSUBSET0 |
1420 | if (!set->extended) { |
1421 | /* reduce operand and set lostDigits status, as needed */ |
1422 | if (rhs->digits>set->digits) { |
1423 | allocrhs=decRoundOperand(rhs, set, &status); |
1424 | if (allocrhs==NULL((void*)0)) break; |
1425 | rhs=allocrhs; |
1426 | } |
1427 | /* special check in subset for rhs=0 */ |
1428 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* +/- zeros -> error */ |
1429 | status|=DEC_Invalid_operation0x00000080; |
1430 | break;} |
1431 | } /* extended=0 */ |
1432 | #endif |
1433 | |
1434 | decContextDefault(&aset, DEC_INIT_DECIMAL6464); /* clean context */ |
1435 | |
1436 | /* handle exact powers of 10; only check if +ve finite */ |
1437 | if (!(rhs->bits&(DECNEG0x80|DECSPECIAL(0x40|0x20|0x10))) && !ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { |
1438 | Intint32_t residue=0; /* (no residue) */ |
1439 | uIntuint32_t copystat=0; /* clean status */ |
1440 | |
1441 | /* round to a single digit... */ |
1442 | aset.digits=1; |
1443 | decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ |
1444 | /* if exact and the digit is 1, rhs is a power of 10 */ |
1445 | if (!(copystat&DEC_Inexact0x00000020) && w->lsu[0]==1) { |
1446 | /* the exponent, conveniently, is the power of 10; making */ |
1447 | /* this the result needs a little care as it might not fit, */ |
1448 | /* so first convert it into the working number, and then move */ |
1449 | /* to res */ |
1450 | decNumberFromInt32(w, w->exponent); |
1451 | residue=0; |
1452 | decCopyFit(res, w, set, &residue, &status); /* copy & round */ |
1453 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* cleanup/set flags */ |
1454 | break; |
1455 | } /* not a power of 10 */ |
1456 | } /* not a candidate for exact */ |
1457 | |
1458 | /* simplify the information-content calculation to use 'total */ |
1459 | /* number of digits in a, including exponent' as compared to the */ |
1460 | /* requested digits, as increasing this will only rarely cost an */ |
1461 | /* iteration in ln(a) anyway */ |
1462 | t=6; /* it can never be >6 */ |
1463 | |
1464 | /* allocate space when needed... */ |
1465 | p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; |
1466 | needbytes=sizeof(decNumber)+(D2U(p)((p)<=49?d2utable[p]:((p)+3 -1)/3)-1)*sizeof(Unituint16_t); |
1467 | if (needbytes>sizeof(bufa)) { /* need malloc space */ |
1468 | allocbufa=(decNumber *)malloc(needbytes); |
1469 | if (allocbufa==NULL((void*)0)) { /* hopeless -- abandon */ |
1470 | status|=DEC_Insufficient_storage0x00000010; |
1471 | break;} |
1472 | a=allocbufa; /* use the allocated space */ |
1473 | } |
1474 | aset.digits=p; /* as calculated */ |
1475 | aset.emax=DEC_MAX_MATH999999; /* usual bounds */ |
1476 | aset.emin=-DEC_MAX_MATH999999; /* .. */ |
1477 | aset.clamp=0; /* and no concrete format */ |
1478 | decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */ |
1479 | |
1480 | /* skip the division if the result so far is infinite, NaN, or */ |
1481 | /* zero, or there was an error; note NaN from sNaN needs copy */ |
1482 | if (status&DEC_NaNs(0x00000001 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000040 | 0x00000080) && !(status&DEC_sNaN0x40000000)) break; |
1483 | if (a->bits&DECSPECIAL(0x40|0x20|0x10) || ISZERO(a)(*(a)->lsu==0 && (a)->digits==1 && (((a )->bits&(0x40|0x20|0x10))==0))) { |
1484 | decNumberCopy(res, a); /* [will fit] */ |
1485 | break;} |
1486 | |
1487 | /* for ln(10) an extra 3 digits of precision are needed */ |
1488 | p=set->digits+3; |
1489 | needbytes=sizeof(decNumber)+(D2U(p)((p)<=49?d2utable[p]:((p)+3 -1)/3)-1)*sizeof(Unituint16_t); |
1490 | if (needbytes>sizeof(bufb)) { /* need malloc space */ |
1491 | allocbufb=(decNumber *)malloc(needbytes); |
1492 | if (allocbufb==NULL((void*)0)) { /* hopeless -- abandon */ |
1493 | status|=DEC_Insufficient_storage0x00000010; |
1494 | break;} |
1495 | b=allocbufb; /* use the allocated space */ |
1496 | } |
1497 | decNumberZero(w); /* set up 10... */ |
1498 | #if DECDPUN3==1 |
1499 | w->lsu[1]=1; w->lsu[0]=0; /* .. */ |
1500 | #else |
1501 | w->lsu[0]=10; /* .. */ |
1502 | #endif |
1503 | w->digits=2; /* .. */ |
1504 | |
1505 | aset.digits=p; |
1506 | decLnOp(b, w, &aset, &ignore); /* b=ln(10) */ |
1507 | |
1508 | aset.digits=set->digits; /* for final divide */ |
1509 | decDivideOp(res, a, b, &aset, DIVIDE0x80, &status); /* into result */ |
1510 | } while(0); /* [for break] */ |
1511 | |
1512 | free(allocbufa); /* drop any storage used */ |
1513 | free(allocbufb); /* .. */ |
1514 | #if DECSUBSET0 |
1515 | free(allocrhs); /* .. */ |
1516 | #endif |
1517 | /* apply significant status */ |
1518 | if (status!=0) decStatus(res, status, set); |
1519 | #if DECCHECK0 |
1520 | decCheckInexact(res, set); |
1521 | #endif |
1522 | return res; |
1523 | } /* decNumberLog10 */ |
1524 | |
1525 | /* ------------------------------------------------------------------ */ |
1526 | /* decNumberMax -- compare two Numbers and return the maximum */ |
1527 | /* */ |
1528 | /* This computes C = A ? B, returning the maximum by 754 rules */ |
1529 | /* */ |
1530 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1531 | /* lhs is A */ |
1532 | /* rhs is B */ |
1533 | /* set is the context */ |
1534 | /* */ |
1535 | /* C must have space for set->digits digits. */ |
1536 | /* ------------------------------------------------------------------ */ |
1537 | decNumber * decNumberMax(decNumber *res, const decNumber *lhs, |
1538 | const decNumber *rhs, decContext *set) { |
1539 | uIntuint32_t status=0; /* accumulator */ |
1540 | decCompareOp(res, lhs, rhs, set, COMPMAX0x02, &status); |
1541 | if (status!=0) decStatus(res, status, set); |
1542 | #if DECCHECK0 |
1543 | decCheckInexact(res, set); |
1544 | #endif |
1545 | return res; |
1546 | } /* decNumberMax */ |
1547 | |
1548 | /* ------------------------------------------------------------------ */ |
1549 | /* decNumberMaxMag -- compare and return the maximum by magnitude */ |
1550 | /* */ |
1551 | /* This computes C = A ? B, returning the maximum by 754 rules */ |
1552 | /* */ |
1553 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1554 | /* lhs is A */ |
1555 | /* rhs is B */ |
1556 | /* set is the context */ |
1557 | /* */ |
1558 | /* C must have space for set->digits digits. */ |
1559 | /* ------------------------------------------------------------------ */ |
1560 | decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, |
1561 | const decNumber *rhs, decContext *set) { |
1562 | uIntuint32_t status=0; /* accumulator */ |
1563 | decCompareOp(res, lhs, rhs, set, COMPMAXMAG0x07, &status); |
1564 | if (status!=0) decStatus(res, status, set); |
1565 | #if DECCHECK0 |
1566 | decCheckInexact(res, set); |
1567 | #endif |
1568 | return res; |
1569 | } /* decNumberMaxMag */ |
1570 | |
1571 | /* ------------------------------------------------------------------ */ |
1572 | /* decNumberMin -- compare two Numbers and return the minimum */ |
1573 | /* */ |
1574 | /* This computes C = A ? B, returning the minimum by 754 rules */ |
1575 | /* */ |
1576 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1577 | /* lhs is A */ |
1578 | /* rhs is B */ |
1579 | /* set is the context */ |
1580 | /* */ |
1581 | /* C must have space for set->digits digits. */ |
1582 | /* ------------------------------------------------------------------ */ |
1583 | decNumber * decNumberMin(decNumber *res, const decNumber *lhs, |
1584 | const decNumber *rhs, decContext *set) { |
1585 | uIntuint32_t status=0; /* accumulator */ |
1586 | decCompareOp(res, lhs, rhs, set, COMPMIN0x03, &status); |
1587 | if (status!=0) decStatus(res, status, set); |
1588 | #if DECCHECK0 |
1589 | decCheckInexact(res, set); |
1590 | #endif |
1591 | return res; |
1592 | } /* decNumberMin */ |
1593 | |
1594 | /* ------------------------------------------------------------------ */ |
1595 | /* decNumberMinMag -- compare and return the minimum by magnitude */ |
1596 | /* */ |
1597 | /* This computes C = A ? B, returning the minimum by 754 rules */ |
1598 | /* */ |
1599 | /* res is C, the result. C may be A and/or B (e.g., X=X?X) */ |
1600 | /* lhs is A */ |
1601 | /* rhs is B */ |
1602 | /* set is the context */ |
1603 | /* */ |
1604 | /* C must have space for set->digits digits. */ |
1605 | /* ------------------------------------------------------------------ */ |
1606 | decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, |
1607 | const decNumber *rhs, decContext *set) { |
1608 | uIntuint32_t status=0; /* accumulator */ |
1609 | decCompareOp(res, lhs, rhs, set, COMPMINMAG0x08, &status); |
1610 | if (status!=0) decStatus(res, status, set); |
1611 | #if DECCHECK0 |
1612 | decCheckInexact(res, set); |
1613 | #endif |
1614 | return res; |
1615 | } /* decNumberMinMag */ |
1616 | |
1617 | /* ------------------------------------------------------------------ */ |
1618 | /* decNumberMinus -- prefix minus operator */ |
1619 | /* */ |
1620 | /* This computes C = 0 - A */ |
1621 | /* */ |
1622 | /* res is C, the result. C may be A */ |
1623 | /* rhs is A */ |
1624 | /* set is the context */ |
1625 | /* */ |
1626 | /* See also decNumberCopyNegate for a quiet bitwise version of this. */ |
1627 | /* C must have space for set->digits digits. */ |
1628 | /* ------------------------------------------------------------------ */ |
1629 | /* Simply use AddOp for the subtract, which will do the necessary. */ |
1630 | /* ------------------------------------------------------------------ */ |
1631 | decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, |
1632 | decContext *set) { |
1633 | decNumber dzero; |
1634 | uIntuint32_t status=0; /* accumulator */ |
1635 | |
1636 | #if DECCHECK0 |
1637 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1638 | #endif |
1639 | |
1640 | decNumberZero(&dzero); /* make 0 */ |
1641 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
1642 | decAddOp(res, &dzero, rhs, set, DECNEG0x80, &status); |
1643 | if (status!=0) decStatus(res, status, set); |
1644 | #if DECCHECK0 |
1645 | decCheckInexact(res, set); |
1646 | #endif |
1647 | return res; |
1648 | } /* decNumberMinus */ |
1649 | |
1650 | /* ------------------------------------------------------------------ */ |
1651 | /* decNumberNextMinus -- next towards -Infinity */ |
1652 | /* */ |
1653 | /* This computes C = A - infinitesimal, rounded towards -Infinity */ |
1654 | /* */ |
1655 | /* res is C, the result. C may be A */ |
1656 | /* rhs is A */ |
1657 | /* set is the context */ |
1658 | /* */ |
1659 | /* This is a generalization of 754 NextDown. */ |
1660 | /* ------------------------------------------------------------------ */ |
1661 | decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, |
1662 | decContext *set) { |
1663 | decNumber dtiny; /* constant */ |
1664 | decContext workset=*set; /* work */ |
1665 | uIntuint32_t status=0; /* accumulator */ |
1666 | #if DECCHECK0 |
1667 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1668 | #endif |
1669 | |
1670 | /* +Infinity is the special case */ |
1671 | if ((rhs->bits&(DECINF0x40|DECNEG0x80))==DECINF0x40) { |
1672 | decSetMaxValue(res, set); /* is +ve */ |
1673 | /* there is no status to set */ |
1674 | return res; |
1675 | } |
1676 | decNumberZero(&dtiny); /* start with 0 */ |
1677 | dtiny.lsu[0]=1; /* make number that is .. */ |
1678 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ |
1679 | workset.round=DEC_ROUND_FLOOR; |
1680 | decAddOp(res, rhs, &dtiny, &workset, DECNEG0x80, &status); |
1681 | status&=DEC_Invalid_operation0x00000080|DEC_sNaN0x40000000; /* only sNaN Invalid please */ |
1682 | if (status!=0) decStatus(res, status, set); |
1683 | return res; |
1684 | } /* decNumberNextMinus */ |
1685 | |
1686 | /* ------------------------------------------------------------------ */ |
1687 | /* decNumberNextPlus -- next towards +Infinity */ |
1688 | /* */ |
1689 | /* This computes C = A + infinitesimal, rounded towards +Infinity */ |
1690 | /* */ |
1691 | /* res is C, the result. C may be A */ |
1692 | /* rhs is A */ |
1693 | /* set is the context */ |
1694 | /* */ |
1695 | /* This is a generalization of 754 NextUp. */ |
1696 | /* ------------------------------------------------------------------ */ |
1697 | decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, |
1698 | decContext *set) { |
1699 | decNumber dtiny; /* constant */ |
1700 | decContext workset=*set; /* work */ |
1701 | uIntuint32_t status=0; /* accumulator */ |
1702 | #if DECCHECK0 |
1703 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1704 | #endif |
1705 | |
1706 | /* -Infinity is the special case */ |
1707 | if ((rhs->bits&(DECINF0x40|DECNEG0x80))==(DECINF0x40|DECNEG0x80)) { |
1708 | decSetMaxValue(res, set); |
1709 | res->bits=DECNEG0x80; /* negative */ |
1710 | /* there is no status to set */ |
1711 | return res; |
1712 | } |
1713 | decNumberZero(&dtiny); /* start with 0 */ |
1714 | dtiny.lsu[0]=1; /* make number that is .. */ |
1715 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ |
1716 | workset.round=DEC_ROUND_CEILING; |
1717 | decAddOp(res, rhs, &dtiny, &workset, 0, &status); |
1718 | status&=DEC_Invalid_operation0x00000080|DEC_sNaN0x40000000; /* only sNaN Invalid please */ |
1719 | if (status!=0) decStatus(res, status, set); |
1720 | return res; |
1721 | } /* decNumberNextPlus */ |
1722 | |
1723 | /* ------------------------------------------------------------------ */ |
1724 | /* decNumberNextToward -- next towards rhs */ |
1725 | /* */ |
1726 | /* This computes C = A +/- infinitesimal, rounded towards */ |
1727 | /* +/-Infinity in the direction of B, as per 754-1985 nextafter */ |
1728 | /* modified during revision but dropped from 754-2008. */ |
1729 | /* */ |
1730 | /* res is C, the result. C may be A or B. */ |
1731 | /* lhs is A */ |
1732 | /* rhs is B */ |
1733 | /* set is the context */ |
1734 | /* */ |
1735 | /* This is a generalization of 754-1985 NextAfter. */ |
1736 | /* ------------------------------------------------------------------ */ |
1737 | decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, |
1738 | const decNumber *rhs, decContext *set) { |
1739 | decNumber dtiny; /* constant */ |
1740 | decContext workset=*set; /* work */ |
1741 | Intint32_t result; /* .. */ |
1742 | uIntuint32_t status=0; /* accumulator */ |
1743 | #if DECCHECK0 |
1744 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1745 | #endif |
1746 | |
1747 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { |
1748 | decNaNs(res, lhs, rhs, set, &status); |
1749 | } |
1750 | else { /* Is numeric, so no chance of sNaN Invalid, etc. */ |
1751 | result=decCompare(lhs, rhs, 0); /* sign matters */ |
1752 | if (result==BADINT(int32_t)0x80000000) status|=DEC_Insufficient_storage0x00000010; /* rare */ |
1753 | else { /* valid compare */ |
1754 | if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */ |
1755 | else { /* differ: need NextPlus or NextMinus */ |
1756 | uByteuint8_t sub; /* add or subtract */ |
1757 | if (result<0) { /* lhs<rhs, do nextplus */ |
1758 | /* -Infinity is the special case */ |
1759 | if ((lhs->bits&(DECINF0x40|DECNEG0x80))==(DECINF0x40|DECNEG0x80)) { |
1760 | decSetMaxValue(res, set); |
1761 | res->bits=DECNEG0x80; /* negative */ |
1762 | return res; /* there is no status to set */ |
1763 | } |
1764 | workset.round=DEC_ROUND_CEILING; |
1765 | sub=0; /* add, please */ |
1766 | } /* plus */ |
1767 | else { /* lhs>rhs, do nextminus */ |
1768 | /* +Infinity is the special case */ |
1769 | if ((lhs->bits&(DECINF0x40|DECNEG0x80))==DECINF0x40) { |
1770 | decSetMaxValue(res, set); |
1771 | return res; /* there is no status to set */ |
1772 | } |
1773 | workset.round=DEC_ROUND_FLOOR; |
1774 | sub=DECNEG0x80; /* subtract, please */ |
1775 | } /* minus */ |
1776 | decNumberZero(&dtiny); /* start with 0 */ |
1777 | dtiny.lsu[0]=1; /* make number that is .. */ |
1778 | dtiny.exponent=DEC_MIN_EMIN-999999999-1; /* .. smaller than tiniest */ |
1779 | decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ |
1780 | /* turn off exceptions if the result is a normal number */ |
1781 | /* (including Nmin), otherwise let all status through */ |
1782 | if (decNumberIsNormal(res, set)) status=0; |
1783 | } /* unequal */ |
1784 | } /* compare OK */ |
1785 | } /* numeric */ |
1786 | if (status!=0) decStatus(res, status, set); |
1787 | return res; |
1788 | } /* decNumberNextToward */ |
1789 | |
1790 | /* ------------------------------------------------------------------ */ |
1791 | /* decNumberOr -- OR two Numbers, digitwise */ |
1792 | /* */ |
1793 | /* This computes C = A | B */ |
1794 | /* */ |
1795 | /* res is C, the result. C may be A and/or B (e.g., X=X|X) */ |
1796 | /* lhs is A */ |
1797 | /* rhs is B */ |
1798 | /* set is the context (used for result length and error report) */ |
1799 | /* */ |
1800 | /* C must have space for set->digits digits. */ |
1801 | /* */ |
1802 | /* Logical function restrictions apply (see above); a NaN is */ |
1803 | /* returned with Invalid_operation if a restriction is violated. */ |
1804 | /* ------------------------------------------------------------------ */ |
1805 | decNumber * decNumberOr(decNumber *res, const decNumber *lhs, |
1806 | const decNumber *rhs, decContext *set) { |
1807 | const Unituint16_t *ua, *ub; /* -> operands */ |
1808 | const Unituint16_t *msua, *msub; /* -> operand msus */ |
1809 | Unituint16_t *uc, *msuc; /* -> result and its msu */ |
1810 | Intint32_t msudigs; /* digits in res msu */ |
1811 | #if DECCHECK0 |
1812 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1813 | #endif |
1814 | |
1815 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) |
1816 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
1817 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
1818 | return res; |
1819 | } |
1820 | /* operands are valid */ |
1821 | ua=lhs->lsu; /* bottom-up */ |
1822 | ub=rhs->lsu; /* .. */ |
1823 | uc=res->lsu; /* .. */ |
1824 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)-1; /* -> msu of lhs */ |
1825 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1; /* -> msu of rhs */ |
1826 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+3 -1)/3)-1; /* -> msu of result */ |
1827 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
1828 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
1829 | Unituint16_t a, b; /* extract units */ |
1830 | if (ua>msua) a=0; |
1831 | else a=*ua; |
1832 | if (ub>msub) b=0; |
1833 | else b=*ub; |
1834 | *uc=0; /* can now write back */ |
1835 | if (a|b) { /* maybe 1 bits to examine */ |
1836 | Intint32_t i, j; |
1837 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
1838 | for (i=0; i<DECDPUN3; i++) { |
1839 | if ((a|b)&1) *uc=*uc+(Unituint16_t)powersDECPOWERS[i]; /* effect OR */ |
1840 | j=a%10; |
1841 | a=a/10; |
1842 | j|=b%10; |
1843 | b=b/10; |
1844 | if (j>1) { |
1845 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
1846 | return res; |
1847 | } |
1848 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
1849 | } /* each digit */ |
1850 | } /* non-zero */ |
1851 | } /* each unit */ |
1852 | /* [here uc-1 is the msu of the result] */ |
1853 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
1854 | res->exponent=0; /* integer */ |
1855 | res->bits=0; /* sign=0 */ |
1856 | return res; /* [no status to set] */ |
1857 | } /* decNumberOr */ |
1858 | |
1859 | /* ------------------------------------------------------------------ */ |
1860 | /* decNumberPlus -- prefix plus operator */ |
1861 | /* */ |
1862 | /* This computes C = 0 + A */ |
1863 | /* */ |
1864 | /* res is C, the result. C may be A */ |
1865 | /* rhs is A */ |
1866 | /* set is the context */ |
1867 | /* */ |
1868 | /* See also decNumberCopy for a quiet bitwise version of this. */ |
1869 | /* C must have space for set->digits digits. */ |
1870 | /* ------------------------------------------------------------------ */ |
1871 | /* This simply uses AddOp; Add will take fast path after preparing A. */ |
1872 | /* Performance is a concern here, as this routine is often used to */ |
1873 | /* check operands and apply rounding and overflow/underflow testing. */ |
1874 | /* ------------------------------------------------------------------ */ |
1875 | decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, |
1876 | decContext *set) { |
1877 | decNumber dzero; |
1878 | uIntuint32_t status=0; /* accumulator */ |
1879 | #if DECCHECK0 |
1880 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
1881 | #endif |
1882 | |
1883 | decNumberZero(&dzero); /* make 0 */ |
1884 | dzero.exponent=rhs->exponent; /* [no coefficient expansion] */ |
1885 | decAddOp(res, &dzero, rhs, set, 0, &status); |
1886 | if (status!=0) decStatus(res, status, set); |
1887 | #if DECCHECK0 |
1888 | decCheckInexact(res, set); |
1889 | #endif |
1890 | return res; |
1891 | } /* decNumberPlus */ |
1892 | |
1893 | /* ------------------------------------------------------------------ */ |
1894 | /* decNumberMultiply -- multiply two Numbers */ |
1895 | /* */ |
1896 | /* This computes C = A x B */ |
1897 | /* */ |
1898 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
1899 | /* lhs is A */ |
1900 | /* rhs is B */ |
1901 | /* set is the context */ |
1902 | /* */ |
1903 | /* C must have space for set->digits digits. */ |
1904 | /* ------------------------------------------------------------------ */ |
1905 | decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, |
1906 | const decNumber *rhs, decContext *set) { |
1907 | uIntuint32_t status=0; /* accumulator */ |
1908 | decMultiplyOp(res, lhs, rhs, set, &status); |
1909 | if (status!=0) decStatus(res, status, set); |
1910 | #if DECCHECK0 |
1911 | decCheckInexact(res, set); |
1912 | #endif |
1913 | return res; |
1914 | } /* decNumberMultiply */ |
1915 | |
1916 | /* ------------------------------------------------------------------ */ |
1917 | /* decNumberPower -- raise a number to a power */ |
1918 | /* */ |
1919 | /* This computes C = A ** B */ |
1920 | /* */ |
1921 | /* res is C, the result. C may be A and/or B (e.g., X=X**X) */ |
1922 | /* lhs is A */ |
1923 | /* rhs is B */ |
1924 | /* set is the context */ |
1925 | /* */ |
1926 | /* C must have space for set->digits digits. */ |
1927 | /* */ |
1928 | /* Mathematical function restrictions apply (see above); a NaN is */ |
1929 | /* returned with Invalid_operation if a restriction is violated. */ |
1930 | /* */ |
1931 | /* However, if 1999999997<=B<=999999999 and B is an integer then the */ |
1932 | /* restrictions on A and the context are relaxed to the usual bounds, */ |
1933 | /* for compatibility with the earlier (integer power only) version */ |
1934 | /* of this function. */ |
1935 | /* */ |
1936 | /* When B is an integer, the result may be exact, even if rounded. */ |
1937 | /* */ |
1938 | /* The final result is rounded according to the context; it will */ |
