Bug Summary

File:build/gcc/hard-reg-set.h
Warning:line 200, column 5
The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-suse-linux -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name shrink-wrap.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -resource-dir /usr/lib64/clang/15.0.7 -D IN_GCC -D HAVE_CONFIG_H -I . -I . -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/. -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcpp/include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcody -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber/bid -I ../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libbacktrace -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13 -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/x86_64-suse-linux -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/backward -internal-isystem /usr/lib64/clang/15.0.7/include -internal-isystem /usr/local/include -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../x86_64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-narrowing -Wwrite-strings -Wno-long-long -Wno-variadic-macros -Wno-overlength-strings -fdeprecated-macro -fdebug-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=plist-html -analyzer-config silence-checkers=core.NullDereference -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /buildworker/marxinbox-gcc-clang-static-analyzer/objdir/clang-static-analyzer/2023-03-27-141847-20772-1/report-4ve4ih.plist -x c++ /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc

1/* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This file handles shrink-wrapping related optimizations. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "backend.h"
26#include "target.h"
27#include "rtl.h"
28#include "tree.h"
29#include "cfghooks.h"
30#include "df.h"
31#include "memmodel.h"
32#include "tm_p.h"
33#include "regs.h"
34#include "insn-config.h"
35#include "emit-rtl.h"
36#include "output.h"
37#include "tree-pass.h"
38#include "cfgrtl.h"
39#include "cfgbuild.h"
40#include "bb-reorder.h"
41#include "shrink-wrap.h"
42#include "regcprop.h"
43#include "rtl-iter.h"
44#include "valtrack.h"
45#include "function-abi.h"
46#include "print-rtl.h"
47
48/* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52bool
53requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
55{
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && !FAKE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if
(((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag
("FAKE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 60, __FUNCTION__); _rtx; })->used)
)
61 return !SIBLING_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if
(((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag
("SIBLING_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 61, __FUNCTION__); _rtx; })->jump)
;
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun(cfun + 0)->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)for (def = (((df->insns[(INSN_UID (insn))]))->defs); def
; def = ((def)->base.next_loc))
69 {
70 rtx dreg = DF_REF_REG (def)((def)->base.reg);
71
72 if (!REG_P (dreg)(((enum rtx_code) (dreg)->code) == REG))
73 continue;
74
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg)((machine_mode) (dreg)->mode), REGNO (dreg)(rhs_regno(dreg)));
76 }
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 hardregs &= ~crtl(&x_rtl)->abi->full_reg_clobbers ();
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER76; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
85 FOR_EACH_INSN_USE (use, insn)for (use = (((df->insns[(INSN_UID (insn))]))->uses); use
; use = ((use)->base.next_loc))
86 {
87 rtx reg = DF_REF_REG (use)((use)->base.reg);
88
89 if (!REG_P (reg)(((enum rtx_code) (reg)->code) == REG))
90 continue;
91
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg)((machine_mode) (reg)->mode),
93 REGNO (reg)(rhs_regno(reg)));
94 }
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
97
98 return false;
99}
100
101/* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
104
105static edge
106live_edge_for_reg (basic_block bb, int regno, int end_regno)
107{
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULLnullptr;
114 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
115 {
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i)bitmap_bit_p (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULLnullptr;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
129 return NULLnullptr;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULLnullptr;
138
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds)vec_safe_length (live_edge->dest->preds) > 2)
142 return NULLnullptr;
143
144 return live_edge;
145}
146
147/* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
151
152static bool
153move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const_hard_reg_set uses,
155 const_hard_reg_set defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
158{