1939 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
1940 | /* error in rare cases. */ |
1941 | /* ------------------------------------------------------------------ */ |
1942 | decNumber * decNumberPower(decNumber *res, const decNumber *lhs, |
1943 | const decNumber *rhs, decContext *set) { |
1944 | #if DECSUBSET0 |
1945 | decNumber *alloclhs=NULL((void*)0); /* non-NULL if rounded lhs allocated */ |
1946 | decNumber *allocrhs=NULL((void*)0); /* .., rhs */ |
1947 | #endif |
1948 | decNumber *allocdac=NULL((void*)0); /* -> allocated acc buffer, iff used */ |
1949 | decNumber *allocinv=NULL((void*)0); /* -> allocated 1/x buffer, iff used */ |
1950 | Intint32_t reqdigits=set->digits; /* requested DIGITS */ |
1951 | Intint32_t n; /* rhs in binary */ |
1952 | Flaguint8_t rhsint=0; /* 1 if rhs is an integer */ |
1953 | Flaguint8_t useint=0; /* 1 if can use integer calculation */ |
1954 | Flaguint8_t isoddint=0; /* 1 if rhs is an integer and odd */ |
1955 | Intint32_t i; /* work */ |
1956 | #if DECSUBSET0 |
1957 | Intint32_t dropped; /* .. */ |
1958 | #endif |
1959 | uIntuint32_t needbytes; /* buffer size needed */ |
1960 | Flaguint8_t seenbit; /* seen a bit while powering */ |
1961 | Intint32_t residue=0; /* rounding residue */ |
1962 | uIntuint32_t status=0; /* accumulators */ |
1963 | uByteuint8_t bits=0; /* result sign if errors */ |
1964 | decContext aset; /* working context */ |
1965 | decNumber dnOne; /* work value 1... */ |
1966 | /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ |
1967 | decNumber dacbuff[D2N(DECBUFFER+9)(((((((36 +9)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
1968 | decNumber *dac=dacbuff; /* -> result accumulator */ |
1969 | /* same again for possible 1/lhs calculation */ |
1970 | decNumber invbuff[D2N(DECBUFFER+9)(((((((36 +9)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
1971 | |
1972 | #if DECCHECK0 |
1973 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
1974 | #endif |
1975 | |
1976 | do { /* protect allocated storage */ |
1977 | #if DECSUBSET0 |
1978 | if (!set->extended) { /* reduce operands and set status, as needed */ |
1979 | if (lhs->digits>reqdigits) { |
1980 | alloclhs=decRoundOperand(lhs, set, &status); |
1981 | if (alloclhs==NULL((void*)0)) break; |
1982 | lhs=alloclhs; |
1983 | } |
1984 | if (rhs->digits>reqdigits) { |
1985 | allocrhs=decRoundOperand(rhs, set, &status); |
1986 | if (allocrhs==NULL((void*)0)) break; |
1987 | rhs=allocrhs; |
1988 | } |
1989 | } |
1990 | #endif |
1991 | /* [following code does not require input rounding] */ |
1992 | |
1993 | /* handle NaNs and rhs Infinity (lhs infinity is harder) */ |
1994 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { |
1995 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { /* NaNs */ |
1996 | decNaNs(res, lhs, rhs, set, &status); |
1997 | break;} |
1998 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* rhs Infinity */ |
1999 | Flaguint8_t rhsneg=rhs->bits&DECNEG0x80; /* save rhs sign */ |
2000 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) /* lhs<0 */ |
2001 | && !decNumberIsZero(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) /* .. */ |
2002 | status|=DEC_Invalid_operation0x00000080; |
2003 | else { /* lhs >=0 */ |
2004 | decNumberZero(&dnOne); /* set up 1 */ |
2005 | dnOne.lsu[0]=1; |
2006 | decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */ |
2007 | decNumberZero(res); /* prepare for 0/1/Infinity */ |
2008 | if (decNumberIsNegative(dac)(((dac)->bits&0x80)!=0)) { /* lhs<1 */ |
2009 | if (rhsneg) res->bits|=DECINF0x40; /* +Infinity [else is +0] */ |
2010 | } |
2011 | else if (dac->lsu[0]==0) { /* lhs=1 */ |
2012 | /* 1**Infinity is inexact, so return fully-padded 1.0000 */ |
2013 | Intint32_t shift=set->digits-1; |
2014 | *res->lsu=1; /* was 0, make int 1 */ |
2015 | res->digits=decShiftToMost(res->lsu, 1, shift); |
2016 | res->exponent=-shift; /* make 1.0000... */ |
2017 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* deemed inexact */ |
2018 | } |
2019 | else { /* lhs>1 */ |
2020 | if (!rhsneg) res->bits|=DECINF0x40; /* +Infinity [else is +0] */ |
2021 | } |
2022 | } /* lhs>=0 */ |
2023 | break;} |
2024 | /* [lhs infinity drops through] */ |
2025 | } /* specials */ |
2026 | |
2027 | /* Original rhs may be an integer that fits and is in range */ |
2028 | n=decGetInt(rhs); |
2029 | if (n!=BADINT(int32_t)0x80000000) { /* it is an integer */ |
2030 | rhsint=1; /* record the fact for 1**n */ |
2031 | isoddint=(Flaguint8_t)n&1; /* [works even if big] */ |
2032 | if (n!=BIGEVEN(int32_t)0x80000002 && n!=BIGODD(int32_t)0x80000003) /* can use integer path? */ |
2033 | useint=1; /* looks good */ |
2034 | } |
2035 | |
2036 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) /* -x .. */ |
2037 | && isoddint) bits=DECNEG0x80; /* .. to an odd power */ |
2038 | |
2039 | /* handle LHS infinity */ |
2040 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* [NaNs already handled] */ |
2041 | uByteuint8_t rbits=rhs->bits; /* save */ |
2042 | decNumberZero(res); /* prepare */ |
2043 | if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */ |
2044 | else { |
2045 | /* -Inf**nonint -> error */ |
2046 | if (!rhsint && decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { |
2047 | status|=DEC_Invalid_operation0x00000080; /* -Inf**nonint is error */ |
2048 | break;} |
2049 | if (!(rbits & DECNEG0x80)) bits|=DECINF0x40; /* was not a **-n */ |
2050 | /* [otherwise will be 0 or -0] */ |
2051 | res->bits=bits; |
2052 | } |
2053 | break;} |
2054 | |
2055 | /* similarly handle LHS zero */ |
2056 | if (decNumberIsZero(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { |
2057 | if (n==0) { /* 0**0 => Error */ |
2058 | #if DECSUBSET0 |
2059 | if (!set->extended) { /* [unless subset] */ |
2060 | decNumberZero(res); |
2061 | *res->lsu=1; /* return 1 */ |
2062 | break;} |
2063 | #endif |
2064 | status|=DEC_Invalid_operation0x00000080; |
2065 | } |
2066 | else { /* 0**x */ |
2067 | uByteuint8_t rbits=rhs->bits; /* save */ |
2068 | if (rbits & DECNEG0x80) { /* was a 0**(-n) */ |
2069 | #if DECSUBSET0 |
2070 | if (!set->extended) { /* [bad if subset] */ |
2071 | status|=DEC_Invalid_operation0x00000080; |
2072 | break;} |
2073 | #endif |
2074 | bits|=DECINF0x40; |
2075 | } |
2076 | decNumberZero(res); /* prepare */ |
2077 | /* [otherwise will be 0 or -0] */ |
2078 | res->bits=bits; |
2079 | } |
2080 | break;} |
2081 | |
2082 | /* here both lhs and rhs are finite; rhs==0 is handled in the */ |
2083 | /* integer path. Next handle the non-integer cases */ |
2084 | if (!useint) { /* non-integral rhs */ |
2085 | /* any -ve lhs is bad, as is either operand or context out of */ |
2086 | /* bounds */ |
2087 | if (decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0)) { |
2088 | status|=DEC_Invalid_operation0x00000080; |
2089 | break;} |
2090 | if (decCheckMath(lhs, set, &status) |
2091 | || decCheckMath(rhs, set, &status)) break; /* variable status */ |
2092 | |
2093 | decContextDefault(&aset, DEC_INIT_DECIMAL6464); /* clean context */ |
2094 | aset.emax=DEC_MAX_MATH999999; /* usual bounds */ |
2095 | aset.emin=-DEC_MAX_MATH999999; /* .. */ |
2096 | aset.clamp=0; /* and no concrete format */ |
2097 | |
2098 | /* calculate the result using exp(ln(lhs)*rhs), which can */ |
2099 | /* all be done into the accumulator, dac. The precision needed */ |
2100 | /* is enough to contain the full information in the lhs (which */ |
2101 | /* is the total digits, including exponent), or the requested */ |
2102 | /* precision, if larger, + 4; 6 is used for the exponent */ |
2103 | /* maximum length, and this is also used when it is shorter */ |
2104 | /* than the requested digits as it greatly reduces the >0.5 ulp */ |
2105 | /* cases at little cost (because Ln doubles digits each */ |
2106 | /* iteration so a few extra digits rarely causes an extra */ |
2107 | /* iteration) */ |
2108 | aset.digits=MAXI(lhs->digits, set->digits)((lhs->digits)<(set->digits)?(set->digits):(lhs-> digits))+6+4; |
2109 | } /* non-integer rhs */ |
2110 | |
2111 | else { /* rhs is in-range integer */ |
2112 | if (n==0) { /* x**0 = 1 */ |
2113 | /* (0**0 was handled above) */ |
2114 | decNumberZero(res); /* result=1 */ |
2115 | *res->lsu=1; /* .. */ |
2116 | break;} |
2117 | /* rhs is a non-zero integer */ |
2118 | if (n<0) n=-n; /* use abs(n) */ |
2119 | |
2120 | aset=*set; /* clone the context */ |
2121 | aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */ |
2122 | /* calculate the working DIGITS */ |
2123 | aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; |
2124 | #if DECSUBSET0 |
2125 | if (!set->extended) aset.digits--; /* use classic precision */ |
2126 | #endif |
2127 | /* it's an error if this is more than can be handled */ |
2128 | if (aset.digits>DECNUMMAXP999999999) {status|=DEC_Invalid_operation0x00000080; break;} |
2129 | } /* integer path */ |
2130 | |
2131 | /* aset.digits is the count of digits for the accumulator needed */ |
2132 | /* if accumulator is too long for local storage, then allocate */ |
2133 | needbytes=sizeof(decNumber)+(D2U(aset.digits)((aset.digits)<=49?d2utable[aset.digits]:((aset.digits)+3 - 1)/3)-1)*sizeof(Unituint16_t); |
2134 | /* [needbytes also used below if 1/lhs needed] */ |
2135 | if (needbytes>sizeof(dacbuff)) { |
2136 | allocdac=(decNumber *)malloc(needbytes); |
2137 | if (allocdac==NULL((void*)0)) { /* hopeless -- abandon */ |
2138 | status|=DEC_Insufficient_storage0x00000010; |
2139 | break;} |
2140 | dac=allocdac; /* use the allocated space */ |
2141 | } |
2142 | /* here, aset is set up and accumulator is ready for use */ |
2143 | |
2144 | if (!useint) { /* non-integral rhs */ |
2145 | /* x ** y; special-case x=1 here as it will otherwise always */ |
2146 | /* reduce to integer 1; decLnOp has a fastpath which detects */ |
2147 | /* the case of x=1 */ |
2148 | decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */ |
2149 | /* [no error possible, as lhs 0 already handled] */ |
2150 | if (ISZERO(dac)(*(dac)->lsu==0 && (dac)->digits==1 && ( ((dac)->bits&(0x40|0x20|0x10))==0))) { /* x==1, 1.0, etc. */ |
2151 | /* need to return fully-padded 1.0000 etc., but rhsint->1 */ |
2152 | *dac->lsu=1; /* was 0, make int 1 */ |
2153 | if (!rhsint) { /* add padding */ |
2154 | Intint32_t shift=set->digits-1; |
2155 | dac->digits=decShiftToMost(dac->lsu, 1, shift); |
2156 | dac->exponent=-shift; /* make 1.0000... */ |
2157 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* deemed inexact */ |
2158 | } |
2159 | } |
2160 | else { |
2161 | decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */ |
2162 | decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */ |
2163 | } |
2164 | /* and drop through for final rounding */ |
2165 | } /* non-integer rhs */ |
2166 | |
2167 | else { /* carry on with integer */ |
2168 | decNumberZero(dac); /* acc=1 */ |
2169 | *dac->lsu=1; /* .. */ |
2170 | |
2171 | /* if a negative power the constant 1 is needed, and if not subset */ |
2172 | /* invert the lhs now rather than inverting the result later */ |
2173 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* was a **-n [hence digits>0] */ |
2174 | decNumber *inv=invbuff; /* assume use fixed buffer */ |
2175 | decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */ |
2176 | #if DECSUBSET0 |
2177 | if (set->extended) { /* need to calculate 1/lhs */ |
2178 | #endif |
2179 | /* divide lhs into 1, putting result in dac [dac=1/dac] */ |
2180 | decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE0x80, &status); |
2181 | /* now locate or allocate space for the inverted lhs */ |
2182 | if (needbytes>sizeof(invbuff)) { |
2183 | allocinv=(decNumber *)malloc(needbytes); |
2184 | if (allocinv==NULL((void*)0)) { /* hopeless -- abandon */ |
2185 | status|=DEC_Insufficient_storage0x00000010; |
2186 | break;} |
2187 | inv=allocinv; /* use the allocated space */ |
2188 | } |
2189 | /* [inv now points to big-enough buffer or allocated storage] */ |
2190 | decNumberCopy(inv, dac); /* copy the 1/lhs */ |
2191 | decNumberCopy(dac, &dnOne); /* restore acc=1 */ |
2192 | lhs=inv; /* .. and go forward with new lhs */ |
2193 | #if DECSUBSET0 |
2194 | } |
2195 | #endif |
2196 | } |
2197 | |
2198 | /* Raise-to-the-power loop... */ |
2199 | seenbit=0; /* set once a 1-bit is encountered */ |
2200 | for (i=1;;i++){ /* for each bit [top bit ignored] */ |
2201 | /* abandon if had overflow or terminal underflow */ |
2202 | if (status & (DEC_Overflow0x00000200|DEC_Underflow0x00002000)) { /* interesting? */ |
2203 | if (status&DEC_Overflow0x00000200 || ISZERO(dac)(*(dac)->lsu==0 && (dac)->digits==1 && ( ((dac)->bits&(0x40|0x20|0x10))==0))) break; |
2204 | } |
2205 | /* [the following two lines revealed an optimizer bug in a C++ */ |
2206 | /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ |
2207 | n=n<<1; /* move next bit to testable position */ |
2208 | if (n<0) { /* top bit is set */ |
2209 | seenbit=1; /* OK, significant bit seen */ |
2210 | decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ |
2211 | } |
2212 | if (i==31) break; /* that was the last bit */ |
2213 | if (!seenbit) continue; /* no need to square 1 */ |
2214 | decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ |
2215 | } /*i*/ /* 32 bits */ |
2216 | |
2217 | /* complete internal overflow or underflow processing */ |
2218 | if (status & (DEC_Overflow0x00000200|DEC_Underflow0x00002000)) { |
2219 | #if DECSUBSET0 |
2220 | /* If subset, and power was negative, reverse the kind of -erflow */ |
2221 | /* [1/x not yet done] */ |
2222 | if (!set->extended && decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
2223 | if (status & DEC_Overflow0x00000200) |
2224 | status^=DEC_Overflow0x00000200 | DEC_Underflow0x00002000 | DEC_Subnormal0x00001000; |
2225 | else { /* trickier -- Underflow may or may not be set */ |
2226 | status&=~(DEC_Underflow0x00002000 | DEC_Subnormal0x00001000); /* [one or both] */ |
2227 | status|=DEC_Overflow0x00000200; |
2228 | } |
2229 | } |
2230 | #endif |
2231 | dac->bits=(dac->bits & ~DECNEG0x80) | bits; /* force correct sign */ |
2232 | /* round subnormals [to set.digits rather than aset.digits] */ |
2233 | /* or set overflow result similarly as required */ |
2234 | decFinalize(dac, set, &residue, &status); |
2235 | decNumberCopy(res, dac); /* copy to result (is now OK length) */ |
2236 | break; |
2237 | } |
2238 | |
2239 | #if DECSUBSET0 |
2240 | if (!set->extended && /* subset math */ |
2241 | decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { /* was a **-n [hence digits>0] */ |
2242 | /* so divide result into 1 [dac=1/dac] */ |
2243 | decDivideOp(dac, &dnOne, dac, &aset, DIVIDE0x80, &status); |
2244 | } |
2245 | #endif |
2246 | } /* rhs integer path */ |
2247 | |
2248 | /* reduce result to the requested length and copy to result */ |
2249 | decCopyFit(res, dac, set, &residue, &status); |
2250 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* final cleanup */ |
2251 | #if DECSUBSET0 |
2252 | if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */ |
2253 | #endif |
2254 | } while(0); /* end protected */ |
2255 | |
2256 | free(allocdac); /* drop any storage used */ |
2257 | free(allocinv); /* .. */ |
2258 | #if DECSUBSET0 |
2259 | free(alloclhs); /* .. */ |
2260 | free(allocrhs); /* .. */ |
2261 | #endif |
2262 | if (status!=0) decStatus(res, status, set); |
2263 | #if DECCHECK0 |
2264 | decCheckInexact(res, set); |
2265 | #endif |
2266 | return res; |
2267 | } /* decNumberPower */ |
2268 | |
2269 | /* ------------------------------------------------------------------ */ |
2270 | /* decNumberQuantize -- force exponent to requested value */ |
2271 | /* */ |
2272 | /* This computes C = op(A, B), where op adjusts the coefficient */ |
2273 | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
2274 | /* of C has exponent of B. The numerical value of C will equal A, */ |
2275 | /* except for the effects of any rounding that occurred. */ |
2276 | /* */ |
2277 | /* res is C, the result. C may be A or B */ |
2278 | /* lhs is A, the number to adjust */ |
2279 | /* rhs is B, the number with exponent to match */ |
2280 | /* set is the context */ |
2281 | /* */ |
2282 | /* C must have space for set->digits digits. */ |
2283 | /* */ |
2284 | /* Unless there is an error or the result is infinite, the exponent */ |
2285 | /* after the operation is guaranteed to be equal to that of B. */ |
2286 | /* ------------------------------------------------------------------ */ |
2287 | decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, |
2288 | const decNumber *rhs, decContext *set) { |
2289 | uIntuint32_t status=0; /* accumulator */ |
2290 | decQuantizeOp(res, lhs, rhs, set, 1, &status); |
2291 | if (status!=0) decStatus(res, status, set); |
2292 | return res; |
2293 | } /* decNumberQuantize */ |
2294 | |
2295 | /* ------------------------------------------------------------------ */ |
2296 | /* decNumberReduce -- remove trailing zeros */ |
2297 | /* */ |
2298 | /* This computes C = 0 + A, and normalizes the result */ |
2299 | /* */ |
2300 | /* res is C, the result. C may be A */ |
2301 | /* rhs is A */ |
2302 | /* set is the context */ |
2303 | /* */ |
2304 | /* C must have space for set->digits digits. */ |
2305 | /* ------------------------------------------------------------------ */ |
2306 | /* Previously known as Normalize */ |
2307 | decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, |
2308 | decContext *set) { |
2309 | return decNumberReduce(res, rhs, set); |
2310 | } /* decNumberNormalize */ |
2311 | |
2312 | decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, |
2313 | decContext *set) { |
2314 | #if DECSUBSET0 |
2315 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rounded rhs allocated */ |
2316 | #endif |
2317 | uIntuint32_t status=0; /* as usual */ |
2318 | Intint32_t residue=0; /* as usual */ |
2319 | Intint32_t dropped; /* work */ |
2320 | |
2321 | #if DECCHECK0 |
2322 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
2323 | #endif |
2324 | |
2325 | do { /* protect allocated storage */ |
2326 | #if DECSUBSET0 |
2327 | if (!set->extended) { |
2328 | /* reduce operand and set lostDigits status, as needed */ |
2329 | if (rhs->digits>set->digits) { |
2330 | allocrhs=decRoundOperand(rhs, set, &status); |
2331 | if (allocrhs==NULL((void*)0)) break; |
2332 | rhs=allocrhs; |
2333 | } |
2334 | } |
2335 | #endif |
2336 | /* [following code does not require input rounding] */ |
2337 | |
2338 | /* Infinities copy through; NaNs need usual treatment */ |
2339 | if (decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) { |
2340 | decNaNs(res, rhs, NULL((void*)0), set, &status); |
2341 | break; |
2342 | } |
2343 | |
2344 | /* reduce result to the requested length and copy to result */ |
2345 | decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ |
2346 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); /* cleanup/set flags */ |
2347 | decTrim(res, set, 1, 0, &dropped); /* normalize in place */ |
2348 | /* [may clamp] */ |
2349 | } while(0); /* end protected */ |
2350 | |
2351 | #if DECSUBSET0 |
2352 | free(allocrhs); /* .. */ |
2353 | #endif |
2354 | if (status!=0) decStatus(res, status, set);/* then report status */ |
2355 | return res; |
2356 | } /* decNumberReduce */ |
2357 | |
2358 | /* ------------------------------------------------------------------ */ |
2359 | /* decNumberRescale -- force exponent to requested value */ |
2360 | /* */ |
2361 | /* This computes C = op(A, B), where op adjusts the coefficient */ |
2362 | /* of C (by rounding or shifting) such that the exponent (-scale) */ |
2363 | /* of C has the value B. The numerical value of C will equal A, */ |
2364 | /* except for the effects of any rounding that occurred. */ |
2365 | /* */ |
2366 | /* res is C, the result. C may be A or B */ |
2367 | /* lhs is A, the number to adjust */ |
2368 | /* rhs is B, the requested exponent */ |
2369 | /* set is the context */ |
2370 | /* */ |
2371 | /* C must have space for set->digits digits. */ |
2372 | /* */ |
2373 | /* Unless there is an error or the result is infinite, the exponent */ |
2374 | /* after the operation is guaranteed to be equal to B. */ |
2375 | /* ------------------------------------------------------------------ */ |
2376 | decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, |
2377 | const decNumber *rhs, decContext *set) { |
2378 | uIntuint32_t status=0; /* accumulator */ |
2379 | decQuantizeOp(res, lhs, rhs, set, 0, &status); |
2380 | if (status!=0) decStatus(res, status, set); |
2381 | return res; |
2382 | } /* decNumberRescale */ |
2383 | |
2384 | /* ------------------------------------------------------------------ */ |
2385 | /* decNumberRemainder -- divide and return remainder */ |
2386 | /* */ |
2387 | /* This computes C = A % B */ |
2388 | /* */ |
2389 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
2390 | /* lhs is A */ |
2391 | /* rhs is B */ |
2392 | /* set is the context */ |
2393 | /* */ |
2394 | /* C must have space for set->digits digits. */ |
2395 | /* ------------------------------------------------------------------ */ |
2396 | decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, |
2397 | const decNumber *rhs, decContext *set) { |
2398 | uIntuint32_t status=0; /* accumulator */ |
2399 | decDivideOp(res, lhs, rhs, set, REMAINDER0x40, &status); |
2400 | if (status!=0) decStatus(res, status, set); |
2401 | #if DECCHECK0 |
2402 | decCheckInexact(res, set); |
2403 | #endif |
2404 | return res; |
2405 | } /* decNumberRemainder */ |
2406 | |
2407 | /* ------------------------------------------------------------------ */ |
2408 | /* decNumberRemainderNear -- divide and return remainder from nearest */ |
2409 | /* */ |
2410 | /* This computes C = A % B, where % is the IEEE remainder operator */ |
2411 | /* */ |
2412 | /* res is C, the result. C may be A and/or B (e.g., X=X%X) */ |
2413 | /* lhs is A */ |
2414 | /* rhs is B */ |
2415 | /* set is the context */ |
2416 | /* */ |
2417 | /* C must have space for set->digits digits. */ |
2418 | /* ------------------------------------------------------------------ */ |
2419 | decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, |
2420 | const decNumber *rhs, decContext *set) { |
2421 | uIntuint32_t status=0; /* accumulator */ |
2422 | decDivideOp(res, lhs, rhs, set, REMNEAR0x10, &status); |
2423 | if (status!=0) decStatus(res, status, set); |
2424 | #if DECCHECK0 |
2425 | decCheckInexact(res, set); |
2426 | #endif |
2427 | return res; |
2428 | } /* decNumberRemainderNear */ |
2429 | |
2430 | /* ------------------------------------------------------------------ */ |
2431 | /* decNumberRotate -- rotate the coefficient of a Number left/right */ |
2432 | /* */ |
2433 | /* This computes C = A rot B (in base ten and rotating set->digits */ |
2434 | /* digits). */ |
2435 | /* */ |
2436 | /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */ |
2437 | /* lhs is A */ |
2438 | /* rhs is B, the number of digits to rotate (-ve to right) */ |
2439 | /* set is the context */ |
2440 | /* */ |
2441 | /* The digits of the coefficient of A are rotated to the left (if B */ |
2442 | /* is positive) or to the right (if B is negative) without adjusting */ |
2443 | /* the exponent or the sign of A. If lhs->digits is less than */ |
2444 | /* set->digits the coefficient is padded with zeros on the left */ |
2445 | /* before the rotate. Any leading zeros in the result are removed */ |
2446 | /* as usual. */ |
2447 | /* */ |
2448 | /* B must be an integer (q=0) and in the range -set->digits through */ |
2449 | /* +set->digits. */ |
2450 | /* C must have space for set->digits digits. */ |
2451 | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
2452 | /* B must be valid). No status is set unless B is invalid or an */ |
2453 | /* operand is an sNaN. */ |
2454 | /* ------------------------------------------------------------------ */ |
2455 | decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, |
2456 | const decNumber *rhs, decContext *set) { |
2457 | uIntuint32_t status=0; /* accumulator */ |
2458 | Intint32_t rotate; /* rhs as an Int */ |
2459 | |
2460 | #if DECCHECK0 |
2461 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2462 | #endif |
2463 | |
2464 | /* NaNs propagate as normal */ |
2465 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) |
2466 | decNaNs(res, lhs, rhs, set, &status); |
2467 | /* rhs must be an integer */ |
2468 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) |
2469 | status=DEC_Invalid_operation0x00000080; |
2470 | else { /* both numeric, rhs is an integer */ |
2471 | rotate=decGetInt(rhs); /* [cannot fail] */ |
2472 | if (rotate==BADINT(int32_t)0x80000000 /* something bad .. */ |
2473 | || rotate==BIGODD(int32_t)0x80000003 || rotate==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ |
2474 | || abs(rotate)>set->digits) /* .. or out of range */ |
2475 | status=DEC_Invalid_operation0x00000080; |
2476 | else { /* rhs is OK */ |
2477 | decNumberCopy(res, lhs); |
2478 | /* convert -ve rotate to equivalent positive rotation */ |
2479 | if (rotate<0) rotate=set->digits+rotate; |
2480 | if (rotate!=0 && rotate!=set->digits /* zero or full rotation */ |
2481 | && !decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* lhs was infinite */ |
2482 | /* left-rotate to do; 0 < rotate < set->digits */ |
2483 | uIntuint32_t units, shift; /* work */ |
2484 | uIntuint32_t msudigits; /* digits in result msu */ |
2485 | Unituint16_t *msu=res->lsu+D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)-1; /* current msu */ |
2486 | Unituint16_t *msumax=res->lsu+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+3 -1)/3)-1; /* rotation msu */ |
2487 | for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */ |
2488 | res->digits=set->digits; /* now full-length */ |
2489 | msudigits=MSUDIGITS(res->digits)((res->digits)-(((res->digits)<=49?d2utable[res-> digits]:((res->digits)+3 -1)/3)-1)*3); /* actual digits in msu */ |
2490 | |
2491 | /* rotation here is done in-place, in three steps */ |
2492 | /* 1. shift all to least up to one unit to unit-align final */ |
2493 | /* lsd [any digits shifted out are rotated to the left, */ |
2494 | /* abutted to the original msd (which may require split)] */ |
2495 | /* */ |
2496 | /* [if there are no whole units left to rotate, the */ |
2497 | /* rotation is now complete] */ |
2498 | /* */ |
2499 | /* 2. shift to least, from below the split point only, so that */ |
2500 | /* the final msd is in the right place in its Unit [any */ |
2501 | /* digits shifted out will fit exactly in the current msu, */ |
2502 | /* left aligned, no split required] */ |
2503 | /* */ |
2504 | /* 3. rotate all the units by reversing left part, right */ |
2505 | /* part, and then whole */ |
2506 | /* */ |
2507 | /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ |
2508 | /* */ |
2509 | /* start: 00a bcd efg hij klm npq */ |
2510 | /* */ |
2511 | /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */ |
2512 | /* 1b 00p qab cde fgh|ijk lmn */ |
2513 | /* */ |
2514 | /* 2a 00p qab cde fgh|00i jkl [mn saved] */ |
2515 | /* 2b mnp qab cde fgh|00i jkl */ |
2516 | /* */ |
2517 | /* 3a fgh cde qab mnp|00i jkl */ |
2518 | /* 3b fgh cde qab mnp|jkl 00i */ |
2519 | /* 3c 00i jkl mnp qab cde fgh */ |
2520 | |
2521 | /* Step 1: amount to shift is the partial right-rotate count */ |
2522 | rotate=set->digits-rotate; /* make it right-rotate */ |
2523 | units=rotate/DECDPUN3; /* whole units to rotate */ |
2524 | shift=rotate%DECDPUN3; /* left-over digits count */ |
2525 | if (shift>0) { /* not an exact number of units */ |
2526 | uIntuint32_t save=res->lsu[0]%powersDECPOWERS[shift]; /* save low digit(s) */ |
2527 | decShiftToLeast(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3), shift); |
2528 | if (shift>msudigits) { /* msumax-1 needs >0 digits */ |
2529 | uIntuint32_t rem=save%powersDECPOWERS[shift-msudigits];/* split save */ |
2530 | *msumax=(Unituint16_t)(save/powersDECPOWERS[shift-msudigits]); /* and insert */ |
2531 | *(msumax-1)=*(msumax-1) |
2532 | +(Unituint16_t)(rem*powersDECPOWERS[DECDPUN3-(shift-msudigits)]); /* .. */ |
2533 | } |
2534 | else { /* all fits in msumax */ |
2535 | *msumax=*msumax+(Unituint16_t)(save*powersDECPOWERS[msudigits-shift]); /* [maybe *1] */ |
2536 | } |
2537 | } /* digits shift needed */ |
2538 | |
2539 | /* If whole units to rotate... */ |
2540 | if (units>0) { /* some to do */ |
2541 | /* Step 2: the units to touch are the whole ones in rotate, */ |
2542 | /* if any, and the shift is DECDPUN-msudigits (which may be */ |
2543 | /* 0, again) */ |
2544 | shift=DECDPUN3-msudigits; |
2545 | if (shift>0) { /* not an exact number of units */ |
2546 | uIntuint32_t save=res->lsu[0]%powersDECPOWERS[shift]; /* save low digit(s) */ |
2547 | decShiftToLeast(res->lsu, units, shift); |
2548 | *msumax=*msumax+(Unituint16_t)(save*powersDECPOWERS[msudigits]); |
2549 | } /* partial shift needed */ |
2550 | |
2551 | /* Step 3: rotate the units array using triple reverse */ |
2552 | /* (reversing is easy and fast) */ |
2553 | decReverse(res->lsu+units, msumax); /* left part */ |
2554 | decReverse(res->lsu, res->lsu+units-1); /* right part */ |
2555 | decReverse(res->lsu, msumax); /* whole */ |
2556 | } /* whole units to rotate */ |
2557 | /* the rotation may have left an undetermined number of zeros */ |
2558 | /* on the left, so true length needs to be calculated */ |
2559 | res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); |
2560 | } /* rotate needed */ |
2561 | } /* rhs OK */ |
2562 | } /* numerics */ |
2563 | if (status!=0) decStatus(res, status, set); |
2564 | return res; |
2565 | } /* decNumberRotate */ |
2566 | |
2567 | /* ------------------------------------------------------------------ */ |
2568 | /* decNumberSameQuantum -- test for equal exponents */ |
2569 | /* */ |
2570 | /* res is the result number, which will contain either 0 or 1 */ |
2571 | /* lhs is a number to test */ |
2572 | /* rhs is the second (usually a pattern) */ |
2573 | /* */ |
2574 | /* No errors are possible and no context is needed. */ |
2575 | /* ------------------------------------------------------------------ */ |
2576 | decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, |
2577 | const decNumber *rhs) { |
2578 | Unituint16_t ret=0; /* return value */ |
2579 | |
2580 | #if DECCHECK0 |
2581 | if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; |
2582 | #endif |
2583 | |
2584 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { |
2585 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) && decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) ret=1; |
2586 | else if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0) && decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) ret=1; |
2587 | /* [anything else with a special gives 0] */ |
2588 | } |
2589 | else if (lhs->exponent==rhs->exponent) ret=1; |
2590 | |
2591 | decNumberZero(res); /* OK to overwrite an operand now */ |
2592 | *res->lsu=ret; |
2593 | return res; |
2594 | } /* decNumberSameQuantum */ |
2595 | |
2596 | /* ------------------------------------------------------------------ */ |
2597 | /* decNumberScaleB -- multiply by a power of 10 */ |
2598 | /* */ |
2599 | /* This computes C = A x 10**B where B is an integer (q=0) with */ |
2600 | /* maximum magnitude 2*(emax+digits) */ |
2601 | /* */ |
2602 | /* res is C, the result. C may be A or B */ |
2603 | /* lhs is A, the number to adjust */ |
2604 | /* rhs is B, the requested power of ten to use */ |
2605 | /* set is the context */ |
2606 | /* */ |
2607 | /* C must have space for set->digits digits. */ |
2608 | /* */ |
2609 | /* The result may underflow or overflow. */ |
2610 | /* ------------------------------------------------------------------ */ |
2611 | decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, |
2612 | const decNumber *rhs, decContext *set) { |
2613 | Intint32_t reqexp; /* requested exponent change [B] */ |
2614 | uIntuint32_t status=0; /* accumulator */ |
2615 | Intint32_t residue; /* work */ |
2616 | |
2617 | #if DECCHECK0 |
2618 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2619 | #endif |
2620 | |
2621 | /* Handle special values except lhs infinite */ |
2622 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) |
2623 | decNaNs(res, lhs, rhs, set, &status); |
2624 | /* rhs must be an integer */ |
2625 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) |
2626 | status=DEC_Invalid_operation0x00000080; |
2627 | else { |
2628 | /* lhs is a number; rhs is a finite with q==0 */ |
2629 | reqexp=decGetInt(rhs); /* [cannot fail] */ |
2630 | if (reqexp==BADINT(int32_t)0x80000000 /* something bad .. */ |
2631 | || reqexp==BIGODD(int32_t)0x80000003 || reqexp==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ |
2632 | || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ |
2633 | status=DEC_Invalid_operation0x00000080; |
2634 | else { /* rhs is OK */ |
2635 | decNumberCopy(res, lhs); /* all done if infinite lhs */ |
2636 | if (!decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* prepare to scale */ |
2637 | res->exponent+=reqexp; /* adjust the exponent */ |
2638 | residue=0; |
2639 | decFinalize(res, set, &residue, &status); /* .. and check */ |
2640 | } /* finite LHS */ |
2641 | } /* rhs OK */ |
2642 | } /* rhs finite */ |
2643 | if (status!=0) decStatus(res, status, set); |
2644 | return res; |
2645 | } /* decNumberScaleB */ |
2646 | |
2647 | /* ------------------------------------------------------------------ */ |
2648 | /* decNumberShift -- shift the coefficient of a Number left or right */ |
2649 | /* */ |
2650 | /* This computes C = A << B or C = A >> -B (in base ten). */ |
2651 | /* */ |
2652 | /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */ |
2653 | /* lhs is A */ |
2654 | /* rhs is B, the number of digits to shift (-ve to right) */ |
2655 | /* set is the context */ |
2656 | /* */ |
2657 | /* The digits of the coefficient of A are shifted to the left (if B */ |
2658 | /* is positive) or to the right (if B is negative) without adjusting */ |
2659 | /* the exponent or the sign of A. */ |
2660 | /* */ |
2661 | /* B must be an integer (q=0) and in the range -set->digits through */ |
2662 | /* +set->digits. */ |
2663 | /* C must have space for set->digits digits. */ |
2664 | /* NaNs are propagated as usual. Infinities are unaffected (but */ |
2665 | /* B must be valid). No status is set unless B is invalid or an */ |
2666 | /* operand is an sNaN. */ |
2667 | /* ------------------------------------------------------------------ */ |
2668 | decNumber * decNumberShift(decNumber *res, const decNumber *lhs, |
2669 | const decNumber *rhs, decContext *set) { |
2670 | uIntuint32_t status=0; /* accumulator */ |
2671 | Intint32_t shift; /* rhs as an Int */ |
2672 | |
2673 | #if DECCHECK0 |
2674 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
2675 | #endif |
2676 | |
2677 | /* NaNs propagate as normal */ |
2678 | if (decNumberIsNaN(lhs)(((lhs)->bits&(0x20|0x10))!=0) || decNumberIsNaN(rhs)(((rhs)->bits&(0x20|0x10))!=0)) |
2679 | decNaNs(res, lhs, rhs, set, &status); |
2680 | /* rhs must be an integer */ |
2681 | else if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || rhs->exponent!=0) |
2682 | status=DEC_Invalid_operation0x00000080; |
2683 | else { /* both numeric, rhs is an integer */ |
2684 | shift=decGetInt(rhs); /* [cannot fail] */ |
2685 | if (shift==BADINT(int32_t)0x80000000 /* something bad .. */ |
2686 | || shift==BIGODD(int32_t)0x80000003 || shift==BIGEVEN(int32_t)0x80000002 /* .. very big .. */ |
2687 | || abs(shift)>set->digits) /* .. or out of range */ |
2688 | status=DEC_Invalid_operation0x00000080; |
2689 | else { /* rhs is OK */ |
2690 | decNumberCopy(res, lhs); |
2691 | if (shift!=0 && !decNumberIsInfinite(res)(((res)->bits&0x40)!=0)) { /* something to do */ |
2692 | if (shift>0) { /* to left */ |
2693 | if (shift==set->digits) { /* removing all */ |
2694 | *res->lsu=0; /* so place 0 */ |
2695 | res->digits=1; /* .. */ |
2696 | } |
2697 | else { /* */ |
2698 | /* first remove leading digits if necessary */ |
2699 | if (res->digits+shift>set->digits) { |
2700 | decDecap(res, res->digits+shift-set->digits); |
2701 | /* that updated res->digits; may have gone to 1 (for a */ |
2702 | /* single digit or for zero */ |
2703 | } |
2704 | if (res->digits>1 || *res->lsu) /* if non-zero.. */ |
2705 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
2706 | } /* partial left */ |
2707 | } /* left */ |
2708 | else { /* to right */ |
2709 | if (-shift>=res->digits) { /* discarding all */ |
2710 | *res->lsu=0; /* so place 0 */ |
2711 | res->digits=1; /* .. */ |
2712 | } |
2713 | else { |
2714 | decShiftToLeast(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3), -shift); |
2715 | res->digits-=(-shift); |
2716 | } |
2717 | } /* to right */ |
2718 | } /* non-0 non-Inf shift */ |
2719 | } /* rhs OK */ |
2720 | } /* numerics */ |
2721 | if (status!=0) decStatus(res, status, set); |
2722 | return res; |
2723 | } /* decNumberShift */ |
2724 | |
2725 | /* ------------------------------------------------------------------ */ |
2726 | /* decNumberSquareRoot -- square root operator */ |
2727 | /* */ |
2728 | /* This computes C = squareroot(A) */ |
2729 | /* */ |
2730 | /* res is C, the result. C may be A */ |
2731 | /* rhs is A */ |
2732 | /* set is the context; note that rounding mode has no effect */ |
2733 | /* */ |
2734 | /* C must have space for set->digits digits. */ |
2735 | /* ------------------------------------------------------------------ */ |
2736 | /* This uses the following varying-precision algorithm in: */ |
2737 | /* */ |
2738 | /* Properly Rounded Variable Precision Square Root, T. E. Hull and */ |
2739 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ |
2740 | /* pp229-237, ACM, September 1985. */ |
2741 | /* */ |
2742 | /* The square-root is calculated using Newton's method, after which */ |
2743 | /* a check is made to ensure the result is correctly rounded. */ |
2744 | /* */ |
2745 | /* % [Reformatted original Numerical Turing source code follows.] */ |
2746 | /* function sqrt(x : real) : real */ |
2747 | /* % sqrt(x) returns the properly rounded approximation to the square */ |
2748 | /* % root of x, in the precision of the calling environment, or it */ |
2749 | /* % fails if x < 0. */ |
2750 | /* % t e hull and a abrham, august, 1984 */ |
2751 | /* if x <= 0 then */ |
2752 | /* if x < 0 then */ |
2753 | /* assert false */ |
2754 | /* else */ |
2755 | /* result 0 */ |
2756 | /* end if */ |
2757 | /* end if */ |
2758 | /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */ |
2759 | /* var e := getexp(x) % exponent part of x */ |
2760 | /* var approx : real */ |
2761 | /* if e mod 2 = 0 then */ |
2762 | /* approx := .259 + .819 * f % approx to root of f */ |
2763 | /* else */ |
2764 | /* f := f/l0 % adjustments */ |
2765 | /* e := e + 1 % for odd */ |
2766 | /* approx := .0819 + 2.59 * f % exponent */ |
2767 | /* end if */ |
2768 | /* */ |
2769 | /* var p:= 3 */ |
2770 | /* const maxp := currentprecision + 2 */ |
2771 | /* loop */ |
2772 | /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */ |
2773 | /* precision p */ |
2774 | /* approx := .5 * (approx + f/approx) */ |
2775 | /* exit when p = maxp */ |
2776 | /* end loop */ |
2777 | /* */ |
2778 | /* % approx is now within 1 ulp of the properly rounded square root */ |
2779 | /* % of f; to ensure proper rounding, compare squares of (approx - */ |
2780 | /* % l/2 ulp) and (approx + l/2 ulp) with f. */ |
2781 | /* p := currentprecision */ |
2782 | /* begin */ |
2783 | /* precision p + 2 */ |
2784 | /* const approxsubhalf := approx - setexp(.5, -p) */ |
2785 | /* if mulru(approxsubhalf, approxsubhalf) > f then */ |
2786 | /* approx := approx - setexp(.l, -p + 1) */ |
2787 | /* else */ |
2788 | /* const approxaddhalf := approx + setexp(.5, -p) */ |
2789 | /* if mulrd(approxaddhalf, approxaddhalf) < f then */ |
2790 | /* approx := approx + setexp(.l, -p + 1) */ |
2791 | /* end if */ |
2792 | /* end if */ |
2793 | /* end */ |
2794 | /* result setexp(approx, e div 2) % fix exponent */ |
2795 | /* end sqrt */ |
2796 | /* ------------------------------------------------------------------ */ |
2797 | decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, |
2798 | decContext *set) { |
2799 | decContext workset, approxset; /* work contexts */ |
2800 | decNumber dzero; /* used for constant zero */ |
2801 | Intint32_t maxp; /* largest working precision */ |
2802 | Intint32_t workp; /* working precision */ |
2803 | Intint32_t residue=0; /* rounding residue */ |
2804 | uIntuint32_t status=0, ignore=0; /* status accumulators */ |
2805 | uIntuint32_t rstatus; /* .. */ |
2806 | Intint32_t exp; /* working exponent */ |
2807 | Intint32_t ideal; /* ideal (preferred) exponent */ |
2808 | Intint32_t needbytes; /* work */ |
2809 | Intint32_t dropped; /* .. */ |
2810 | |
2811 | #if DECSUBSET0 |
2812 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rounded rhs allocated */ |
2813 | #endif |
2814 | /* buffer for f [needs +1 in case DECBUFFER 0] */ |
2815 | decNumber buff[D2N(DECBUFFER+1)(((((((36 +1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
2816 | /* buffer for a [needs +2 to match likely maxp] */ |
2817 | decNumber bufa[D2N(DECBUFFER+2)(((((((36 +2)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
2818 | /* buffer for temporary, b [must be same size as a] */ |
2819 | decNumber bufb[D2N(DECBUFFER+2)(((((((36 +2)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber) *2-1)/sizeof(decNumber))]; |
2820 | decNumber *allocbuff=NULL((void*)0); /* -> allocated buff, iff allocated */ |
2821 | decNumber *allocbufa=NULL((void*)0); /* -> allocated bufa, iff allocated */ |
2822 | decNumber *allocbufb=NULL((void*)0); /* -> allocated bufb, iff allocated */ |
2823 | decNumber *f=buff; /* reduced fraction */ |
2824 | decNumber *a=bufa; /* approximation to result */ |
2825 | decNumber *b=bufb; /* intermediate result */ |
2826 | /* buffer for temporary variable, up to 3 digits */ |
2827 | decNumber buft[D2N(3)(((((((3)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber)*2-1 )/sizeof(decNumber))]; |
2828 | decNumber *t=buft; /* up-to-3-digit constant or work */ |
2829 | |
2830 | #if DECCHECK0 |
2831 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
2832 | #endif |
2833 | |
2834 | do { /* protect allocated storage */ |
2835 | #if DECSUBSET0 |
2836 | if (!set->extended) { |
2837 | /* reduce operand and set lostDigits status, as needed */ |
2838 | if (rhs->digits>set->digits) { |
2839 | allocrhs=decRoundOperand(rhs, set, &status); |
2840 | if (allocrhs==NULL((void*)0)) break; |
2841 | /* [Note: 'f' allocation below could reuse this buffer if */ |
2842 | /* used, but as this is rare they are kept separate for clarity.] */ |
2843 | rhs=allocrhs; |
2844 | } |
2845 | } |
2846 | #endif |
2847 | /* [following code does not require input rounding] */ |
2848 | |
2849 | /* handle infinities and NaNs */ |
2850 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { |
2851 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* an infinity */ |
2852 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) status|=DEC_Invalid_operation0x00000080; |
2853 | else decNumberCopy(res, rhs); /* +Infinity */ |
2854 | } |
2855 | else decNaNs(res, rhs, NULL((void*)0), set, &status); /* a NaN */ |
2856 | break; |
2857 | } |
2858 | |
2859 | /* calculate the ideal (preferred) exponent [floor(exp/2)] */ |
2860 | /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */ |
2861 | /* generates a compiler warning. Generated code is the same.] */ |
2862 | ideal=(rhs->exponent&~1)/2; /* target */ |
2863 | |
2864 | /* handle zeros */ |
2865 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { |
2866 | decNumberCopy(res, rhs); /* could be 0 or -0 */ |
2867 | res->exponent=ideal; /* use the ideal [safe] */ |
2868 | /* use decFinish to clamp any out-of-range exponent, etc. */ |
2869 | decFinish(res, set, &residue, &status)decFinalize(res,set,&residue,&status); |
2870 | break; |
2871 | } |
2872 | |
2873 | /* any other -x is an oops */ |
2874 | if (decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
2875 | status|=DEC_Invalid_operation0x00000080; |
2876 | break; |
2877 | } |
2878 | |
2879 | /* space is needed for three working variables */ |
2880 | /* f -- the same precision as the RHS, reduced to 0.01->0.99... */ |
2881 | /* a -- Hull's approximation -- precision, when assigned, is */ |
2882 | /* currentprecision+1 or the input argument precision, */ |
2883 | /* whichever is larger (+2 for use as temporary) */ |
2884 | /* b -- intermediate temporary result (same size as a) */ |
2885 | /* if any is too long for local storage, then allocate */ |
2886 | workp=MAXI(set->digits+1, rhs->digits)((set->digits+1)<(rhs->digits)?(rhs->digits):(set ->digits+1)); /* actual rounding precision */ |
2887 | workp=MAXI(workp, 7)((workp)<(7)?(7):(workp)); /* at least 7 for low cases */ |
2888 | maxp=workp+2; /* largest working precision */ |
2889 | |
2890 | needbytes=sizeof(decNumber)+(D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1)*sizeof(Unituint16_t); |
2891 | if (needbytes>(Intint32_t)sizeof(buff)) { |
2892 | allocbuff=(decNumber *)malloc(needbytes); |
2893 | if (allocbuff==NULL((void*)0)) { /* hopeless -- abandon */ |
2894 | status|=DEC_Insufficient_storage0x00000010; |
2895 | break;} |
2896 | f=allocbuff; /* use the allocated space */ |
2897 | } |
2898 | /* a and b both need to be able to hold a maxp-length number */ |
2899 | needbytes=sizeof(decNumber)+(D2U(maxp)((maxp)<=49?d2utable[maxp]:((maxp)+3 -1)/3)-1)*sizeof(Unituint16_t); |
2900 | if (needbytes>(Intint32_t)sizeof(bufa)) { /* [same applies to b] */ |
2901 | allocbufa=(decNumber *)malloc(needbytes); |
2902 | allocbufb=(decNumber *)malloc(needbytes); |
2903 | if (allocbufa==NULL((void*)0) || allocbufb==NULL((void*)0)) { /* hopeless */ |
2904 | status|=DEC_Insufficient_storage0x00000010; |
2905 | break;} |
2906 | a=allocbufa; /* use the allocated spaces */ |
2907 | b=allocbufb; /* .. */ |
2908 | } |
2909 | |
2910 | /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ |
2911 | decNumberCopy(f, rhs); |
2912 | exp=f->exponent+f->digits; /* adjusted to Hull rules */ |
2913 | f->exponent=-(f->digits); /* to range */ |
2914 | |
2915 | /* set up working context */ |
2916 | decContextDefault(&workset, DEC_INIT_DECIMAL6464); |
2917 | workset.emax=DEC_MAX_EMAX999999999; |
2918 | workset.emin=DEC_MIN_EMIN-999999999; |
2919 | |
2920 | /* [Until further notice, no error is possible and status bits */ |
2921 | /* (Rounded, etc.) should be ignored, not accumulated.] */ |
2922 | |
2923 | /* Calculate initial approximation, and allow for odd exponent */ |
2924 | workset.digits=workp; /* p for initial calculation */ |
2925 | t->bits=0; t->digits=3; |
2926 | a->bits=0; a->digits=3; |
2927 | if ((exp & 1)==0) { /* even exponent */ |
2928 | /* Set t=0.259, a=0.819 */ |
2929 | t->exponent=-3; |
2930 | a->exponent=-3; |
2931 | #if DECDPUN3>=3 |
2932 | t->lsu[0]=259; |
2933 | a->lsu[0]=819; |
2934 | #elif DECDPUN3==2 |
2935 | t->lsu[0]=59; t->lsu[1]=2; |
2936 | a->lsu[0]=19; a->lsu[1]=8; |
2937 | #else |
2938 | t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; |
2939 | a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; |
2940 | #endif |
2941 | } |
2942 | else { /* odd exponent */ |
2943 | /* Set t=0.0819, a=2.59 */ |
2944 | f->exponent--; /* f=f/10 */ |
2945 | exp++; /* e=e+1 */ |
2946 | t->exponent=-4; |
2947 | a->exponent=-2; |
2948 | #if DECDPUN3>=3 |
2949 | t->lsu[0]=819; |
2950 | a->lsu[0]=259; |
2951 | #elif DECDPUN3==2 |
2952 | t->lsu[0]=19; t->lsu[1]=8; |
2953 | a->lsu[0]=59; a->lsu[1]=2; |
2954 | #else |
2955 | t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; |
2956 | a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; |
2957 | #endif |
2958 | } |
2959 | |
2960 | decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */ |
2961 | decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */ |
2962 | /* [a is now the initial approximation for sqrt(f), calculated with */ |
2963 | /* currentprecision, which is also a's precision.] */ |
2964 | |
2965 | /* the main calculation loop */ |
2966 | decNumberZero(&dzero); /* make 0 */ |
2967 | decNumberZero(t); /* set t = 0.5 */ |
2968 | t->lsu[0]=5; /* .. */ |
2969 | t->exponent=-1; /* .. */ |
2970 | workset.digits=3; /* initial p */ |
2971 | for (; workset.digits<maxp;) { |
2972 | /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */ |
2973 | workset.digits=MINI(workset.digits*2-2, maxp)((workset.digits*2-2)>(maxp)?(maxp):(workset.digits*2-2)); |
2974 | /* a = 0.5 * (a + f/a) */ |
2975 | /* [calculated at p then rounded to currentprecision] */ |
2976 | decDivideOp(b, f, a, &workset, DIVIDE0x80, &ignore); /* b=f/a */ |
2977 | decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */ |
2978 | decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */ |
2979 | } /* loop */ |
2980 | |
2981 | /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ |
2982 | /* now reduce to length, etc.; this needs to be done with a */ |
2983 | /* having the correct exponent so as to handle subnormals */ |
2984 | /* correctly */ |
2985 | approxset=*set; /* get emin, emax, etc. */ |
2986 | approxset.round=DEC_ROUND_HALF_EVEN; |
2987 | a->exponent+=exp/2; /* set correct exponent */ |
2988 | rstatus=0; /* clear status */ |
2989 | residue=0; /* .. and accumulator */ |
2990 | decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */ |
2991 | decFinish(a, &approxset, &residue, &rstatus)decFinalize(a,&approxset,&residue,&rstatus); /* clean and finalize */ |
2992 | |
2993 | /* Overflow was possible if the input exponent was out-of-range, */ |
2994 | /* in which case quit */ |
2995 | if (rstatus&DEC_Overflow0x00000200) { |
2996 | status=rstatus; /* use the status as-is */ |
2997 | decNumberCopy(res, a); /* copy to result */ |
2998 | break; |
2999 | } |
3000 | |
3001 | /* Preserve status except Inexact/Rounded */ |
3002 | status|=(rstatus & ~(DEC_Rounded0x00000800|DEC_Inexact0x00000020)); |
3003 | |
3004 | /* Carry out the Hull correction */ |
3005 | a->exponent-=exp/2; /* back to 0.1->1 */ |
3006 | |
3007 | /* a is now at final precision and within 1 ulp of the properly */ |
3008 | /* rounded square root of f; to ensure proper rounding, compare */ |
3009 | /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ |
3010 | /* Here workset.digits=maxp and t=0.5, and a->digits determines */ |
3011 | /* the ulp */ |
3012 | workset.digits--; /* maxp-1 is OK now */ |
3013 | t->exponent=-a->digits-1; /* make 0.5 ulp */ |
3014 | decAddOp(b, a, t, &workset, DECNEG0x80, &ignore); /* b = a - 0.5 ulp */ |
3015 | workset.round=DEC_ROUND_UP; |
3016 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */ |
3017 | decCompareOp(b, f, b, &workset, COMPARE0x01, &ignore); /* b ? f, reversed */ |
3018 | if (decNumberIsNegative(b)(((b)->bits&0x80)!=0)) { /* f < b [i.e., b > f] */ |
3019 | /* this is the more common adjustment, though both are rare */ |
3020 | t->exponent++; /* make 1.0 ulp */ |
3021 | t->lsu[0]=1; /* .. */ |
3022 | decAddOp(a, a, t, &workset, DECNEG0x80, &ignore); /* a = a - 1 ulp */ |
3023 | /* assign to approx [round to length] */ |
3024 | approxset.emin-=exp/2; /* adjust to match a */ |
3025 | approxset.emax-=exp/2; |
3026 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
3027 | } |
3028 | else { |
3029 | decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */ |
3030 | workset.round=DEC_ROUND_DOWN; |
3031 | decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */ |
3032 | decCompareOp(b, b, f, &workset, COMPARE0x01, &ignore); /* b ? f */ |
3033 | if (decNumberIsNegative(b)(((b)->bits&0x80)!=0)) { /* b < f */ |
3034 | t->exponent++; /* make 1.0 ulp */ |
3035 | t->lsu[0]=1; /* .. */ |
3036 | decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */ |
3037 | /* assign to approx [round to length] */ |
3038 | approxset.emin-=exp/2; /* adjust to match a */ |
3039 | approxset.emax-=exp/2; |
3040 | decAddOp(a, &dzero, a, &approxset, 0, &ignore); |
3041 | } |
3042 | } |
3043 | /* [no errors are possible in the above, and rounding/inexact during */ |
3044 | /* estimation are irrelevant, so status was not accumulated] */ |
3045 | |
3046 | /* Here, 0.1 <= a < 1 (still), so adjust back */ |
3047 | a->exponent+=exp/2; /* set correct exponent */ |
3048 | |
3049 | /* count droppable zeros [after any subnormal rounding] by */ |
3050 | /* trimming a copy */ |
3051 | decNumberCopy(b, a); |
3052 | decTrim(b, set, 1, 1, &dropped); /* [drops trailing zeros] */ |
3053 | |
3054 | /* Set Inexact and Rounded. The answer can only be exact if */ |
3055 | /* it is short enough so that squaring it could fit in workp */ |
3056 | /* digits, so this is the only (relatively rare) condition that */ |
3057 | /* a careful check is needed */ |
3058 | if (b->digits*2-1 > workp) { /* cannot fit */ |
3059 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; |
3060 | } |
3061 | else { /* could be exact/unrounded */ |
3062 | uIntuint32_t mstatus=0; /* local status */ |
3063 | decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ |
3064 | if (mstatus&DEC_Overflow0x00000200) { /* result just won't fit */ |
3065 | status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; |
3066 | } |
3067 | else { /* plausible */ |
3068 | decCompareOp(t, b, rhs, &workset, COMPARE0x01, &mstatus); /* b ? rhs */ |
3069 | if (!ISZERO(t)(*(t)->lsu==0 && (t)->digits==1 && (((t )->bits&(0x40|0x20|0x10))==0))) status|=DEC_Inexact0x00000020|DEC_Rounded0x00000800; /* not equal */ |
3070 | else { /* is Exact */ |
3071 | /* here, dropped is the count of trailing zeros in 'a' */ |
3072 | /* use closest exponent to ideal... */ |
3073 | Intint32_t todrop=ideal-a->exponent; /* most that can be dropped */ |
3074 | if (todrop<0) status|=DEC_Rounded0x00000800; /* ideally would add 0s */ |
3075 | else { /* unrounded */ |
3076 | /* there are some to drop, but emax may not allow all */ |
3077 | Intint32_t maxexp=set->emax-set->digits+1; |
3078 | Intint32_t maxdrop=maxexp-a->exponent; |
3079 | if (todrop>maxdrop && set->clamp) { /* apply clamping */ |
3080 | todrop=maxdrop; |
3081 | status|=DEC_Clamped0x00000400; |
3082 | } |
3083 | if (dropped<todrop) { /* clamp to those available */ |
3084 | todrop=dropped; |
3085 | status|=DEC_Clamped0x00000400; |
3086 | } |
3087 | if (todrop>0) { /* have some to drop */ |
3088 | decShiftToLeast(a->lsu, D2U(a->digits)((a->digits)<=49?d2utable[a->digits]:((a->digits) +3 -1)/3), todrop); |
3089 | a->exponent+=todrop; /* maintain numerical value */ |
3090 | a->digits-=todrop; /* new length */ |
3091 | } |
3092 | } |
3093 | } |
3094 | } |
3095 | } |
3096 | |
3097 | /* double-check Underflow, as perhaps the result could not have */ |
3098 | /* been subnormal (initial argument too big), or it is now Exact */ |
3099 | if (status&DEC_Underflow0x00002000) { |
3100 | Intint32_t ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ |
3101 | /* check if truly subnormal */ |
3102 | #if DECEXTFLAG1 /* DEC_Subnormal too */ |
3103 | if (ae>=set->emin*2) status&=~(DEC_Subnormal0x00001000|DEC_Underflow0x00002000); |
3104 | #else |
3105 | if (ae>=set->emin*2) status&=~DEC_Underflow0x00002000; |
3106 | #endif |
3107 | /* check if truly inexact */ |
3108 | if (!(status&DEC_Inexact0x00000020)) status&=~DEC_Underflow0x00002000; |
3109 | } |
3110 | |
3111 | decNumberCopy(res, a); /* a is now the result */ |
3112 | } while(0); /* end protected */ |
3113 | |
3114 | free(allocbuff); /* drop any storage used */ |
3115 | free(allocbufa); /* .. */ |
3116 | free(allocbufb); /* .. */ |
3117 | #if DECSUBSET0 |
3118 | free(allocrhs); /* .. */ |
3119 | #endif |
3120 | if (status!=0) decStatus(res, status, set);/* then report status */ |
3121 | #if DECCHECK0 |
3122 | decCheckInexact(res, set); |
3123 | #endif |
3124 | return res; |
3125 | } /* decNumberSquareRoot */ |
3126 | |
3127 | /* ------------------------------------------------------------------ */ |
3128 | /* decNumberSubtract -- subtract two Numbers */ |
3129 | /* */ |
3130 | /* This computes C = A - B */ |
3131 | /* */ |
3132 | /* res is C, the result. C may be A and/or B (e.g., X=X-X) */ |
3133 | /* lhs is A */ |
3134 | /* rhs is B */ |
3135 | /* set is the context */ |
3136 | /* */ |
3137 | /* C must have space for set->digits digits. */ |
3138 | /* ------------------------------------------------------------------ */ |
3139 | decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, |
3140 | const decNumber *rhs, decContext *set) { |
3141 | uIntuint32_t status=0; /* accumulator */ |
3142 | |
3143 | decAddOp(res, lhs, rhs, set, DECNEG0x80, &status); |
3144 | if (status!=0) decStatus(res, status, set); |
3145 | #if DECCHECK0 |
3146 | decCheckInexact(res, set); |
3147 | #endif |
3148 | return res; |
3149 | } /* decNumberSubtract */ |
3150 | |
3151 | /* ------------------------------------------------------------------ */ |
3152 | /* decNumberToIntegralExact -- round-to-integral-value with InExact */ |
3153 | /* decNumberToIntegralValue -- round-to-integral-value */ |
3154 | /* */ |
3155 | /* res is the result */ |
3156 | /* rhs is input number */ |
3157 | /* set is the context */ |
3158 | /* */ |
3159 | /* res must have space for any value of rhs. */ |
3160 | /* */ |
3161 | /* This implements the IEEE special operators and therefore treats */ |
3162 | /* special values as valid. For finite numbers it returns */ |
3163 | /* rescale(rhs, 0) if rhs->exponent is <0. */ |
3164 | /* Otherwise the result is rhs (so no error is possible, except for */ |
3165 | /* sNaN). */ |
3166 | /* */ |
3167 | /* The context is used for rounding mode and status after sNaN, but */ |
3168 | /* the digits setting is ignored. The Exact version will signal */ |
3169 | /* Inexact if the result differs numerically from rhs; the other */ |
3170 | /* never signals Inexact. */ |
3171 | /* ------------------------------------------------------------------ */ |
3172 | decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, |
3173 | decContext *set) { |
3174 | decNumber dn; |
3175 | decContext workset; /* working context */ |
3176 | uIntuint32_t status=0; /* accumulator */ |
3177 | |
3178 | #if DECCHECK0 |
3179 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
3180 | #endif |
3181 | |
3182 | /* handle infinities and NaNs */ |
3183 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { |
3184 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) decNumberCopy(res, rhs); /* an Infinity */ |
3185 | else decNaNs(res, rhs, NULL((void*)0), set, &status); /* a NaN */ |
3186 | } |
3187 | else { /* finite */ |
3188 | /* have a finite number; no error possible (res must be big enough) */ |
3189 | if (rhs->exponent>=0) return decNumberCopy(res, rhs); |
3190 | /* that was easy, but if negative exponent there is work to do... */ |
3191 | workset=*set; /* clone rounding, etc. */ |
3192 | workset.digits=rhs->digits; /* no length rounding */ |
3193 | workset.traps=0; /* no traps */ |
3194 | decNumberZero(&dn); /* make a number with exponent 0 */ |
3195 | decNumberQuantize(res, rhs, &dn, &workset); |
3196 | status|=workset.status; |
3197 | } |
3198 | if (status!=0) decStatus(res, status, set); |
3199 | return res; |
3200 | } /* decNumberToIntegralExact */ |
3201 | |
3202 | decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, |
3203 | decContext *set) { |
3204 | decContext workset=*set; /* working context */ |
3205 | workset.traps=0; /* no traps */ |
3206 | decNumberToIntegralExact(res, rhs, &workset); |
3207 | /* this never affects set, except for sNaNs; NaN will have been set */ |
3208 | /* or propagated already, so no need to call decStatus */ |
3209 | set->status|=workset.status&DEC_Invalid_operation0x00000080; |
3210 | return res; |
3211 | } /* decNumberToIntegralValue */ |
3212 | |
3213 | /* ------------------------------------------------------------------ */ |
3214 | /* decNumberXor -- XOR two Numbers, digitwise */ |
3215 | /* */ |
3216 | /* This computes C = A ^ B */ |
3217 | /* */ |
3218 | /* res is C, the result. C may be A and/or B (e.g., X=X^X) */ |
3219 | /* lhs is A */ |
3220 | /* rhs is B */ |
3221 | /* set is the context (used for result length and error report) */ |
3222 | /* */ |
3223 | /* C must have space for set->digits digits. */ |
3224 | /* */ |
3225 | /* Logical function restrictions apply (see above); a NaN is */ |
3226 | /* returned with Invalid_operation if a restriction is violated. */ |
3227 | /* ------------------------------------------------------------------ */ |
3228 | decNumber * decNumberXor(decNumber *res, const decNumber *lhs, |
3229 | const decNumber *rhs, decContext *set) { |
3230 | const Unituint16_t *ua, *ub; /* -> operands */ |
3231 | const Unituint16_t *msua, *msub; /* -> operand msus */ |
3232 | Unituint16_t *uc, *msuc; /* -> result and its msu */ |
3233 | Intint32_t msudigs; /* digits in res msu */ |
3234 | #if DECCHECK0 |
3235 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
3236 | #endif |
3237 | |
3238 | if (lhs->exponent!=0 || decNumberIsSpecial(lhs)(((lhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(lhs)(((lhs)->bits&0x80)!=0) |
3239 | || rhs->exponent!=0 || decNumberIsSpecial(rhs)(((rhs)->bits&(0x40|0x20|0x10))!=0) || decNumberIsNegative(rhs)(((rhs)->bits&0x80)!=0)) { |
3240 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
3241 | return res; |
3242 | } |
3243 | /* operands are valid */ |
3244 | ua=lhs->lsu; /* bottom-up */ |
3245 | ub=rhs->lsu; /* .. */ |
3246 | uc=res->lsu; /* .. */ |
3247 | msua=ua+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)-1; /* -> msu of lhs */ |
3248 | msub=ub+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)-1; /* -> msu of rhs */ |
3249 | msuc=uc+D2U(set->digits)((set->digits)<=49?d2utable[set->digits]:((set->digits )+3 -1)/3)-1; /* -> msu of result */ |
3250 | msudigs=MSUDIGITS(set->digits)((set->digits)-(((set->digits)<=49?d2utable[set-> digits]:((set->digits)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
3251 | for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */ |
3252 | Unituint16_t a, b; /* extract units */ |
3253 | if (ua>msua) a=0; |
3254 | else a=*ua; |
3255 | if (ub>msub) b=0; |
3256 | else b=*ub; |
3257 | *uc=0; /* can now write back */ |
3258 | if (a|b) { /* maybe 1 bits to examine */ |
3259 | Intint32_t i, j; |
3260 | /* This loop could be unrolled and/or use BIN2BCD tables */ |
3261 | for (i=0; i<DECDPUN3; i++) { |
3262 | if ((a^b)&1) *uc=*uc+(Unituint16_t)powersDECPOWERS[i]; /* effect XOR */ |
3263 | j=a%10; |
3264 | a=a/10; |
3265 | j|=b%10; |
3266 | b=b/10; |
3267 | if (j>1) { |
3268 | decStatus(res, DEC_Invalid_operation0x00000080, set); |
3269 | return res; |
3270 | } |
3271 | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ |
3272 | } /* each digit */ |
3273 | } /* non-zero */ |
3274 | } /* each unit */ |
3275 | /* [here uc-1 is the msu of the result] */ |
3276 | res->digits=decGetDigits(res->lsu, uc-res->lsu); |
3277 | res->exponent=0; /* integer */ |
3278 | res->bits=0; /* sign=0 */ |
3279 | return res; /* [no status to set] */ |
3280 | } /* decNumberXor */ |
3281 | |
3282 | |
3283 | /* ================================================================== */ |
3284 | /* Utility routines */ |
3285 | /* ================================================================== */ |
3286 | |
3287 | /* ------------------------------------------------------------------ */ |
3288 | /* decNumberClass -- return the decClass of a decNumber */ |
3289 | /* dn -- the decNumber to test */ |
3290 | /* set -- the context to use for Emin */ |
3291 | /* returns the decClass enum */ |
3292 | /* ------------------------------------------------------------------ */ |
3293 | enum decClass decNumberClass(const decNumber *dn, decContext *set) { |
3294 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) { |
3295 | if (decNumberIsQNaN(dn)(((dn)->bits&(0x20))!=0)) return DEC_CLASS_QNAN; |
3296 | if (decNumberIsSNaN(dn)(((dn)->bits&(0x10))!=0)) return DEC_CLASS_SNAN; |
3297 | /* must be an infinity */ |
3298 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_INF; |
3299 | return DEC_CLASS_POS_INF; |
3300 | } |
3301 | /* is finite */ |
3302 | if (decNumberIsNormal(dn, set)) { /* most common */ |
3303 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_NORMAL; |
3304 | return DEC_CLASS_POS_NORMAL; |
3305 | } |
3306 | /* is subnormal or zero */ |
3307 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) { /* most common */ |
3308 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_ZERO; |
3309 | return DEC_CLASS_POS_ZERO; |
3310 | } |
3311 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) return DEC_CLASS_NEG_SUBNORMAL; |
3312 | return DEC_CLASS_POS_SUBNORMAL; |
3313 | } /* decNumberClass */ |
3314 | |
3315 | /* ------------------------------------------------------------------ */ |
3316 | /* decNumberClassToString -- convert decClass to a string */ |
3317 | /* */ |
3318 | /* eclass is a valid decClass */ |
3319 | /* returns a constant string describing the class (max 13+1 chars) */ |
3320 | /* ------------------------------------------------------------------ */ |
3321 | const char *decNumberClassToString(enum decClass eclass) { |
3322 | if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN"+Normal"; |
3323 | if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN"-Normal"; |
3324 | if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ"+Zero"; |
3325 | if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ"-Zero"; |
3326 | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS"+Subnormal"; |
3327 | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS"-Subnormal"; |
3328 | if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI"+Infinity"; |
3329 | if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI"-Infinity"; |
3330 | if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN"NaN"; |
3331 | if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN"sNaN"; |
3332 | return DEC_ClassString_UN"Invalid"; /* Unknown */ |
3333 | } /* decNumberClassToString */ |
3334 | |
3335 | /* ------------------------------------------------------------------ */ |
3336 | /* decNumberCopy -- copy a number */ |
3337 | /* */ |
3338 | /* dest is the target decNumber */ |
3339 | /* src is the source decNumber */ |
3340 | /* returns dest */ |
3341 | /* */ |
3342 | /* (dest==src is allowed and is a no-op) */ |
3343 | /* All fields are updated as required. This is a utility operation, */ |
3344 | /* so special values are unchanged and no error is possible. */ |
3345 | /* ------------------------------------------------------------------ */ |
3346 | decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { |
3347 | |
3348 | #if DECCHECK0 |
3349 | if (src==NULL((void*)0)) return decNumberZero(dest); |
3350 | #endif |
3351 | |
3352 | if (dest==src) return dest; /* no copy required */ |
3353 | |
3354 | /* Use explicit assignments here as structure assignment could copy */ |
3355 | /* more than just the lsu (for small DECDPUN). This would not affect */ |
3356 | /* the value of the results, but could disturb test harness spill */ |
3357 | /* checking. */ |
3358 | dest->bits=src->bits; |
3359 | dest->exponent=src->exponent; |
3360 | dest->digits=src->digits; |
3361 | dest->lsu[0]=src->lsu[0]; |
3362 | if (src->digits>DECDPUN3) { /* more Units to come */ |
3363 | const Unituint16_t *smsup, *s; /* work */ |
3364 | Unituint16_t *d; /* .. */ |
3365 | /* memcpy for the remaining Units would be safe as they cannot */ |
3366 | /* overlap. However, this explicit loop is faster in short cases. */ |
3367 | d=dest->lsu+1; /* -> first destination */ |
3368 | smsup=src->lsu+D2U(src->digits)((src->digits)<=49?d2utable[src->digits]:((src->digits )+3 -1)/3); /* -> source msu+1 */ |
3369 | for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; |
3370 | } |
3371 | return dest; |
3372 | } /* decNumberCopy */ |
3373 | |
3374 | /* ------------------------------------------------------------------ */ |
3375 | /* decNumberCopyAbs -- quiet absolute value operator */ |
3376 | /* */ |
3377 | /* This sets C = abs(A) */ |
3378 | /* */ |
3379 | /* res is C, the result. C may be A */ |
3380 | /* rhs is A */ |
3381 | /* */ |
3382 | /* C must have space for set->digits digits. */ |
3383 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3384 | /* See also decNumberAbs for a checking version of this. */ |
3385 | /* ------------------------------------------------------------------ */ |
3386 | decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { |
3387 | #if DECCHECK0 |
3388 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3389 | #endif |
3390 | decNumberCopy(res, rhs); |
3391 | res->bits&=~DECNEG0x80; /* turn off sign */ |
3392 | return res; |
3393 | } /* decNumberCopyAbs */ |
3394 | |
3395 | /* ------------------------------------------------------------------ */ |
3396 | /* decNumberCopyNegate -- quiet negate value operator */ |
3397 | /* */ |
3398 | /* This sets C = negate(A) */ |
3399 | /* */ |
3400 | /* res is C, the result. C may be A */ |
3401 | /* rhs is A */ |
3402 | /* */ |
3403 | /* C must have space for set->digits digits. */ |
3404 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3405 | /* See also decNumberMinus for a checking version of this. */ |
3406 | /* ------------------------------------------------------------------ */ |
3407 | decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { |
3408 | #if DECCHECK0 |
3409 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3410 | #endif |
3411 | decNumberCopy(res, rhs); |
3412 | res->bits^=DECNEG0x80; /* invert the sign */ |
3413 | return res; |
3414 | } /* decNumberCopyNegate */ |
3415 | |
3416 | /* ------------------------------------------------------------------ */ |
3417 | /* decNumberCopySign -- quiet copy and set sign operator */ |
3418 | /* */ |
3419 | /* This sets C = A with the sign of B */ |
3420 | /* */ |
3421 | /* res is C, the result. C may be A */ |
3422 | /* lhs is A */ |
3423 | /* rhs is B */ |
3424 | /* */ |
3425 | /* C must have space for set->digits digits. */ |
3426 | /* No exception or error can occur; this is a quiet bitwise operation.*/ |
3427 | /* ------------------------------------------------------------------ */ |
3428 | decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, |
3429 | const decNumber *rhs) { |
3430 | uByteuint8_t sign; /* rhs sign */ |
3431 | #if DECCHECK0 |
3432 | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; |
3433 | #endif |
3434 | sign=rhs->bits & DECNEG0x80; /* save sign bit */ |
3435 | decNumberCopy(res, lhs); |
3436 | res->bits&=~DECNEG0x80; /* clear the sign */ |
3437 | res->bits|=sign; /* set from rhs */ |
3438 | return res; |
3439 | } /* decNumberCopySign */ |
3440 | |
3441 | /* ------------------------------------------------------------------ */ |
3442 | /* decNumberGetBCD -- get the coefficient in BCD8 */ |
3443 | /* dn is the source decNumber */ |
3444 | /* bcd is the uInt array that will receive dn->digits BCD bytes, */ |
3445 | /* most-significant at offset 0 */ |
3446 | /* returns bcd */ |
3447 | /* */ |
3448 | /* bcd must have at least dn->digits bytes. No error is possible; if */ |
3449 | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */ |
3450 | /* ------------------------------------------------------------------ */ |
3451 | uByteuint8_t * decNumberGetBCD(const decNumber *dn, uByteuint8_t *bcd) { |
3452 | uByteuint8_t *ub=bcd+dn->digits-1; /* -> lsd */ |
3453 | const Unituint16_t *up=dn->lsu; /* Unit pointer, -> lsu */ |
3454 | |
3455 | #if DECDPUN3==1 /* trivial simple copy */ |
3456 | for (; ub>=bcd; ub--, up++) *ub=*up; |
3457 | #else /* chopping needed */ |
3458 | uIntuint32_t u=*up; /* work */ |
3459 | uIntuint32_t cut=DECDPUN3; /* downcounter through unit */ |
3460 | for (; ub>=bcd; ub--) { |
3461 | *ub=(uByteuint8_t)(u%10); /* [*6554 trick inhibits, here] */ |
3462 | u=u/10; |
3463 | cut--; |
3464 | if (cut>0) continue; /* more in this unit */ |
3465 | up++; |
3466 | u=*up; |
3467 | cut=DECDPUN3; |
3468 | } |
3469 | #endif |
3470 | return bcd; |
3471 | } /* decNumberGetBCD */ |
3472 | |
3473 | /* ------------------------------------------------------------------ */ |
3474 | /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */ |
3475 | /* dn is the target decNumber */ |
3476 | /* bcd is the uInt array that will source n BCD bytes, most- */ |
3477 | /* significant at offset 0 */ |
3478 | /* n is the number of digits in the source BCD array (bcd) */ |
3479 | /* returns dn */ |
3480 | /* */ |
3481 | /* dn must have space for at least n digits. No error is possible; */ |
3482 | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */ |
3483 | /* and bcd[0] zero. */ |
3484 | /* ------------------------------------------------------------------ */ |
3485 | decNumber * decNumberSetBCD(decNumber *dn, const uByteuint8_t *bcd, uIntuint32_t n) { |
3486 | Unituint16_t *up=dn->lsu+D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+3 -1)/3)-1; /* -> msu [target pointer] */ |
3487 | const uByteuint8_t *ub=bcd; /* -> source msd */ |
3488 | |
3489 | #if DECDPUN3==1 /* trivial simple copy */ |
3490 | for (; ub<bcd+n; ub++, up--) *up=*ub; |
3491 | #else /* some assembly needed */ |
3492 | /* calculate how many digits in msu, and hence first cut */ |
3493 | Intint32_t cut=MSUDIGITS(n)((n)-(((n)<=49?d2utable[n]:((n)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
3494 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
3495 | *up=0; /* will take <=DECDPUN digits */ |
3496 | for (; cut>0; ub++, cut--) *up=X10(*up)(((*up)<<1)+((*up)<<3))+*ub; |
3497 | cut=DECDPUN3; /* next Unit has all digits */ |
3498 | } |
3499 | #endif |
3500 | dn->digits=n; /* set digit count */ |
3501 | return dn; |
3502 | } /* decNumberSetBCD */ |
3503 | |
3504 | /* ------------------------------------------------------------------ */ |
3505 | /* decNumberIsNormal -- test normality of a decNumber */ |
3506 | /* dn is the decNumber to test */ |
3507 | /* set is the context to use for Emin */ |
3508 | /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */ |
3509 | /* ------------------------------------------------------------------ */ |
3510 | Intint32_t decNumberIsNormal(const decNumber *dn, decContext *set) { |
3511 | Intint32_t ae; /* adjusted exponent */ |
3512 | #if DECCHECK0 |
3513 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
3514 | #endif |
3515 | |
3516 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) return 0; /* not finite */ |
3517 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) return 0; /* not non-zero */ |
3518 | |
3519 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
3520 | if (ae<set->emin) return 0; /* is subnormal */ |
3521 | return 1; |
3522 | } /* decNumberIsNormal */ |
3523 | |
3524 | /* ------------------------------------------------------------------ */ |
3525 | /* decNumberIsSubnormal -- test subnormality of a decNumber */ |
3526 | /* dn is the decNumber to test */ |
3527 | /* set is the context to use for Emin */ |
3528 | /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */ |
3529 | /* ------------------------------------------------------------------ */ |
3530 | Intint32_t decNumberIsSubnormal(const decNumber *dn, decContext *set) { |
3531 | Intint32_t ae; /* adjusted exponent */ |
3532 | #if DECCHECK0 |
3533 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; |
3534 | #endif |
3535 | |
3536 | if (decNumberIsSpecial(dn)(((dn)->bits&(0x40|0x20|0x10))!=0)) return 0; /* not finite */ |
3537 | if (decNumberIsZero(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) return 0; /* not non-zero */ |
3538 | |
3539 | ae=dn->exponent+dn->digits-1; /* adjusted exponent */ |
3540 | if (ae<set->emin) return 1; /* is subnormal */ |
3541 | return 0; |
3542 | } /* decNumberIsSubnormal */ |
3543 | |
3544 | /* ------------------------------------------------------------------ */ |
3545 | /* decNumberTrim -- remove insignificant zeros */ |
3546 | /* */ |
3547 | /* dn is the number to trim */ |
3548 | /* returns dn */ |
3549 | /* */ |
3550 | /* All fields are updated as required. This is a utility operation, */ |
3551 | /* so special values are unchanged and no error is possible. The */ |
3552 | /* zeros are removed unconditionally. */ |
3553 | /* ------------------------------------------------------------------ */ |
3554 | decNumber * decNumberTrim(decNumber *dn) { |
3555 | Intint32_t dropped; /* work */ |
3556 | decContext set; /* .. */ |
3557 | #if DECCHECK0 |
3558 | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; |
3559 | #endif |
3560 | decContextDefault(&set, DEC_INIT_BASE0); /* clamp=0 */ |
3561 | return decTrim(dn, &set, 0, 1, &dropped); |
3562 | } /* decNumberTrim */ |
3563 | |
3564 | /* ------------------------------------------------------------------ */ |
3565 | /* decNumberVersion -- return the name and version of this module */ |
3566 | /* */ |
3567 | /* No error is possible. */ |
3568 | /* ------------------------------------------------------------------ */ |
3569 | const char * decNumberVersion(void) { |
3570 | return DECVERSION"decNumber 3.61"; |
3571 | } /* decNumberVersion */ |
3572 | |
3573 | /* ------------------------------------------------------------------ */ |
3574 | /* decNumberZero -- set a number to 0 */ |
3575 | /* */ |
3576 | /* dn is the number to set, with space for one digit */ |
3577 | /* returns dn */ |
3578 | /* */ |
3579 | /* No error is possible. */ |
3580 | /* ------------------------------------------------------------------ */ |
3581 | /* Memset is not used as it is much slower in some environments. */ |
3582 | decNumber * decNumberZero(decNumber *dn) { |
3583 | |
3584 | #if DECCHECK0 |
3585 | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; |
3586 | #endif |
3587 | |
3588 | dn->bits=0; |
3589 | dn->exponent=0; |
3590 | dn->digits=1; |
3591 | dn->lsu[0]=0; |
3592 | return dn; |
3593 | } /* decNumberZero */ |
3594 | |
3595 | /* ================================================================== */ |
3596 | /* Local routines */ |
3597 | /* ================================================================== */ |
3598 | |
3599 | /* ------------------------------------------------------------------ */ |
3600 | /* decToString -- lay out a number into a string */ |
3601 | /* */ |
3602 | /* dn is the number to lay out */ |
3603 | /* string is where to lay out the number */ |
3604 | /* eng is 1 if Engineering, 0 if Scientific */ |
3605 | /* */ |
3606 | /* string must be at least dn->digits+14 characters long */ |
3607 | /* No error is possible. */ |
3608 | /* */ |
3609 | /* Note that this routine can generate a -0 or 0.000. These are */ |
3610 | /* never generated in subset to-number or arithmetic, but can occur */ |
3611 | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */ |
3612 | /* ------------------------------------------------------------------ */ |
3613 | /* If DECCHECK is enabled the string "?" is returned if a number is */ |
3614 | /* invalid. */ |
3615 | static void decToString(const decNumber *dn, char *string, Flaguint8_t eng) { |
3616 | Intint32_t exp=dn->exponent; /* local copy */ |
3617 | Intint32_t e; /* E-part value */ |
3618 | Intint32_t pre; /* digits before the '.' */ |
3619 | Intint32_t cut; /* for counting digits in a Unit */ |
3620 | char *c=string; /* work [output pointer] */ |
3621 | const Unituint16_t *up=dn->lsu+D2U(dn->digits)((dn->digits)<=49?d2utable[dn->digits]:((dn->digits )+3 -1)/3)-1; /* -> msu [input pointer] */ |
3622 | uIntuint32_t u, pow; /* work */ |
3623 | |
3624 | #if DECCHECK0 |
3625 | if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { |
3626 | strcpy(string, "?"); |
3627 | return;} |
3628 | #endif |
3629 | |
3630 | if (decNumberIsNegative(dn)(((dn)->bits&0x80)!=0)) { /* Negatives get a minus */ |
3631 | *c='-'; |
3632 | c++; |
3633 | } |
3634 | if (dn->bits&DECSPECIAL(0x40|0x20|0x10)) { /* Is a special value */ |
3635 | if (decNumberIsInfinite(dn)(((dn)->bits&0x40)!=0)) { |
3636 | strcpy(c, "Inf"); |
3637 | strcpy(c+3, "inity"); |
3638 | return;} |
3639 | /* a NaN */ |
3640 | if (dn->bits&DECSNAN0x10) { /* signalling NaN */ |
3641 | *c='s'; |
3642 | c++; |
3643 | } |
3644 | strcpy(c, "NaN"); |
3645 | c+=3; /* step past */ |
3646 | /* if not a clean non-zero coefficient, that's all there is in a */ |
3647 | /* NaN string */ |
3648 | if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; |
3649 | /* [drop through to add integer] */ |
3650 | } |
3651 | |
3652 | /* calculate how many digits in msu, and hence first cut */ |
3653 | cut=MSUDIGITS(dn->digits)((dn->digits)-(((dn->digits)<=49?d2utable[dn->digits ]:((dn->digits)+3 -1)/3)-1)*3); /* [faster than remainder] */ |
3654 | cut--; /* power of ten for digit */ |
3655 | |
3656 | if (exp==0) { /* simple integer [common fastpath] */ |
3657 | for (;up>=dn->lsu; up--) { /* each Unit from msu */ |
3658 | u=*up; /* contains DECDPUN digits to lay out */ |
3659 | for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow){ *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow) { (u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; *(c )+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} }; |
3660 | cut=DECDPUN3-1; /* next Unit has all digits */ |
3661 | } |
3662 | *c='\0'; /* terminate the string */ |
3663 | return;} |
3664 | |
3665 | /* non-0 exponent -- assume plain form */ |
3666 | pre=dn->digits+exp; /* digits before '.' */ |
3667 | e=0; /* no E */ |
3668 | if ((exp>0) || (pre<-5)) { /* need exponential form */ |
3669 | e=exp+dn->digits-1; /* calculate E value */ |
3670 | pre=1; /* assume one digit before '.' */ |
3671 | if (eng && (e!=0)) { /* engineering: may need to adjust */ |
3672 | Intint32_t adj; /* adjustment */ |
3673 | /* The C remainder operator is undefined for negative numbers, so */ |
3674 | /* a positive remainder calculation must be used here */ |
3675 | if (e<0) { |
3676 | adj=(-e)%3; |
3677 | if (adj!=0) adj=3-adj; |
3678 | } |
3679 | else { /* e>0 */ |
3680 | adj=e%3; |
3681 | } |
3682 | e=e-adj; |
3683 | /* if dealing with zero still produce an exponent which is a */ |
3684 | /* multiple of three, as expected, but there will only be the */ |
3685 | /* one zero before the E, still. Otherwise note the padding. */ |
3686 | if (!ISZERO(dn)(*(dn)->lsu==0 && (dn)->digits==1 && (( (dn)->bits&(0x40|0x20|0x10))==0))) pre+=adj; |
3687 | else { /* is zero */ |
3688 | if (adj!=0) { /* 0.00Esnn needed */ |
3689 | e=e+3; |
3690 | pre=-(2-adj); |
3691 | } |
3692 | } /* zero */ |
3693 | } /* eng */ |
3694 | } /* need exponent */ |
3695 | |
3696 | /* lay out the digits of the coefficient, adding 0s and . as needed */ |
3697 | u=*up; |
3698 | if (pre>0) { /* xxx.xxx or xx00 (engineering) form */ |
3699 | Intint32_t n=pre; |
3700 | for (; pre>0; pre--, c++, cut--) { |
3701 | if (cut<0) { /* need new Unit */ |
3702 | if (up==dn->lsu) break; /* out of input digits (pre>digits) */ |
3703 | up--; |
3704 | cut=DECDPUN3-1; |
3705 | u=*up; |
3706 | } |
3707 | TODIGIT(u, cut, c, pow){ *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow) { (u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; *(c )+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} }; |
3708 | } |
3709 | if (n<dn->digits) { /* more to come, after '.' */ |
3710 | *c='.'; c++; |
3711 | for (;; c++, cut--) { |
3712 | if (cut<0) { /* need new Unit */ |
3713 | if (up==dn->lsu) break; /* out of input digits */ |
3714 | up--; |
3715 | cut=DECDPUN3-1; |
3716 | u=*up; |
3717 | } |
3718 | TODIGIT(u, cut, c, pow){ *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow) { (u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; *(c )+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} }; |
3719 | } |
3720 | } |
3721 | else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ |
3722 | } |
3723 | else { /* 0.xxx or 0.000xxx form */ |
3724 | *c='0'; c++; |
3725 | *c='.'; c++; |
3726 | for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */ |
3727 | for (; ; c++, cut--) { |
3728 | if (cut<0) { /* need new Unit */ |
3729 | if (up==dn->lsu) break; /* out of input digits */ |
3730 | up--; |
3731 | cut=DECDPUN3-1; |
3732 | u=*up; |
3733 | } |
3734 | TODIGIT(u, cut, c, pow){ *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow) { (u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; *(c )+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} }; |
3735 | } |
3736 | } |
3737 | |
3738 | /* Finally add the E-part, if needed. It will never be 0, has a |
3739 | base maximum and minimum of +999999999 through -999999999, but |
3740 | could range down to -1999999998 for anormal numbers */ |
3741 | if (e!=0) { |
3742 | Flaguint8_t had=0; /* 1=had non-zero */ |
3743 | *c='E'; c++; |
3744 | *c='+'; c++; /* assume positive */ |
3745 | u=e; /* .. */ |
3746 | if (e<0) { |
3747 | *(c-1)='-'; /* oops, need - */ |
3748 | u=-e; /* uInt, please */ |
3749 | } |
3750 | /* lay out the exponent [_itoa or equivalent is not ANSI C] */ |
3751 | for (cut=9; cut>=0; cut--) { |
3752 | TODIGIT(u, cut, c, pow){ *(c)='0'; pow=DECPOWERS[cut]*2; if ((u)>pow) { pow*=4; if ((u)>=pow) {(u)-=pow; *(c)+=8;} pow/=2; if ((u)>=pow) { (u)-=pow; *(c)+=4;} pow/=2; } if ((u)>=pow) {(u)-=pow; *(c )+=2;} pow/=2; if ((u)>=pow) {(u)-=pow; *(c)+=1;} }; |
3753 | if (*c=='0' && !had) continue; /* skip leading zeros */ |
3754 | had=1; /* had non-0 */ |
3755 | c++; /* step for next */ |
3756 | } /* cut */ |
3757 | } |
3758 | *c='\0'; /* terminate the string (all paths) */ |
3759 | return; |
3760 | } /* decToString */ |
3761 | |
3762 | /* ------------------------------------------------------------------ */ |
3763 | /* decAddOp -- add/subtract operation */ |
3764 | /* */ |
3765 | /* This computes C = A + B */ |
3766 | /* */ |
3767 | /* res is C, the result. C may be A and/or B (e.g., X=X+X) */ |
3768 | /* lhs is A */ |
3769 | /* rhs is B */ |
3770 | /* set is the context */ |
3771 | /* negate is DECNEG if rhs should be negated, or 0 otherwise */ |
3772 | /* status accumulates status for the caller */ |
3773 | /* */ |
3774 | /* C must have space for set->digits digits. */ |
3775 | /* Inexact in status must be 0 for correct Exact zero sign in result */ |
3776 | /* ------------------------------------------------------------------ */ |
3777 | /* If possible, the coefficient is calculated directly into C. */ |
3778 | /* However, if: */ |
3779 | /* -- a digits+1 calculation is needed because the numbers are */ |
3780 | /* unaligned and span more than set->digits digits */ |
3781 | /* -- a carry to digits+1 digits looks possible */ |
3782 | /* -- C is the same as A or B, and the result would destructively */ |
3783 | /* overlap the A or B coefficient */ |
3784 | /* then the result must be calculated into a temporary buffer. In */ |
3785 | /* this case a local (stack) buffer is used if possible, and only if */ |
3786 | /* too long for that does malloc become the final resort. */ |
3787 | /* */ |
3788 | /* Misalignment is handled as follows: */ |
3789 | /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */ |
3790 | /* BPad: Apply the padding by a combination of shifting (whole */ |
3791 | /* units) and multiplication (part units). */ |
3792 | /* */ |
3793 | /* Addition, especially x=x+1, is speed-critical. */ |
3794 | /* The static buffer is larger than might be expected to allow for */ |
3795 | /* calls from higher-level funtions (notable exp). */ |
3796 | /* ------------------------------------------------------------------ */ |
3797 | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, |
3798 | const decNumber *rhs, decContext *set, |
3799 | uByteuint8_t negate, uIntuint32_t *status) { |
3800 | #if DECSUBSET0 |
3801 | decNumber *alloclhs=NULL((void*)0); /* non-NULL if rounded lhs allocated */ |
3802 | decNumber *allocrhs=NULL((void*)0); /* .., rhs */ |
3803 | #endif |
3804 | Intint32_t rhsshift; /* working shift (in Units) */ |
3805 | Intint32_t maxdigits; /* longest logical length */ |
3806 | Intint32_t mult; /* multiplier */ |
3807 | Intint32_t residue; /* rounding accumulator */ |
3808 | uByteuint8_t bits; /* result bits */ |
3809 | Flaguint8_t diffsign; /* non-0 if arguments have different sign */ |
3810 | Unituint16_t *acc; /* accumulator for result */ |
3811 | Unituint16_t accbuff[SD2U(DECBUFFER*2+20)(((36*2+20)+3 -1)/3)]; /* local buffer [*2+20 reduces many */ |
3812 | /* allocations when called from */ |
3813 | /* other operations, notable exp] */ |
3814 | Unituint16_t *allocacc=NULL((void*)0); /* -> allocated acc buffer, iff allocated */ |
3815 | Intint32_t reqdigits=set->digits; /* local copy; requested DIGITS */ |
3816 | Intint32_t padding; /* work */ |
3817 | |
3818 | #if DECCHECK0 |
3819 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
3820 | #endif |
3821 | |
3822 | do { /* protect allocated storage */ |
3823 | #if DECSUBSET0 |
3824 | if (!set->extended) { |
3825 | /* reduce operands and set lostDigits status, as needed */ |
3826 | if (lhs->digits>reqdigits) { |
3827 | alloclhs=decRoundOperand(lhs, set, status); |
3828 | if (alloclhs==NULL((void*)0)) break; |
3829 | lhs=alloclhs; |
3830 | } |
3831 | if (rhs->digits>reqdigits) { |
3832 | allocrhs=decRoundOperand(rhs, set, status); |
3833 | if (allocrhs==NULL((void*)0)) break; |
3834 | rhs=allocrhs; |
3835 | } |
3836 | } |
3837 | #endif |
3838 | /* [following code does not require input rounding] */ |
3839 | |
3840 | /* note whether signs differ [used all paths] */ |
3841 | diffsign=(Flaguint8_t)((lhs->bits^rhs->bits^negate)&DECNEG0x80); |
3842 | |
3843 | /* handle infinities and NaNs */ |
3844 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ |
3845 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) /* a NaN */ |
3846 | decNaNs(res, lhs, rhs, set, status); |
3847 | else { /* one or two infinities */ |
3848 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* LHS is infinity */ |
3849 | /* two infinities with different signs is invalid */ |
3850 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) && diffsign) { |
3851 | *status|=DEC_Invalid_operation0x00000080; |
3852 | break; |
3853 | } |
3854 | bits=lhs->bits & DECNEG0x80; /* get sign from LHS */ |
3855 | } |
3856 | else bits=(rhs->bits^negate) & DECNEG0x80;/* RHS must be Infinity */ |
3857 | bits|=DECINF0x40; |
3858 | decNumberZero(res); |
3859 | res->bits=bits; /* set +/- infinity */ |
3860 | } /* an infinity */ |
3861 | break; |
3862 | } |
3863 | |
3864 | /* Quick exit for add 0s; return the non-0, modified as need be */ |
3865 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { |
3866 | Intint32_t adjust; /* work */ |
3867 | Intint32_t lexp=lhs->exponent; /* save in case LHS==RES */ |
3868 | bits=lhs->bits; /* .. */ |
3869 | residue=0; /* clear accumulator */ |
3870 | decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ |
3871 | res->bits^=negate; /* flip if rhs was negated */ |
3872 | #if DECSUBSET0 |
3873 | if (set->extended) { /* exponents on zeros count */ |
3874 | #endif |
3875 | /* exponent will be the lower of the two */ |
3876 | adjust=lexp-res->exponent; /* adjustment needed [if -ve] */ |
3877 | if (ISZERO(res)(*(res)->lsu==0 && (res)->digits==1 && ( ((res)->bits&(0x40|0x20|0x10))==0))) { /* both 0: special IEEE 754 rules */ |
3878 | if (adjust<0) res->exponent=lexp; /* set exponent */ |
3879 | /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ |
3880 | if (diffsign) { |
3881 | if (set->round!=DEC_ROUND_FLOOR) res->bits=0; |
3882 | else res->bits=DECNEG0x80; /* preserve 0 sign */ |
3883 | } |
3884 | } |
3885 | else { /* non-0 res */ |
3886 | if (adjust<0) { /* 0-padding needed */ |
3887 | if ((res->digits-adjust)>set->digits) { |
3888 | adjust=res->digits-set->digits; /* to fit exactly */ |
3889 | *status|=DEC_Rounded0x00000800; /* [but exact] */ |
3890 | } |
3891 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
3892 | res->exponent+=adjust; /* set the exponent. */ |
3893 | } |
3894 | } /* non-0 res */ |
3895 | #if DECSUBSET0 |
3896 | } /* extended */ |
3897 | #endif |
3898 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* clean and finalize */ |
3899 | break;} |
3900 | |
3901 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* [lhs is non-zero] */ |
3902 | Intint32_t adjust; /* work */ |
3903 | Intint32_t rexp=rhs->exponent; /* save in case RHS==RES */ |
3904 | bits=rhs->bits; /* be clean */ |
3905 | residue=0; /* clear accumulator */ |
3906 | decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ |
3907 | #if DECSUBSET0 |
3908 | if (set->extended) { /* exponents on zeros count */ |
3909 | #endif |
3910 | /* exponent will be the lower of the two */ |
3911 | /* [0-0 case handled above] */ |
3912 | adjust=rexp-res->exponent; /* adjustment needed [if -ve] */ |
3913 | if (adjust<0) { /* 0-padding needed */ |
3914 | if ((res->digits-adjust)>set->digits) { |
3915 | adjust=res->digits-set->digits; /* to fit exactly */ |
3916 | *status|=DEC_Rounded0x00000800; /* [but exact] */ |
3917 | } |
3918 | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); |
3919 | res->exponent+=adjust; /* set the exponent. */ |
3920 | } |
3921 | #if DECSUBSET0 |
3922 | } /* extended */ |
3923 | #endif |
3924 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* clean and finalize */ |
3925 | break;} |
3926 | |
3927 | /* [NB: both fastpath and mainpath code below assume these cases */ |
3928 | /* (notably 0-0) have already been handled] */ |
3929 | |
3930 | /* calculate the padding needed to align the operands */ |
3931 | padding=rhs->exponent-lhs->exponent; |
3932 | |
3933 | /* Fastpath cases where the numbers are aligned and normal, the RHS */ |
3934 | /* is all in one unit, no operand rounding is needed, and no carry, */ |
3935 | /* lengthening, or borrow is needed */ |
3936 | if (padding==0 |
3937 | && rhs->digits<=DECDPUN3 |
3938 | && rhs->exponent>=set->emin /* [some normals drop through] */ |
3939 | && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ |
3940 | && rhs->digits<=reqdigits |
3941 | && lhs->digits<=reqdigits) { |
3942 | Intint32_t partial=*lhs->lsu; |
3943 | if (!diffsign) { /* adding */ |
3944 | partial+=*rhs->lsu; |
3945 | if ((partial<=DECDPUNMAX999) /* result fits in unit */ |
3946 | && (lhs->digits>=DECDPUN3 || /* .. and no digits-count change */ |
3947 | partial<(Intint32_t)powersDECPOWERS[lhs->digits])) { /* .. */ |
3948 | if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ |
3949 | *res->lsu=(Unituint16_t)partial; /* [copy could have overwritten RHS] */ |
3950 | break; |
3951 | } |
3952 | /* else drop out for careful add */ |
3953 | } |
3954 | else { /* signs differ */ |
3955 | partial-=*rhs->lsu; |
3956 | if (partial>0) { /* no borrow needed, and non-0 result */ |
3957 | if (res!=lhs) decNumberCopy(res, lhs); /* not in place */ |
3958 | *res->lsu=(Unituint16_t)partial; |
3959 | /* this could have reduced digits [but result>0] */ |
3960 | res->digits=decGetDigits(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)); |
3961 | break; |
3962 | } |
3963 | /* else drop out for careful subtract */ |
3964 | } |
3965 | } |
3966 | |
3967 | /* Now align (pad) the lhs or rhs so they can be added or */ |
3968 | /* subtracted, as necessary. If one number is much larger than */ |
3969 | /* the other (that is, if in plain form there is a least one */ |
3970 | /* digit between the lowest digit of one and the highest of the */ |
3971 | /* other) padding with up to DIGITS-1 trailing zeros may be */ |
3972 | /* needed; then apply rounding (as exotic rounding modes may be */ |
3973 | /* affected by the residue). */ |
3974 | rhsshift=0; /* rhs shift to left (padding) in Units */ |
3975 | bits=lhs->bits; /* assume sign is that of LHS */ |
3976 | mult=1; /* likely multiplier */ |
3977 | |
3978 | /* [if padding==0 the operands are aligned; no padding is needed] */ |
3979 | if (padding!=0) { |
3980 | /* some padding needed; always pad the RHS, as any required */ |
3981 | /* padding can then be effected by a simple combination of */ |
3982 | /* shifts and a multiply */ |
3983 | Flaguint8_t swapped=0; |
3984 | if (padding<0) { /* LHS needs the padding */ |
3985 | const decNumber *t; |
3986 | padding=-padding; /* will be +ve */ |
3987 | bits=(uByteuint8_t)(rhs->bits^negate); /* assumed sign is now that of RHS */ |
3988 | t=lhs; lhs=rhs; rhs=t; |
3989 | swapped=1; |
3990 | } |
3991 | |
3992 | /* If, after pad, rhs would be longer than lhs by digits+1 or */ |
3993 | /* more then lhs cannot affect the answer, except as a residue, */ |
3994 | /* so only need to pad up to a length of DIGITS+1. */ |
3995 | if (rhs->digits+padding > lhs->digits+reqdigits+1) { |
3996 | /* The RHS is sufficient */ |
3997 | /* for residue use the relative sign indication... */ |
3998 | Intint32_t shift=reqdigits-rhs->digits; /* left shift needed */ |
3999 | residue=1; /* residue for rounding */ |
4000 | if (diffsign) residue=-residue; /* signs differ */ |
4001 | /* copy, shortening if necessary */ |
4002 | decCopyFit(res, rhs, set, &residue, status); |
4003 | /* if it was already shorter, then need to pad with zeros */ |
4004 | if (shift>0) { |
4005 | res->digits=decShiftToMost(res->lsu, res->digits, shift); |
4006 | res->exponent-=shift; /* adjust the exponent. */ |
4007 | } |
4008 | /* flip the result sign if unswapped and rhs was negated */ |
4009 | if (!swapped) res->bits^=negate; |
4010 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* done */ |
4011 | break;} |
4012 | |
4013 | /* LHS digits may affect result */ |
4014 | rhsshift=D2U(padding+1)((padding+1)<=49?d2utable[padding+1]:((padding+1)+3 -1)/3)-1; /* this much by Unit shift .. */ |
4015 | mult=powersDECPOWERS[padding-(rhsshift*DECDPUN3)]; /* .. this by multiplication */ |
4016 | } /* padding needed */ |
4017 | |
4018 | if (diffsign) mult=-mult; /* signs differ */ |
4019 | |
4020 | /* determine the longer operand */ |
4021 | maxdigits=rhs->digits+padding; /* virtual length of RHS */ |
4022 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
4023 | |
4024 | /* Decide on the result buffer to use; if possible place directly */ |
4025 | /* into result. */ |
4026 | acc=res->lsu; /* assume add direct to result */ |
4027 | /* If destructive overlap, or the number is too long, or a carry or */ |
4028 | /* borrow to DIGITS+1 might be possible, a buffer must be used. */ |
4029 | /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ |
4030 | if ((maxdigits>=reqdigits) /* is, or could be, too large */ |
4031 | || (res==rhs && rhsshift>0)) { /* destructive overlap */ |
4032 | /* buffer needed, choose it; units for maxdigits digits will be */ |
4033 | /* needed, +1 Unit for carry or borrow */ |
4034 | Intint32_t need=D2U(maxdigits)((maxdigits)<=49?d2utable[maxdigits]:((maxdigits)+3 -1)/3)+1; |
4035 | acc=accbuff; /* assume use local buffer */ |
4036 | if (need*sizeof(Unituint16_t)>sizeof(accbuff)) { |
4037 | /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ |
4038 | allocacc=(Unituint16_t *)malloc(need*sizeof(Unituint16_t)); |
4039 | if (allocacc==NULL((void*)0)) { /* hopeless -- abandon */ |
4040 | *status|=DEC_Insufficient_storage0x00000010; |
4041 | break;} |
4042 | acc=allocacc; |
4043 | } |
4044 | } |
4045 | |
4046 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* it's now safe to overwrite.. */ |
4047 | res->exponent=lhs->exponent; /* .. operands (even if aliased) */ |
4048 | |
4049 | #if DECTRACE0 |
4050 | decDumpAr('A', lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)); |
4051 | decDumpAr('B', rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3)); |
4052 | printf(" :h: %ld %ld\n", rhsshift, mult); |
4053 | #endif |
4054 | |
4055 | /* add [A+B*m] or subtract [A+B*(-m)] */ |
4056 | res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3), |
4057 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3), |
4058 | rhsshift, acc, mult) |
4059 | *DECDPUN3; /* [units -> digits] */ |
4060 | if (res->digits<0) { /* borrowed... */ |
4061 | res->digits=-res->digits; |
4062 | res->bits^=DECNEG0x80; /* flip the sign */ |
4063 | } |
4064 | #if DECTRACE0 |
4065 | decDumpAr('+', acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)); |
4066 | #endif |
4067 | |
4068 | /* If a buffer was used the result must be copied back, possibly */ |
4069 | /* shortening. (If no buffer was used then the result must have */ |
4070 | /* fit, so can't need rounding and residue must be 0.) */ |
4071 | residue=0; /* clear accumulator */ |
4072 | if (acc!=res->lsu) { |
4073 | #if DECSUBSET0 |
4074 | if (set->extended) { /* round from first significant digit */ |
4075 | #endif |
4076 | /* remove leading zeros that were added due to rounding up to */ |
4077 | /* integral Units -- before the test for rounding. */ |
4078 | if (res->digits>reqdigits) |
4079 | res->digits=decGetDigits(acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)); |
4080 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
4081 | #if DECSUBSET0 |
4082 | } |
4083 | else { /* subset arithmetic rounds from original significant digit */ |
4084 | /* May have an underestimate. This only occurs when both */ |
4085 | /* numbers fit in DECDPUN digits and are padding with a */ |
4086 | /* negative multiple (-10, -100...) and the top digit(s) become */ |
4087 | /* 0. (This only matters when using X3.274 rules where the */ |
4088 | /* leading zero could be included in the rounding.) */ |
4089 | if (res->digits<maxdigits) { |
4090 | *(acc+D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3))=0; /* ensure leading 0 is there */ |
4091 | res->digits=maxdigits; |
4092 | } |
4093 | else { |
4094 | /* remove leading zeros that added due to rounding up to */ |
4095 | /* integral Units (but only those in excess of the original */ |
4096 | /* maxdigits length, unless extended) before test for rounding. */ |
4097 | if (res->digits>reqdigits) { |
4098 | res->digits=decGetDigits(acc, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)); |
4099 | if (res->digits<maxdigits) res->digits=maxdigits; |
4100 | } |
4101 | } |
4102 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
4103 | /* Now apply rounding if needed before removing leading zeros. */ |
4104 | /* This is safe because subnormals are not a possibility */ |
4105 | if (residue!=0) { |
4106 | decApplyRound(res, set, residue, status); |
4107 | residue=0; /* did what needed to be done */ |
4108 | } |
4109 | } /* subset */ |
4110 | #endif |
4111 | } /* used buffer */ |
4112 | |
4113 | /* strip leading zeros [these were left on in case of subset subtract] */ |
4114 | res->digits=decGetDigits(res->lsu, D2U(res->digits)((res->digits)<=49?d2utable[res->digits]:((res->digits )+3 -1)/3)); |
4115 | |
4116 | /* apply checks and rounding */ |
4117 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); |
4118 | |
4119 | /* "When the sum of two operands with opposite signs is exactly */ |
4120 | /* zero, the sign of that sum shall be '+' in all rounding modes */ |
4121 | /* except round toward -Infinity, in which mode that sign shall be */ |
4122 | /* '-'." [Subset zeros also never have '-', set by decFinish.] */ |
4123 | if (ISZERO(res)(*(res)->lsu==0 && (res)->digits==1 && ( ((res)->bits&(0x40|0x20|0x10))==0)) && diffsign |
4124 | #if DECSUBSET0 |
4125 | && set->extended |
4126 | #endif |
4127 | && (*status&DEC_Inexact0x00000020)==0) { |
4128 | if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG0x80; /* sign - */ |
4129 | else res->bits&=~DECNEG0x80; /* sign + */ |
4130 | } |
4131 | } while(0); /* end protected */ |
4132 | |
4133 | free(allocacc); /* drop any storage used */ |
4134 | #if DECSUBSET0 |
4135 | free(allocrhs); /* .. */ |
4136 | free(alloclhs); /* .. */ |
4137 | #endif |
4138 | return res; |
4139 | } /* decAddOp */ |
4140 | |
4141 | /* ------------------------------------------------------------------ */ |
4142 | /* decDivideOp -- division operation */ |
4143 | /* */ |
4144 | /* This routine performs the calculations for all four division */ |
4145 | /* operators (divide, divideInteger, remainder, remainderNear). */ |
4146 | /* */ |
4147 | /* C=A op B */ |
4148 | /* */ |
4149 | /* res is C, the result. C may be A and/or B (e.g., X=X/X) */ |
4150 | /* lhs is A */ |
4151 | /* rhs is B */ |
4152 | /* set is the context */ |
4153 | /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */ |
4154 | /* status is the usual accumulator */ |
4155 | /* */ |
4156 | /* C must have space for set->digits digits. */ |
4157 | /* */ |
4158 | /* ------------------------------------------------------------------ */ |
4159 | /* The underlying algorithm of this routine is the same as in the */ |
4160 | /* 1981 S/370 implementation, that is, non-restoring long division */ |
4161 | /* with bi-unit (rather than bi-digit) estimation for each unit */ |
4162 | /* multiplier. In this pseudocode overview, complications for the */ |
4163 | /* Remainder operators and division residues for exact rounding are */ |
4164 | /* omitted for clarity. */ |
4165 | /* */ |
4166 | /* Prepare operands and handle special values */ |
4167 | /* Test for x/0 and then 0/x */ |
4168 | /* Exp =Exp1 - Exp2 */ |
4169 | /* Exp =Exp +len(var1) -len(var2) */ |
4170 | /* Sign=Sign1 * Sign2 */ |
4171 | /* Pad accumulator (Var1) to double-length with 0's (pad1) */ |
4172 | /* Pad Var2 to same length as Var1 */ |
4173 | /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */ |
4174 | /* have=0 */ |
4175 | /* Do until (have=digits+1 OR residue=0) */ |
4176 | /* if exp<0 then if integer divide/residue then leave */ |
4177 | /* this_unit=0 */ |
4178 | /* Do forever */ |
4179 | /* compare numbers */ |
4180 | /* if <0 then leave inner_loop */ |
4181 | /* if =0 then (* quick exit without subtract *) do */ |
4182 | /* this_unit=this_unit+1; output this_unit */ |
4183 | /* leave outer_loop; end */ |
4184 | /* Compare lengths of numbers (mantissae): */ |
4185 | /* If same then tops2=msu2pair -- {units 1&2 of var2} */ |
4186 | /* else tops2=msu2plus -- {0, unit 1 of var2} */ |
4187 | /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ |
4188 | /* mult=tops1/tops2 -- Good and safe guess at divisor */ |
4189 | /* if mult=0 then mult=1 */ |
4190 | /* this_unit=this_unit+mult */ |
4191 | /* subtract */ |
4192 | /* end inner_loop */ |
4193 | /* if have\=0 | this_unit\=0 then do */ |
4194 | /* output this_unit */ |
4195 | /* have=have+1; end */ |
4196 | /* var2=var2/10 */ |
4197 | /* exp=exp-1 */ |
4198 | /* end outer_loop */ |
4199 | /* exp=exp+1 -- set the proper exponent */ |
4200 | /* if have=0 then generate answer=0 */ |
4201 | /* Return (Result is defined by Var1) */ |
4202 | /* */ |
4203 | /* ------------------------------------------------------------------ */ |
4204 | /* Two working buffers are needed during the division; one (digits+ */ |
4205 | /* 1) to accumulate the result, and the other (up to 2*digits+1) for */ |
4206 | /* long subtractions. These are acc and var1 respectively. */ |
4207 | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ |
4208 | /* The static buffers may be larger than might be expected to allow */ |
4209 | /* for calls from higher-level funtions (notable exp). */ |
4210 | /* ------------------------------------------------------------------ */ |
4211 | static decNumber * decDivideOp(decNumber *res, |
4212 | const decNumber *lhs, const decNumber *rhs, |
4213 | decContext *set, Flaguint8_t op, uIntuint32_t *status) { |
4214 | #if DECSUBSET0 |
4215 | decNumber *alloclhs=NULL((void*)0); /* non-NULL if rounded lhs allocated */ |
4216 | decNumber *allocrhs=NULL((void*)0); /* .., rhs */ |
4217 | #endif |
4218 | Unituint16_t accbuff[SD2U(DECBUFFER+DECDPUN+10)(((36 +3 +10)+3 -1)/3)]; /* local buffer */ |
4219 | Unituint16_t *acc=accbuff; /* -> accumulator array for result */ |
4220 | Unituint16_t *allocacc=NULL((void*)0); /* -> allocated buffer, iff allocated */ |
4221 | Unituint16_t *accnext; /* -> where next digit will go */ |
4222 | Intint32_t acclength; /* length of acc needed [Units] */ |
4223 | Intint32_t accunits; /* count of units accumulated */ |
4224 | Intint32_t accdigits; /* count of digits accumulated */ |
4225 | |
4226 | Unituint16_t varbuff[SD2U(DECBUFFER*2+DECDPUN)(((36*2+3)+3 -1)/3)]; /* buffer for var1 */ |
4227 | Unituint16_t *var1=varbuff; /* -> var1 array for long subtraction */ |
4228 | Unituint16_t *varalloc=NULL((void*)0); /* -> allocated buffer, iff used */ |
4229 | Unituint16_t *msu1; /* -> msu of var1 */ |
4230 | |
4231 | const Unituint16_t *var2; /* -> var2 array */ |
4232 | const Unituint16_t *msu2; /* -> msu of var2 */ |
4233 | Intint32_t msu2plus; /* msu2 plus one [does not vary] */ |
4234 | eIntint32_t msu2pair; /* msu2 pair plus one [does not vary] */ |
4235 | |
4236 | Intint32_t var1units, var2units; /* actual lengths */ |
4237 | Intint32_t var2ulen; /* logical length (units) */ |
4238 | Intint32_t var1initpad=0; /* var1 initial padding (digits) */ |
4239 | Intint32_t maxdigits; /* longest LHS or required acc length */ |
4240 | Intint32_t mult; /* multiplier for subtraction */ |
4241 | Unituint16_t thisunit; /* current unit being accumulated */ |
4242 | Intint32_t residue; /* for rounding */ |
4243 | Intint32_t reqdigits=set->digits; /* requested DIGITS */ |
4244 | Intint32_t exponent; /* working exponent */ |
4245 | Intint32_t maxexponent=0; /* DIVIDE maximum exponent if unrounded */ |
4246 | uByteuint8_t bits; /* working sign */ |
4247 | Unituint16_t *target; /* work */ |
4248 | const Unituint16_t *source; /* .. */ |
4249 | uIntuint32_t const *pow; /* .. */ |
4250 | Intint32_t shift, cut; /* .. */ |
4251 | #if DECSUBSET0 |
4252 | Intint32_t dropped; /* work */ |
4253 | #endif |
4254 | |
4255 | #if DECCHECK0 |
4256 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
4257 | #endif |
4258 | |
4259 | do { /* protect allocated storage */ |
4260 | #if DECSUBSET0 |
4261 | if (!set->extended) { |
4262 | /* reduce operands and set lostDigits status, as needed */ |
4263 | if (lhs->digits>reqdigits) { |
4264 | alloclhs=decRoundOperand(lhs, set, status); |
4265 | if (alloclhs==NULL((void*)0)) break; |
4266 | lhs=alloclhs; |
4267 | } |
4268 | if (rhs->digits>reqdigits) { |
4269 | allocrhs=decRoundOperand(rhs, set, status); |
4270 | if (allocrhs==NULL((void*)0)) break; |
4271 | rhs=allocrhs; |
4272 | } |
4273 | } |
4274 | #endif |
4275 | /* [following code does not require input rounding] */ |
4276 | |
4277 | bits=(lhs->bits^rhs->bits)&DECNEG0x80; /* assumed sign for divisions */ |
4278 | |
4279 | /* handle infinities and NaNs */ |
4280 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ |
4281 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) { /* one or two NaNs */ |
4282 | decNaNs(res, lhs, rhs, set, status); |
4283 | break; |
4284 | } |
4285 | /* one or two infinities */ |
4286 | if (decNumberIsInfinite(lhs)(((lhs)->bits&0x40)!=0)) { /* LHS (dividend) is infinite */ |
4287 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0) || /* two infinities are invalid .. */ |
4288 | op & (REMAINDER0x40 | REMNEAR0x10)) { /* as is remainder of infinity */ |
4289 | *status|=DEC_Invalid_operation0x00000080; |
4290 | break; |
4291 | } |
4292 | /* [Note that infinity/0 raises no exceptions] */ |
4293 | decNumberZero(res); |
4294 | res->bits=bits|DECINF0x40; /* set +/- infinity */ |
4295 | break; |
4296 | } |
4297 | else { /* RHS (divisor) is infinite */ |
4298 | residue=0; |
4299 | if (op&(REMAINDER0x40|REMNEAR0x10)) { |
4300 | /* result is [finished clone of] lhs */ |
4301 | decCopyFit(res, lhs, set, &residue, status); |
4302 | } |
4303 | else { /* a division */ |
4304 | decNumberZero(res); |
4305 | res->bits=bits; /* set +/- zero */ |
4306 | /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */ |
4307 | /* is a 0 with infinitely negative exponent, clamped to minimum */ |
4308 | if (op&DIVIDE0x80) { |
4309 | res->exponent=set->emin-set->digits+1; |
4310 | *status|=DEC_Clamped0x00000400; |
4311 | } |
4312 | } |
4313 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); |
4314 | break; |
4315 | } |
4316 | } |
4317 | |
4318 | /* handle 0 rhs (x/0) */ |
4319 | if (ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0))) { /* x/0 is always exceptional */ |
4320 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { |
4321 | decNumberZero(res); /* [after lhs test] */ |
4322 | *status|=DEC_Division_undefined0x00000008;/* 0/0 will become NaN */ |
4323 | } |
4324 | else { |
4325 | decNumberZero(res); |
4326 | if (op&(REMAINDER0x40|REMNEAR0x10)) *status|=DEC_Invalid_operation0x00000080; |
4327 | else { |
4328 | *status|=DEC_Division_by_zero0x00000002; /* x/0 */ |
4329 | res->bits=bits|DECINF0x40; /* .. is +/- Infinity */ |
4330 | } |
4331 | } |
4332 | break;} |
4333 | |
4334 | /* handle 0 lhs (0/x) */ |
4335 | if (ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) { /* 0/x [x!=0] */ |
4336 | #if DECSUBSET0 |
4337 | if (!set->extended) decNumberZero(res); |
4338 | else { |
4339 | #endif |
4340 | if (op&DIVIDE0x80) { |
4341 | residue=0; |
4342 | exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ |
4343 | decNumberCopy(res, lhs); /* [zeros always fit] */ |
4344 | res->bits=bits; /* sign as computed */ |
4345 | res->exponent=exponent; /* exponent, too */ |
4346 | decFinalize(res, set, &residue, status); /* check exponent */ |
4347 | } |
4348 | else if (op&DIVIDEINT0x20) { |
4349 | decNumberZero(res); /* integer 0 */ |
4350 | res->bits=bits; /* sign as computed */ |
4351 | } |
4352 | else { /* a remainder */ |
4353 | exponent=rhs->exponent; /* [save in case overwrite] */ |
4354 | decNumberCopy(res, lhs); /* [zeros always fit] */ |
4355 | if (exponent<res->exponent) res->exponent=exponent; /* use lower */ |
4356 | } |
4357 | #if DECSUBSET0 |
4358 | } |
4359 | #endif |
4360 | break;} |
4361 | |
4362 | /* Precalculate exponent. This starts off adjusted (and hence fits */ |
4363 | /* in 31 bits) and becomes the usual unadjusted exponent as the */ |
4364 | /* division proceeds. The order of evaluation is important, here, */ |
4365 | /* to avoid wrap. */ |
4366 | exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); |
4367 | |
4368 | /* If the working exponent is -ve, then some quick exits are */ |
4369 | /* possible because the quotient is known to be <1 */ |
4370 | /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ |
4371 | if (exponent<0 && !(op==DIVIDE0x80)) { |
4372 | if (op&DIVIDEINT0x20) { |
4373 | decNumberZero(res); /* integer part is 0 */ |
4374 | #if DECSUBSET0 |
4375 | if (set->extended) |
4376 | #endif |
4377 | res->bits=bits; /* set +/- zero */ |
4378 | break;} |
4379 | /* fastpath remainders so long as the lhs has the smaller */ |
4380 | /* (or equal) exponent */ |
4381 | if (lhs->exponent<=rhs->exponent) { |
4382 | if (op&REMAINDER0x40 || exponent<-1) { |
4383 | /* It is REMAINDER or safe REMNEAR; result is [finished */ |
4384 | /* clone of] lhs (r = x - 0*y) */ |
4385 | residue=0; |
4386 | decCopyFit(res, lhs, set, &residue, status); |
4387 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); |
4388 | break; |
4389 | } |
4390 | /* [unsafe REMNEAR drops through] */ |
4391 | } |
4392 | } /* fastpaths */ |
4393 | |
4394 | /* Long (slow) division is needed; roll up the sleeves... */ |
4395 | |
4396 | /* The accumulator will hold the quotient of the division. */ |
4397 | /* If it needs to be too long for stack storage, then allocate. */ |
4398 | acclength=D2U(reqdigits+DECDPUN)((reqdigits+3)<=49?d2utable[reqdigits+3]:((reqdigits+3)+3 - 1)/3); /* in Units */ |
4399 | if (acclength*sizeof(Unituint16_t)>sizeof(accbuff)) { |
4400 | /* printf("malloc dvacc %ld units\n", acclength); */ |
4401 | allocacc=(Unituint16_t *)malloc(acclength*sizeof(Unituint16_t)); |
4402 | if (allocacc==NULL((void*)0)) { /* hopeless -- abandon */ |
4403 | *status|=DEC_Insufficient_storage0x00000010; |
4404 | break;} |
4405 | acc=allocacc; /* use the allocated space */ |
4406 | } |
4407 | |
4408 | /* var1 is the padded LHS ready for subtractions. */ |
4409 | /* If it needs to be too long for stack storage, then allocate. */ |
4410 | /* The maximum units needed for var1 (long subtraction) is: */ |
4411 | /* Enough for */ |
4412 | /* (rhs->digits+reqdigits-1) -- to allow full slide to right */ |
4413 | /* or (lhs->digits) -- to allow for long lhs */ |
4414 | /* whichever is larger */ |
4415 | /* +1 -- for rounding of slide to right */ |
4416 | /* +1 -- for leading 0s */ |
4417 | /* +1 -- for pre-adjust if a remainder or DIVIDEINT */ |
4418 | /* [Note: unused units do not participate in decUnitAddSub data] */ |
4419 | maxdigits=rhs->digits+reqdigits-1; |
4420 | if (lhs->digits>maxdigits) maxdigits=lhs->digits; |
4421 | var1units=D2U(maxdigits)((maxdigits)<=49?d2utable[maxdigits]:((maxdigits)+3 -1)/3)+2; |
4422 | /* allocate a guard unit above msu1 for REMAINDERNEAR */ |
4423 | if (!(op&DIVIDE0x80)) var1units++; |
4424 | if ((var1units+1)*sizeof(Unituint16_t)>sizeof(varbuff)) { |
4425 | /* printf("malloc dvvar %ld units\n", var1units+1); */ |
4426 | varalloc=(Unituint16_t *)malloc((var1units+1)*sizeof(Unituint16_t)); |
4427 | if (varalloc==NULL((void*)0)) { /* hopeless -- abandon */ |
4428 | *status|=DEC_Insufficient_storage0x00000010; |
4429 | break;} |
4430 | var1=varalloc; /* use the allocated space */ |
4431 | } |
4432 | |
4433 | /* Extend the lhs and rhs to full long subtraction length. The lhs */ |
4434 | /* is truly extended into the var1 buffer, with 0 padding, so a */ |
4435 | /* subtract in place is always possible. The rhs (var2) has */ |
4436 | /* virtual padding (implemented by decUnitAddSub). */ |
4437 | /* One guard unit was allocated above msu1 for rem=rem+rem in */ |
4438 | /* REMAINDERNEAR. */ |
4439 | msu1=var1+var1units-1; /* msu of var1 */ |
4440 | source=lhs->lsu+D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)-1; /* msu of input array */ |
4441 | for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; |
4442 | for (; target>=var1; target--) *target=0; |
4443 | |
4444 | /* rhs (var2) is left-aligned with var1 at the start */ |
4445 | var2ulen=var1units; /* rhs logical length (units) */ |
4446 | var2units=D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3); /* rhs actual length (units) */ |
4447 | var2=rhs->lsu; /* -> rhs array */ |
4448 | msu2=var2+var2units-1; /* -> msu of var2 [never changes] */ |
4449 | /* now set up the variables which will be used for estimating the */ |
4450 | /* multiplication factor. If these variables are not exact, add */ |
4451 | /* 1 to make sure that the multiplier is never overestimated. */ |
4452 | msu2plus=*msu2; /* it's value .. */ |
4453 | if (var2units>1) msu2plus++; /* .. +1 if any more */ |
4454 | msu2pair=(eIntint32_t)*msu2*(DECDPUNMAX999+1);/* top two pair .. */ |
4455 | if (var2units>1) { /* .. [else treat 2nd as 0] */ |
4456 | msu2pair+=*(msu2-1); /* .. */ |
4457 | if (var2units>2) msu2pair++; /* .. +1 if any more */ |
4458 | } |
4459 | |
4460 | /* The calculation is working in units, which may have leading zeros, */ |
4461 | /* but the exponent was calculated on the assumption that they are */ |
4462 | /* both left-aligned. Adjust the exponent to compensate: add the */ |
4463 | /* number of leading zeros in var1 msu and subtract those in var2 msu. */ |
4464 | /* [This is actually done by counting the digits and negating, as */ |
4465 | /* lead1=DECDPUN-digits1, and similarly for lead2.] */ |
4466 | for (pow=&powersDECPOWERS[1]; *msu1>=*pow; pow++) exponent--; |
4467 | for (pow=&powersDECPOWERS[1]; *msu2>=*pow; pow++) exponent++; |
4468 | |
4469 | /* Now, if doing an integer divide or remainder, ensure that */ |
4470 | /* the result will be Unit-aligned. To do this, shift the var1 */ |
4471 | /* accumulator towards least if need be. (It's much easier to */ |
4472 | /* do this now than to reassemble the residue afterwards, if */ |
4473 | /* doing a remainder.) Also ensure the exponent is not negative. */ |
4474 | if (!(op&DIVIDE0x80)) { |
4475 | Unituint16_t *u; /* work */ |
4476 | /* save the initial 'false' padding of var1, in digits */ |
4477 | var1initpad=(var1units-D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3))*DECDPUN3; |
4478 | /* Determine the shift to do. */ |
4479 | if (exponent<0) cut=-exponent; |
4480 | else cut=DECDPUN3-exponent%DECDPUN3; |
4481 | decShiftToLeast(var1, var1units, cut); |
4482 | exponent+=cut; /* maintain numerical value */ |
4483 | var1initpad-=cut; /* .. and reduce padding */ |
4484 | /* clean any most-significant units which were just emptied */ |
4485 | for (u=msu1; cut>=DECDPUN3; cut-=DECDPUN3, u--) *u=0; |
4486 | } /* align */ |
4487 | else { /* is DIVIDE */ |
4488 | maxexponent=lhs->exponent-rhs->exponent; /* save */ |
4489 | /* optimization: if the first iteration will just produce 0, */ |
4490 | /* preadjust to skip it [valid for DIVIDE only] */ |
4491 | if (*msu1<*msu2) { |
4492 | var2ulen--; /* shift down */ |
4493 | exponent-=DECDPUN3; /* update the exponent */ |
4494 | } |
4495 | } |
4496 | |
4497 | /* ---- start the long-division loops ------------------------------ */ |
4498 | accunits=0; /* no units accumulated yet */ |
4499 | accdigits=0; /* .. or digits */ |
4500 | accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */ |
4501 | for (;;) { /* outer forever loop */ |
4502 | thisunit=0; /* current unit assumed 0 */ |
4503 | /* find the next unit */ |
4504 | for (;;) { /* inner forever loop */ |
4505 | /* strip leading zero units [from either pre-adjust or from */ |
4506 | /* subtract last time around]. Leave at least one unit. */ |
4507 | for (; *msu1==0 && msu1>var1; msu1--) var1units--; |
4508 | |
4509 | if (var1units<var2ulen) break; /* var1 too low for subtract */ |
4510 | if (var1units==var2ulen) { /* unit-by-unit compare needed */ |
4511 | /* compare the two numbers, from msu */ |
4512 | const Unituint16_t *pv1, *pv2; |
4513 | Unituint16_t v2; /* units to compare */ |
4514 | pv2=msu2; /* -> msu */ |
4515 | for (pv1=msu1; ; pv1--, pv2--) { |
4516 | /* v1=*pv1 -- always OK */ |
4517 | v2=0; /* assume in padding */ |
4518 | if (pv2>=var2) v2=*pv2; /* in range */ |
4519 | if (*pv1!=v2) break; /* no longer the same */ |
4520 | if (pv1==var1) break; /* done; leave pv1 as is */ |
4521 | } |
4522 | /* here when all inspected or a difference seen */ |
4523 | if (*pv1<v2) break; /* var1 too low to subtract */ |
4524 | if (*pv1==v2) { /* var1 == var2 */ |
4525 | /* reach here if var1 and var2 are identical; subtraction */ |
4526 | /* would increase digit by one, and the residue will be 0 so */ |
4527 | /* the calculation is done; leave the loop with residue=0. */ |
4528 | thisunit++; /* as though subtracted */ |
4529 | *var1=0; /* set var1 to 0 */ |
4530 | var1units=1; /* .. */ |
4531 | break; /* from inner */ |
4532 | } /* var1 == var2 */ |
4533 | /* *pv1>v2. Prepare for real subtraction; the lengths are equal */ |
4534 | /* Estimate the multiplier (there's always a msu1-1)... */ |
4535 | /* Bring in two units of var2 to provide a good estimate. */ |
4536 | mult=(Intint32_t)(((eIntint32_t)*msu1*(DECDPUNMAX999+1)+*(msu1-1))/msu2pair); |
4537 | } /* lengths the same */ |
4538 | else { /* var1units > var2ulen, so subtraction is safe */ |
4539 | /* The var2 msu is one unit towards the lsu of the var1 msu, */ |
4540 | /* so only one unit for var2 can be used. */ |
4541 | mult=(Intint32_t)(((eIntint32_t)*msu1*(DECDPUNMAX999+1)+*(msu1-1))/msu2plus); |
4542 | } |
4543 | if (mult==0) mult=1; /* must always be at least 1 */ |
4544 | /* subtraction needed; var1 is > var2 */ |
4545 | thisunit=(Unituint16_t)(thisunit+mult); /* accumulate */ |
4546 | /* subtract var1-var2, into var1; only the overlap needs */ |
4547 | /* processing, as this is an in-place calculation */ |
4548 | shift=var2ulen-var2units; |
4549 | #if DECTRACE0 |
4550 | decDumpAr('1', &var1[shift], var1units-shift); |
4551 | decDumpAr('2', var2, var2units); |
4552 | printf("m=%ld\n", -mult); |
4553 | #endif |
4554 | decUnitAddSub(&var1[shift], var1units-shift, |
4555 | var2, var2units, 0, |
4556 | &var1[shift], -mult); |
4557 | #if DECTRACE0 |
4558 | decDumpAr('#', &var1[shift], var1units-shift); |
4559 | #endif |
4560 | /* var1 now probably has leading zeros; these are removed at the */ |
4561 | /* top of the inner loop. */ |
4562 | } /* inner loop */ |
4563 | |
4564 | /* The next unit has been calculated in full; unless it's a */ |
4565 | /* leading zero, add to acc */ |
4566 | if (accunits!=0 || thisunit!=0) { /* is first or non-zero */ |
4567 | *accnext=thisunit; /* store in accumulator */ |
4568 | /* account exactly for the new digits */ |
4569 | if (accunits==0) { |
4570 | accdigits++; /* at least one */ |
4571 | for (pow=&powersDECPOWERS[1]; thisunit>=*pow; pow++) accdigits++; |
4572 | } |
4573 | else accdigits+=DECDPUN3; |
4574 | accunits++; /* update count */ |
4575 | accnext--; /* ready for next */ |
4576 | if (accdigits>reqdigits) break; /* have enough digits */ |
4577 | } |
4578 | |
4579 | /* if the residue is zero, the operation is done (unless divide */ |
4580 | /* or divideInteger and still not enough digits yet) */ |
4581 | if (*var1==0 && var1units==1) { /* residue is 0 */ |
4582 | if (op&(REMAINDER0x40|REMNEAR0x10)) break; |
4583 | if ((op&DIVIDE0x80) && (exponent<=maxexponent)) break; |
4584 | /* [drop through if divideInteger] */ |
4585 | } |
4586 | /* also done enough if calculating remainder or integer */ |
4587 | /* divide and just did the last ('units') unit */ |
4588 | if (exponent==0 && !(op&DIVIDE0x80)) break; |
4589 | |
4590 | /* to get here, var1 is less than var2, so divide var2 by the per- */ |
4591 | /* Unit power of ten and go for the next digit */ |
4592 | var2ulen--; /* shift down */ |
4593 | exponent-=DECDPUN3; /* update the exponent */ |
4594 | } /* outer loop */ |
4595 | |
4596 | /* ---- division is complete --------------------------------------- */ |
4597 | /* here: acc has at least reqdigits+1 of good results (or fewer */ |
4598 | /* if early stop), starting at accnext+1 (its lsu) */ |
4599 | /* var1 has any residue at the stopping point */ |
4600 | /* accunits is the number of digits collected in acc */ |
4601 | if (accunits==0) { /* acc is 0 */ |
4602 | accunits=1; /* show have a unit .. */ |
4603 | accdigits=1; /* .. */ |
4604 | *accnext=0; /* .. whose value is 0 */ |
4605 | } |
4606 | else accnext++; /* back to last placed */ |
4607 | /* accnext now -> lowest unit of result */ |
4608 | |
4609 | residue=0; /* assume no residue */ |
4610 | if (op&DIVIDE0x80) { |
4611 | /* record the presence of any residue, for rounding */ |
4612 | if (*var1!=0 || var1units>1) residue=1; |
4613 | else { /* no residue */ |
4614 | /* Had an exact division; clean up spurious trailing 0s. */ |
4615 | /* There will be at most DECDPUN-1, from the final multiply, */ |
4616 | /* and then only if the result is non-0 (and even) and the */ |
4617 | /* exponent is 'loose'. */ |
4618 | #if DECDPUN3>1 |
4619 | Unituint16_t lsu=*accnext; |
4620 | if (!(lsu&0x01) && (lsu!=0)) { |
4621 | /* count the trailing zeros */ |
4622 | Intint32_t drop=0; |
4623 | for (;; drop++) { /* [will terminate because lsu!=0] */ |
4624 | if (exponent>=maxexponent) break; /* don't chop real 0s */ |
4625 | #if DECDPUN3<=4 |
4626 | if ((lsu-QUOT10(lsu, drop+1)((((uint32_t)(lsu)>>(drop+1))*multies[drop+1])>>17 ) |
4627 | *powersDECPOWERS[drop+1])!=0) break; /* found non-0 digit */ |
4628 | #else |
4629 | if (lsu%powersDECPOWERS[drop+1]!=0) break; /* found non-0 digit */ |
4630 | #endif |
4631 | exponent++; |
4632 | } |
4633 | if (drop>0) { |
4634 | accunits=decShiftToLeast(accnext, accunits, drop); |
4635 | accdigits=decGetDigits(accnext, accunits); |
4636 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+3 -1)/3); |
Value stored to 'accunits' is never read | |
4637 | /* [exponent was adjusted in the loop] */ |
4638 | } |
4639 | } /* neither odd nor 0 */ |
4640 | #endif |
4641 | } /* exact divide */ |
4642 | } /* divide */ |
4643 | else /* op!=DIVIDE */ { |
4644 | /* check for coefficient overflow */ |
4645 | if (accdigits+exponent>reqdigits) { |
4646 | *status|=DEC_Division_impossible0x00000004; |
4647 | break; |
4648 | } |
4649 | if (op & (REMAINDER0x40|REMNEAR0x10)) { |
4650 | /* [Here, the exponent will be 0, because var1 was adjusted */ |
4651 | /* appropriately.] */ |
4652 | Intint32_t postshift; /* work */ |
4653 | Flaguint8_t wasodd=0; /* integer was odd */ |
4654 | Unituint16_t *quotlsu; /* for save */ |
4655 | Intint32_t quotdigits; /* .. */ |
4656 | |
4657 | bits=lhs->bits; /* remainder sign is always as lhs */ |
4658 | |
4659 | /* Fastpath when residue is truly 0 is worthwhile [and */ |
4660 | /* simplifies the code below] */ |
4661 | if (*var1==0 && var1units==1) { /* residue is 0 */ |
4662 | Intint32_t exp=lhs->exponent; /* save min(exponents) */ |
4663 | if (rhs->exponent<exp) exp=rhs->exponent; |
4664 | decNumberZero(res); /* 0 coefficient */ |
4665 | #if DECSUBSET0 |
4666 | if (set->extended) |
4667 | #endif |
4668 | res->exponent=exp; /* .. with proper exponent */ |
4669 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* [cleaned] */ |
4670 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* might clamp */ |
4671 | break; |
4672 | } |
4673 | /* note if the quotient was odd */ |
4674 | if (*accnext & 0x01) wasodd=1; /* acc is odd */ |
4675 | quotlsu=accnext; /* save in case need to reinspect */ |
4676 | quotdigits=accdigits; /* .. */ |
4677 | |
4678 | /* treat the residue, in var1, as the value to return, via acc */ |
4679 | /* calculate the unused zero digits. This is the smaller of: */ |
4680 | /* var1 initial padding (saved above) */ |
4681 | /* var2 residual padding, which happens to be given by: */ |
4682 | postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; |
4683 | /* [the 'exponent' term accounts for the shifts during divide] */ |
4684 | if (var1initpad<postshift) postshift=var1initpad; |
4685 | |
4686 | /* shift var1 the requested amount, and adjust its digits */ |
4687 | var1units=decShiftToLeast(var1, var1units, postshift); |
4688 | accnext=var1; |
4689 | accdigits=decGetDigits(var1, var1units); |
4690 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+3 -1)/3); |
4691 | |
4692 | exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */ |
4693 | if (rhs->exponent<exponent) exponent=rhs->exponent; |
4694 | |
4695 | /* Now correct the result if doing remainderNear; if it */ |
4696 | /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ |
4697 | /* the integer was odd then the result should be rem-rhs. */ |
4698 | if (op&REMNEAR0x10) { |
4699 | Intint32_t compare, tarunits; /* work */ |
4700 | Unituint16_t *up; /* .. */ |
4701 | /* calculate remainder*2 into the var1 buffer (which has */ |
4702 | /* 'headroom' of an extra unit and hence enough space) */ |
4703 | /* [a dedicated 'double' loop would be faster, here] */ |
4704 | tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, |
4705 | 0, accnext, 1); |
4706 | /* decDumpAr('r', accnext, tarunits); */ |
4707 | |
4708 | /* Here, accnext (var1) holds tarunits Units with twice the */ |
4709 | /* remainder's coefficient, which must now be compared to the */ |
4710 | /* RHS. The remainder's exponent may be smaller than the RHS's. */ |
4711 | compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3), |
4712 | rhs->exponent-exponent); |
4713 | if (compare==BADINT(int32_t)0x80000000) { /* deep trouble */ |
4714 | *status|=DEC_Insufficient_storage0x00000010; |
4715 | break;} |
4716 | |
4717 | /* now restore the remainder by dividing by two; the lsu */ |
4718 | /* is known to be even. */ |
4719 | for (up=accnext; up<accnext+tarunits; up++) { |
4720 | Intint32_t half; /* half to add to lower unit */ |
4721 | half=*up & 0x01; |
4722 | *up/=2; /* [shift] */ |
4723 | if (!half) continue; |
4724 | *(up-1)+=(DECDPUNMAX999+1)/2; |
4725 | } |
4726 | /* [accunits still describes the original remainder length] */ |
4727 | |
4728 | if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */ |
4729 | Intint32_t exp, expunits, exprem; /* work */ |
4730 | /* This is effectively causing round-up of the quotient, */ |
4731 | /* so if it was the rare case where it was full and all */ |
4732 | /* nines, it would overflow and hence division-impossible */ |
4733 | /* should be raised */ |
4734 | Flaguint8_t allnines=0; /* 1 if quotient all nines */ |
4735 | if (quotdigits==reqdigits) { /* could be borderline */ |
4736 | for (up=quotlsu; ; up++) { |
4737 | if (quotdigits>DECDPUN3) { |
4738 | if (*up!=DECDPUNMAX999) break;/* non-nines */ |
4739 | } |
4740 | else { /* this is the last Unit */ |
4741 | if (*up==powersDECPOWERS[quotdigits]-1) allnines=1; |
4742 | break; |
4743 | } |
4744 | quotdigits-=DECDPUN3; /* checked those digits */ |
4745 | } /* up */ |
4746 | } /* borderline check */ |
4747 | if (allnines) { |
4748 | *status|=DEC_Division_impossible0x00000004; |
4749 | break;} |
4750 | |
4751 | /* rem-rhs is needed; the sign will invert. Again, var1 */ |
4752 | /* can safely be used for the working Units array. */ |
4753 | exp=rhs->exponent-exponent; /* RHS padding needed */ |
4754 | /* Calculate units and remainder from exponent. */ |
4755 | expunits=exp/DECDPUN3; |
4756 | exprem=exp%DECDPUN3; |
4757 | /* subtract [A+B*(-m)]; the result will always be negative */ |
4758 | accunits=-decUnitAddSub(accnext, accunits, |
4759 | rhs->lsu, D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3), |
4760 | expunits, accnext, -(Intint32_t)powersDECPOWERS[exprem]); |
4761 | accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ |
4762 | accunits=D2U(accdigits)((accdigits)<=49?d2utable[accdigits]:((accdigits)+3 -1)/3); /* and recalculate the units for copy */ |
4763 | /* [exponent is as for original remainder] */ |
4764 | bits^=DECNEG0x80; /* flip the sign */ |
4765 | } |
4766 | } /* REMNEAR */ |
4767 | } /* REMAINDER or REMNEAR */ |
4768 | } /* not DIVIDE */ |
4769 | |
4770 | /* Set exponent and bits */ |
4771 | res->exponent=exponent; |
4772 | res->bits=(uByteuint8_t)(bits&DECNEG0x80); /* [cleaned] */ |
4773 | |
4774 | /* Now the coefficient. */ |
4775 | decSetCoeff(res, set, accnext, accdigits, &residue, status); |
4776 | |
4777 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* final cleanup */ |
4778 | |
4779 | #if DECSUBSET0 |
4780 | /* If a divide then strip trailing zeros if subset [after round] */ |
4781 | if (!set->extended && (op==DIVIDE0x80)) decTrim(res, set, 0, 1, &dropped); |
4782 | #endif |
4783 | } while(0); /* end protected */ |
4784 | |
4785 | free(varalloc); /* drop any storage used */ |
4786 | free(allocacc); /* .. */ |
4787 | #if DECSUBSET0 |
4788 | free(allocrhs); /* .. */ |
4789 | free(alloclhs); /* .. */ |
4790 | #endif |
4791 | return res; |
4792 | } /* decDivideOp */ |
4793 | |
4794 | /* ------------------------------------------------------------------ */ |
4795 | /* decMultiplyOp -- multiplication operation */ |
4796 | /* */ |
4797 | /* This routine performs the multiplication C=A x B. */ |
4798 | /* */ |
4799 | /* res is C, the result. C may be A and/or B (e.g., X=X*X) */ |
4800 | /* lhs is A */ |
4801 | /* rhs is B */ |
4802 | /* set is the context */ |
4803 | /* status is the usual accumulator */ |
4804 | /* */ |
4805 | /* C must have space for set->digits digits. */ |
4806 | /* */ |
4807 | /* ------------------------------------------------------------------ */ |
4808 | /* 'Classic' multiplication is used rather than Karatsuba, as the */ |
4809 | /* latter would give only a minor improvement for the short numbers */ |
4810 | /* expected to be handled most (and uses much more memory). */ |
4811 | /* */ |
4812 | /* There are two major paths here: the general-purpose ('old code') */ |
4813 | /* path which handles all DECDPUN values, and a fastpath version */ |
4814 | /* which is used if 64-bit ints are available, DECDPUN<=4, and more */ |
4815 | /* than two calls to decUnitAddSub would be made. */ |
4816 | /* */ |
4817 | /* The fastpath version lumps units together into 8-digit or 9-digit */ |
4818 | /* chunks, and also uses a lazy carry strategy to minimise expensive */ |
4819 | /* 64-bit divisions. The chunks are then broken apart again into */ |
4820 | /* units for continuing processing. Despite this overhead, the */ |
4821 | /* fastpath can speed up some 16-digit operations by 10x (and much */ |
4822 | /* more for higher-precision calculations). */ |
4823 | /* */ |
4824 | /* A buffer always has to be used for the accumulator; in the */ |
4825 | /* fastpath, buffers are also always needed for the chunked copies of */ |
4826 | /* of the operand coefficients. */ |
4827 | /* Static buffers are larger than needed just for multiply, to allow */ |
4828 | /* for calls from other operations (notably exp). */ |
4829 | /* ------------------------------------------------------------------ */ |
4830 | #define FASTMUL(1 && 3<5) (DECUSE641 && DECDPUN3<5) |
4831 | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, |
4832 | const decNumber *rhs, decContext *set, |
4833 | uIntuint32_t *status) { |
4834 | Intint32_t accunits; /* Units of accumulator in use */ |
4835 | Intint32_t exponent; /* work */ |
4836 | Intint32_t residue=0; /* rounding residue */ |
4837 | uByteuint8_t bits; /* result sign */ |
4838 | Unituint16_t *acc; /* -> accumulator Unit array */ |
4839 | Intint32_t needbytes; /* size calculator */ |
4840 | void *allocacc=NULL((void*)0); /* -> allocated accumulator, iff allocated */ |
4841 | Unituint16_t accbuff[SD2U(DECBUFFER*4+1)(((36*4+1)+3 -1)/3)]; /* buffer (+1 for DECBUFFER==0, */ |
4842 | /* *4 for calls from other operations) */ |
4843 | const Unituint16_t *mer, *mermsup; /* work */ |
4844 | Intint32_t madlength; /* Units in multiplicand */ |
4845 | Intint32_t shift; /* Units to shift multiplicand by */ |
4846 | |
4847 | #if FASTMUL(1 && 3<5) |
4848 | /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ |
4849 | /* (DECDPUN is 2 or 4) then work in base 10**8 */ |
4850 | #if DECDPUN3 & 1 /* odd */ |
4851 | #define FASTBASE1000000000 1000000000 /* base */ |
4852 | #define FASTDIGS9 9 /* digits in base */ |
4853 | #define FASTLAZY18 18 /* carry resolution point [1->18] */ |
4854 | #else |
4855 | #define FASTBASE1000000000 100000000 |
4856 | #define FASTDIGS9 8 |
4857 | #define FASTLAZY18 1844 /* carry resolution point [1->1844] */ |
4858 | #endif |
4859 | /* three buffers are used, two for chunked copies of the operands */ |
4860 | /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ |
4861 | /* lazy carry evaluation */ |
4862 | uIntuint32_t zlhibuff[(DECBUFFER36*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
4863 | uIntuint32_t *zlhi=zlhibuff; /* -> lhs array */ |
4864 | uIntuint32_t *alloclhi=NULL((void*)0); /* -> allocated buffer, iff allocated */ |
4865 | uIntuint32_t zrhibuff[(DECBUFFER36*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ |
4866 | uIntuint32_t *zrhi=zrhibuff; /* -> rhs array */ |
4867 | uIntuint32_t *allocrhi=NULL((void*)0); /* -> allocated buffer, iff allocated */ |
4868 | uLonguint64_t zaccbuff[(DECBUFFER36*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ |
4869 | /* [allocacc is shared for both paths, as only one will run] */ |
4870 | uLonguint64_t *zacc=zaccbuff; /* -> accumulator array for exact result */ |
4871 | #if DECDPUN3==1 |
4872 | Intint32_t zoff; /* accumulator offset */ |
4873 | #endif |
4874 | uIntuint32_t *lip, *rip; /* item pointers */ |
4875 | uIntuint32_t *lmsi, *rmsi; /* most significant items */ |
4876 | Intint32_t ilhs, irhs, iacc; /* item counts in the arrays */ |
4877 | Intint32_t lazy; /* lazy carry counter */ |
4878 | uLonguint64_t lcarry; /* uLong carry */ |
4879 | uIntuint32_t carry; /* carry (NB not uLong) */ |
4880 | Intint32_t count; /* work */ |
4881 | const Unituint16_t *cup; /* .. */ |
4882 | Unituint16_t *up; /* .. */ |
4883 | uLonguint64_t *lp; /* .. */ |
4884 | Intint32_t p; /* .. */ |
4885 | #endif |
4886 | |
4887 | #if DECSUBSET0 |
4888 | decNumber *alloclhs=NULL((void*)0); /* -> allocated buffer, iff allocated */ |
4889 | decNumber *allocrhs=NULL((void*)0); /* -> allocated buffer, iff allocated */ |
4890 | #endif |
4891 | |
4892 | #if DECCHECK0 |
4893 | if (decCheckOperands(res, lhs, rhs, set)) return res; |
4894 | #endif |
4895 | |
4896 | /* precalculate result sign */ |
4897 | bits=(uByteuint8_t)((lhs->bits^rhs->bits)&DECNEG0x80); |
4898 | |
4899 | /* handle infinities and NaNs */ |
4900 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10))) { /* a special bit set */ |
4901 | if (SPECIALARGS((lhs->bits | rhs->bits) & (0x40|0x20|0x10)) & (DECSNAN0x10 | DECNAN0x20)) { /* one or two NaNs */ |
4902 | decNaNs(res, lhs, rhs, set, status); |
4903 | return res;} |
4904 | /* one or two infinities; Infinity * 0 is invalid */ |
4905 | if (((lhs->bits & DECINF0x40)==0 && ISZERO(lhs)(*(lhs)->lsu==0 && (lhs)->digits==1 && ( ((lhs)->bits&(0x40|0x20|0x10))==0))) |
4906 | ||((rhs->bits & DECINF0x40)==0 && ISZERO(rhs)(*(rhs)->lsu==0 && (rhs)->digits==1 && ( ((rhs)->bits&(0x40|0x20|0x10))==0)))) { |
4907 | *status|=DEC_Invalid_operation0x00000080; |
4908 | return res;} |
4909 | decNumberZero(res); |
4910 | res->bits=bits|DECINF0x40; /* infinity */ |
4911 | return res;} |
4912 | |
4913 | /* For best speed, as in DMSRCN [the original Rexx numerics */ |
4914 | /* module], use the shorter number as the multiplier (rhs) and */ |
4915 | /* the longer as the multiplicand (lhs) to minimise the number of */ |
4916 | /* adds (partial products) */ |
4917 | if (lhs->digits<rhs->digits) { /* swap... */ |
4918 | const decNumber *hold=lhs; |
4919 | lhs=rhs; |
4920 | rhs=hold; |
4921 | } |
4922 | |
4923 | do { /* protect allocated storage */ |
4924 | #if DECSUBSET0 |
4925 | if (!set->extended) { |
4926 | /* reduce operands and set lostDigits status, as needed */ |
4927 | if (lhs->digits>set->digits) { |
4928 | alloclhs=decRoundOperand(lhs, set, status); |
4929 | if (alloclhs==NULL((void*)0)) break; |
4930 | lhs=alloclhs; |
4931 | } |
4932 | if (rhs->digits>set->digits) { |
4933 | allocrhs=decRoundOperand(rhs, set, status); |
4934 | if (allocrhs==NULL((void*)0)) break; |
4935 | rhs=allocrhs; |
4936 | } |
4937 | } |
4938 | #endif |
4939 | /* [following code does not require input rounding] */ |
4940 | |
4941 | #if FASTMUL(1 && 3<5) /* fastpath can be used */ |
4942 | /* use the fast path if there are enough digits in the shorter */ |
4943 | /* operand to make the setup and takedown worthwhile */ |
4944 | #define NEEDTWO(3*2) (DECDPUN3*2) /* within two decUnitAddSub calls */ |
4945 | if (rhs->digits>NEEDTWO(3*2)) { /* use fastpath... */ |
4946 | /* calculate the number of elements in each array */ |
4947 | ilhs=(lhs->digits+FASTDIGS9-1)/FASTDIGS9; /* [ceiling] */ |
4948 | irhs=(rhs->digits+FASTDIGS9-1)/FASTDIGS9; /* .. */ |
4949 | iacc=ilhs+irhs; |
4950 | |
4951 | /* allocate buffers if required, as usual */ |
4952 | needbytes=ilhs*sizeof(uIntuint32_t); |
4953 | if (needbytes>(Intint32_t)sizeof(zlhibuff)) { |
4954 | alloclhi=(uIntuint32_t *)malloc(needbytes); |
4955 | zlhi=alloclhi;} |
4956 | needbytes=irhs*sizeof(uIntuint32_t); |
4957 | if (needbytes>(Intint32_t)sizeof(zrhibuff)) { |
4958 | allocrhi=(uIntuint32_t *)malloc(needbytes); |
4959 | zrhi=allocrhi;} |
4960 | |
4961 | /* Allocating the accumulator space needs a special case when */ |
4962 | /* DECDPUN=1 because when converting the accumulator to Units */ |
4963 | /* after the multiplication each 8-byte item becomes 9 1-byte */ |
4964 | /* units. Therefore iacc extra bytes are needed at the front */ |
4965 | /* (rounded up to a multiple of 8 bytes), and the uLong */ |
4966 | /* accumulator starts offset the appropriate number of units */ |
4967 | /* to the right to avoid overwrite during the unchunking. */ |
4968 | needbytes=iacc*sizeof(uLonguint64_t); |
4969 | #if DECDPUN3==1 |
4970 | zoff=(iacc+7)/8; /* items to offset by */ |
4971 | needbytes+=zoff*8; |
4972 | #endif |
4973 | if (needbytes>(Intint32_t)sizeof(zaccbuff)) { |
4974 | allocacc=(uLonguint64_t *)malloc(needbytes); |
4975 | zacc=(uLonguint64_t *)allocacc;} |
4976 | if (zlhi==NULL((void*)0)||zrhi==NULL((void*)0)||zacc==NULL((void*)0)) { |
4977 | *status|=DEC_Insufficient_storage0x00000010; |
4978 | break;} |
4979 | |
4980 | acc=(Unituint16_t *)zacc; /* -> target Unit array */ |
4981 | #if DECDPUN3==1 |
4982 | zacc+=zoff; /* start uLong accumulator to right */ |
4983 | #endif |
4984 | |
4985 | /* assemble the chunked copies of the left and right sides */ |
4986 | for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) |
4987 | for (p=0, *lip=0; p<FASTDIGS9 && count>0; |
4988 | p+=DECDPUN3, cup++, count-=DECDPUN3) |
4989 | *lip+=*cup*powersDECPOWERS[p]; |
4990 | lmsi=lip-1; /* save -> msi */ |
4991 | for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) |
4992 | for (p=0, *rip=0; p<FASTDIGS9 && count>0; |
4993 | p+=DECDPUN3, cup++, count-=DECDPUN3) |
4994 | *rip+=*cup*powersDECPOWERS[p]; |
4995 | rmsi=rip-1; /* save -> msi */ |
4996 | |
4997 | /* zero the accumulator */ |
4998 | for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; |
4999 | |
5000 | /* Start the multiplication */ |
5001 | /* Resolving carries can dominate the cost of accumulating the */ |
5002 | /* partial products, so this is only done when necessary. */ |
5003 | /* Each uLong item in the accumulator can hold values up to */ |
5004 | /* 2**64-1, and each partial product can be as large as */ |
5005 | /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */ |
5006 | /* itself 18.4 times in a uLong without overflowing, so during */ |
5007 | /* the main calculation resolution is carried out every 18th */ |
5008 | /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */ |
5009 | /* partial products can be added to themselves 1844.6 times in */ |
5010 | /* a uLong without overflowing, so intermediate carry */ |
5011 | /* resolution occurs only every 14752 digits. Hence for common */ |
5012 | /* short numbers usually only the one final carry resolution */ |
5013 | /* occurs. */ |
5014 | /* (The count is set via FASTLAZY to simplify experiments to */ |
5015 | /* measure the value of this approach: a 35% improvement on a */ |
5016 | /* [34x34] multiply.) */ |
5017 | lazy=FASTLAZY18; /* carry delay count */ |
5018 | for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */ |
5019 | lp=zacc+(rip-zrhi); /* where to add the lhs */ |
5020 | for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */ |
5021 | *lp+=(uLonguint64_t)(*lip)*(*rip); /* [this should in-line] */ |
5022 | } /* lip loop */ |
5023 | lazy--; |
5024 | if (lazy>0 && rip!=rmsi) continue; |
5025 | lazy=FASTLAZY18; /* reset delay count */ |
5026 | /* spin up the accumulator resolving overflows */ |
5027 | for (lp=zacc; lp<zacc+iacc; lp++) { |
5028 | if (*lp<FASTBASE1000000000) continue; /* it fits */ |
5029 | lcarry=*lp/FASTBASE1000000000; /* top part [slow divide] */ |
5030 | /* lcarry can exceed 2**32-1, so check again; this check */ |
5031 | /* and occasional extra divide (slow) is well worth it, as */ |
5032 | /* it allows FASTLAZY to be increased to 18 rather than 4 */ |
5033 | /* in the FASTDIGS=9 case */ |
5034 | if (lcarry<FASTBASE1000000000) carry=(uIntuint32_t)lcarry; /* [usual] */ |
5035 | else { /* two-place carry [fairly rare] */ |
5036 | uIntuint32_t carry2=(uIntuint32_t)(lcarry/FASTBASE1000000000); /* top top part */ |
5037 | *(lp+2)+=carry2; /* add to item+2 */ |
5038 | *lp-=((uLonguint64_t)FASTBASE1000000000*FASTBASE1000000000*carry2); /* [slow] */ |
5039 | carry=(uIntuint32_t)(lcarry-((uLonguint64_t)FASTBASE1000000000*carry2)); /* [inline] */ |
5040 | } |
5041 | *(lp+1)+=carry; /* add to item above [inline] */ |
5042 | *lp-=((uLonguint64_t)FASTBASE1000000000*carry); /* [inline] */ |
5043 | } /* carry resolution */ |
5044 | } /* rip loop */ |
5045 | |
5046 | /* The multiplication is complete; time to convert back into */ |
5047 | /* units. This can be done in-place in the accumulator and in */ |
5048 | /* 32-bit operations, because carries were resolved after the */ |
5049 | /* final add. This needs N-1 divides and multiplies for */ |
5050 | /* each item in the accumulator (which will become up to N */ |
5051 | /* units, where 2<=N<=9). */ |
5052 | for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { |
5053 | uIntuint32_t item=(uIntuint32_t)*lp; /* decapitate to uInt */ |
5054 | for (p=0; p<FASTDIGS9-DECDPUN3; p+=DECDPUN3, up++) { |
5055 | uIntuint32_t part=item/(DECDPUNMAX999+1); |
5056 | *up=(Unituint16_t)(item-(part*(DECDPUNMAX999+1))); |
5057 | item=part; |
5058 | } /* p */ |
5059 | *up=(Unituint16_t)item; up++; /* [final needs no division] */ |
5060 | } /* lp */ |
5061 | accunits=up-acc; /* count of units */ |
5062 | } |
5063 | else { /* here to use units directly, without chunking ['old code'] */ |
5064 | #endif |
5065 | |
5066 | /* if accumulator will be too long for local storage, then allocate */ |
5067 | acc=accbuff; /* -> assume buffer for accumulator */ |
5068 | needbytes=(D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3)+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3))*sizeof(Unituint16_t); |
5069 | if (needbytes>(Intint32_t)sizeof(accbuff)) { |
5070 | allocacc=(Unituint16_t *)malloc(needbytes); |
5071 | if (allocacc==NULL((void*)0)) {*status|=DEC_Insufficient_storage0x00000010; break;} |
5072 | acc=(Unituint16_t *)allocacc; /* use the allocated space */ |
5073 | } |
5074 | |
5075 | /* Now the main long multiplication loop */ |
5076 | /* Unlike the equivalent in the IBM Java implementation, there */ |
5077 | /* is no advantage in calculating from msu to lsu. So, do it */ |
5078 | /* by the book, as it were. */ |
5079 | /* Each iteration calculates ACC=ACC+MULTAND*MULT */ |
5080 | accunits=1; /* accumulator starts at '0' */ |
5081 | *acc=0; /* .. (lsu=0) */ |
5082 | shift=0; /* no multiplicand shift at first */ |
5083 | madlength=D2U(lhs->digits)((lhs->digits)<=49?d2utable[lhs->digits]:((lhs->digits )+3 -1)/3); /* this won't change */ |
5084 | mermsup=rhs->lsu+D2U(rhs->digits)((rhs->digits)<=49?d2utable[rhs->digits]:((rhs->digits )+3 -1)/3); /* -> msu+1 of multiplier */ |
5085 | |
5086 | for (mer=rhs->lsu; mer<mermsup; mer++) { |
5087 | /* Here, *mer is the next Unit in the multiplier to use */ |
5088 | /* If non-zero [optimization] add it... */ |
5089 | if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, |
5090 | lhs->lsu, madlength, 0, |
5091 | &acc[shift], *mer) |
5092 | + shift; |
5093 | else { /* extend acc with a 0; it will be used shortly */ |
5094 | *(acc+accunits)=0; /* [this avoids length of <=0 later] */ |
5095 | accunits++; |
5096 | } |
5097 | /* multiply multiplicand by 10**DECDPUN for next Unit to left */ |
5098 | shift++; /* add this for 'logical length' */ |
5099 | } /* n */ |
5100 | #if FASTMUL(1 && 3<5) |
5101 | } /* unchunked units */ |
5102 | #endif |
5103 | /* common end-path */ |
5104 | #if DECTRACE0 |
5105 | decDumpAr('*', acc, accunits); /* Show exact result */ |
5106 | #endif |
5107 | |
5108 | /* acc now contains the exact result of the multiplication, */ |
5109 | /* possibly with a leading zero unit; build the decNumber from */ |
5110 | /* it, noting if any residue */ |
5111 | res->bits=bits; /* set sign */ |
5112 | res->digits=decGetDigits(acc, accunits); /* count digits exactly */ |
5113 | |
5114 | /* There can be a 31-bit wrap in calculating the exponent. */ |
5115 | /* This can only happen if both input exponents are negative and */ |
5116 | /* both their magnitudes are large. If there was a wrap, set a */ |
5117 | /* safe very negative exponent, from which decFinalize() will */ |
5118 | /* raise a hard underflow shortly. */ |
5119 | exponent=lhs->exponent+rhs->exponent; /* calculate exponent */ |
5120 | if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) |
5121 | exponent=-2*DECNUMMAXE999999999; /* force underflow */ |
5122 | res->exponent=exponent; /* OK to overwrite now */ |
5123 | |
5124 | |
5125 | /* Set the coefficient. If any rounding, residue records */ |
5126 | decSetCoeff(res, set, acc, res->digits, &residue, status); |
5127 | decFinish(res, set, &residue, status)decFinalize(res,set,&residue,status); /* final cleanup */ |
5128 | } while(0); /* end protected */ |
5129 | |
5130 | free(allocacc); /* drop any storage used */ |
5131 | #if DECSUBSET0 |
5132 | free(allocrhs); /* .. */ |
5133 | free(alloclhs); /* .. */ |
5134 | #endif |
5135 | #if FASTMUL(1 && 3<5) |
5136 | free(allocrhi); /* .. */ |
5137 | free(alloclhi); /* .. */ |
5138 | #endif |
5139 | return res; |
5140 | } /* decMultiplyOp */ |
5141 | |
5142 | /* ------------------------------------------------------------------ */ |
5143 | /* decExpOp -- effect exponentiation */ |
5144 | /* */ |
5145 | /* This computes C = exp(A) */ |
5146 | /* */ |
5147 | /* res is C, the result. C may be A */ |
5148 | /* rhs is A */ |
5149 | /* set is the context; note that rounding mode has no effect */ |
5150 | /* */ |
5151 | /* C must have space for set->digits digits. status is updated but */ |
5152 | /* not set. */ |
5153 | /* */ |
5154 | /* Restrictions: */ |
5155 | /* */ |
5156 | /* digits, emax, and -emin in the context must be less than */ |
5157 | /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */ |
5158 | /* bounds or a zero. This is an internal routine, so these */ |
5159 | /* restrictions are contractual and not enforced. */ |
5160 | /* */ |
5161 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */ |
5162 | /* almost always be correctly rounded, but may be up to 1 ulp in */ |
5163 | /* error in rare cases. */ |
5164 | /* */ |
5165 | /* Finite results will always be full precision and Inexact, except */ |
5166 | /* when A is a zero or -Infinity (giving 1 or 0 respectively). */ |
5167 | /* ------------------------------------------------------------------ */ |
5168 | /* This approach used here is similar to the algorithm described in */ |
5169 | /* */ |
5170 | /* Variable Precision Exponential Function, T. E. Hull and */ |
5171 | /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ |
5172 | /* pp79-91, ACM, June 1986. */ |
5173 | /* */ |
5174 | /* with the main difference being that the iterations in the series */ |
5175 | /* evaluation are terminated dynamically (which does not require the */ |
5176 | /* extra variable-precision variables which are expensive in this */ |
5177 | /* context). */ |
5178 | /* */ |
5179 | /* The error analysis in Hull & Abrham's paper applies except for the */ |
5180 | /* round-off error accumulation during the series evaluation. This */ |
5181 | /* code does not precalculate the number of iterations and so cannot */ |
5182 | /* use Horner's scheme. Instead, the accumulation is done at double- */ |
5183 | /* precision, which ensures that the additions of the terms are exact */ |
5184 | /* and do not accumulate round-off (and any round-off errors in the */ |
5185 | /* terms themselves move 'to the right' faster than they can */ |
5186 | /* accumulate). This code also extends the calculation by allowing, */ |
5187 | /* in the spirit of other decNumber operators, the input to be more */ |
5188 | /* precise than the result (the precision used is based on the more */ |
5189 | /* precise of the input or requested result). */ |
5190 | /* */ |
5191 | /* Implementation notes: */ |
5192 | /* */ |
5193 | /* 1. This is separated out as decExpOp so it can be called from */ |
5194 | /* other Mathematical functions (notably Ln) with a wider range */ |
5195 | /* than normal. In particular, it can handle the slightly wider */ |
5196 | /* (double) range needed by Ln (which has to be able to calculate */ |
5197 | /* exp(-x) where x can be the tiniest number (Ntiny). */ |
5198 | /* */ |
5199 | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */ |
5200 | /* iterations by approximately a third with additional (although */ |
5201 | /* diminishing) returns as the range is reduced to even smaller */ |
5202 | /* fractions. However, h (the power of 10 used to correct the */ |
5203 | /* result at the end, see below) must be kept <=8 as otherwise */ |
5204 | /* the final result cannot be computed. Hence the leverage is a */ |
5205 | /* sliding value (8-h), where potentially the range is reduced */ |
5206 | /* more for smaller values. */ |
5207 | /* */ |
5208 | /* The leverage that can be applied in this way is severely */ |
5209 | /* limited by the cost of the raise-to-the power at the end, */ |
5210 | /* which dominates when the number of iterations is small (less */ |
5211 | /* than ten) or when rhs is short. As an example, the adjustment */ |
5212 | /* x**10,000,000 needs 31 multiplications, all but one full-width. */ |
5213 | /* */ |
5214 | /* 3. The restrictions (especially precision) could be raised with */ |
5215 | /* care, but the full decNumber range seems very hard within the */ |
5216 | /* 32-bit limits. */ |
5217 | /* */ |
5218 | /* 4. The working precisions for the static buffers are twice the */ |
5219 | /* obvious size to allow for calls from decNumberPower. */ |
5220 | /* ------------------------------------------------------------------ */ |
5221 | decNumber * decExpOp(decNumber *res, const decNumber *rhs, |
5222 | decContext *set, uIntuint32_t *status) { |
5223 | uIntuint32_t ignore=0; /* working status */ |
5224 | Intint32_t h; /* adjusted exponent for 0.xxxx */ |
5225 | Intint32_t p; /* working precision */ |
5226 | Intint32_t residue; /* rounding residue */ |
5227 | uIntuint32_t needbytes; /* for space calculations */ |
5228 | const decNumber *x=rhs; /* (may point to safe copy later) */ |
5229 | decContext aset, tset, dset; /* working contexts */ |
5230 | Intint32_t comp; /* work */ |
5231 | |
5232 | /* the argument is often copied to normalize it, so (unusually) it */ |
5233 | /* is treated like other buffers, using DECBUFFER, +1 in case */ |
5234 | /* DECBUFFER is 0 */ |
5235 | decNumber bufr[D2N(DECBUFFER*2+1)(((((((36*2+1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; |
5236 | decNumber *allocrhs=NULL((void*)0); /* non-NULL if rhs buffer allocated */ |
5237 | |
5238 | /* the working precision will be no more than set->digits+8+1 */ |
5239 | /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ |
5240 | /* is 0 (and twice that for the accumulator) */ |
5241 | |
5242 | /* buffer for t, term (working precision plus) */ |
5243 | decNumber buft[D2N(DECBUFFER*2+9+1)(((((((36*2+9+1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; |
5244 | decNumber *allocbuft=NULL((void*)0); /* -> allocated buft, iff allocated */ |
5245 | decNumber *t=buft; /* term */ |
5246 | /* buffer for a, accumulator (working precision * 2), at least 9 */ |
5247 | decNumber bufa[D2N(DECBUFFER*4+18+1)(((((((36*4+18+1)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber )*2-1)/sizeof(decNumber))]; |
5248 | decNumber *allocbufa=NULL((void*)0); /* -> allocated bufa, iff allocated */ |
5249 | decNumber *a=bufa; /* accumulator */ |
5250 | /* decNumber for the divisor term; this needs at most 9 digits */ |
5251 | /* and so can be fixed size [16 so can use standard context] */ |
5252 | decNumber bufd[D2N(16)(((((((16)+3 -1)/3)-1)*sizeof(uint16_t))+sizeof(decNumber)*2- 1)/sizeof(decNumber))]; |
5253 | decNumber *d=bufd; /* divisor */ |
5254 | decNumber numone; /* constant 1 */ |
5255 | |
5256 | #if DECCHECK0 |
5257 | Intint32_t iterations=0; /* for later sanity check */ |
5258 | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; |
5259 | #endif |
5260 | |
5261 | do { /* protect allocated storage */ |
5262 | if (SPECIALARG(rhs->bits & (0x40|0x20|0x10))) { /* handle infinities and NaNs */ |
5263 | if (decNumberIsInfinite(rhs)(((rhs)->bits&0x40)!=0)) { /* an infinity */ |
5264 | if (decNumberIsNe |