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses = NULLnullptr, bb_defs = NULLnullptr;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER76;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER76;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
168
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
)
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set)((enum rtx_code) (set)->code) != SET)
176 return false;
177 src = SET_SRC (set)(((set)->u.fld[1]).rt_rtx);
178 dest = SET_DEST (set)(((set)->u.fld[0]).rt_rtx);
179
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)(((enum rtx_code) (dest)->code) == REG)
184 || dest == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])
185 || dest == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER])
186 || dest == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]))
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src)((rtx_class[(int) (((enum rtx_code) (src)->code))]) == RTX_CONST_OBJ
)
)
200 ;
201 else if (!REG_P (src)(((enum rtx_code) (src)->code) == REG))
202 {
203 rtx src_inner = NULL_RTX(rtx) 0;
204
205 if (can_throw_internal (insn))
206 return false;
207
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)for (subrtx_var_iterator iter (array, src, rtx_all_subrtx_bounds
); !iter.at_end (); iter.next ())
210 {
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x))(rtx_class[(int) (((enum rtx_code) (x)->code))]))
213 {
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x)((enum rtx_code) (x)->code))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULLnullptr)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
250 }
251 }
252
253 if (src_inner != NULLnullptr)
254 src = src_inner;
255 }
256
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src)(((enum rtx_code) (src)->code) == REG))
259 {
260 sregno = REGNO (src)(rhs_regno(src));
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src)((machine_mode) (src)->mode), sregno))
263 return false;
264 }
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest)(rhs_regno(dest));
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest)((machine_mode) (dest)->mode), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest)((machine_mode) (dest)->mode), dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
277
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds)vec_safe_length (next_block->preds) == 2)
281 {
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs)vec_safe_length (bb->succs) == 1)
284 return false;
285
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live(df->problems_by_index[DF_LIVE]))
288 return false;
289
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
292
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live(df->problems_by_index[DF_LIVE]));
296
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
304
305 *split_p = true;
306 }
307
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
312 if (MAY_HAVE_DEBUG_BIND_INSNSglobal_options.x_flag_var_tracking_assignments)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)for ((dinsn) = (bb)->il.x.rtl->end_; (dinsn) &&
(dinsn) != PREV_INSN ((bb)->il.x.head_); (dinsn) = PREV_INSN
(dinsn))
315 if (DEBUG_BIND_INSN_P (dinsn)((((enum rtx_code) (dinsn)->code) == DEBUG_INSN) &&
(((enum rtx_code) (PATTERN (dinsn))->code) == VAR_LOCATION
))
)
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)for (use = (((df->insns[(INSN_UID (dinsn))]))->uses); use
; use = ((use)->base.next_loc))
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use)((use)->base.reg), (rtx *) NULLnullptr))
321 dead_debug_add (debug, use, DF_REF_REGNO (use)((use)->base.regno));
322 }
323 else if (dinsn == insn)
324 break;
325 }
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 if (!*split_p)
334 {
335 bb_uses = &DF_LR_BB_INFO (bb)(df_lr_get_bb_info ((bb)->index))->use;
336 bb_defs = &DF_LR_BB_INFO (bb)(df_lr_get_bb_info ((bb)->index))->def;
337 }
338 if (df_live(df->problems_by_index[DF_LIVE]))
339 {
340 for (i = dregno; i < end_dregno; i++)
341 {
342 if (*split_p
343 || REGNO_REG_SET_P (bb_uses, i)bitmap_bit_p (bb_uses, i)
344 || REGNO_REG_SET_P (bb_defs, i)bitmap_bit_p (bb_defs, i)
345 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i)bitmap_bit_p (&(df_live_get_bb_info ((bb)->index))->
gen, i)
)
346 next_block = NULLnullptr;
347 CLEAR_REGNO_REG_SET (live_out, i)bitmap_clear_bit (live_out, i);
348 CLEAR_REGNO_REG_SET (live_in, i)bitmap_clear_bit (live_in, i);
349 }
350
351 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
352 Either way, SRC is now live on entry. */
353 for (i = sregno; i < end_sregno; i++)
354 {
355 if (*split_p
356 || REGNO_REG_SET_P (bb_defs, i)bitmap_bit_p (bb_defs, i)
357 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i)bitmap_bit_p (&(df_live_get_bb_info ((bb)->index))->
gen, i)
)
358 next_block = NULLnullptr;
359 SET_REGNO_REG_SET (live_out, i)bitmap_set_bit (live_out, i);
360 SET_REGNO_REG_SET (live_in, i)bitmap_set_bit (live_in, i);
361 }
362 }
363 else
364 {
365 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
366 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
367 at -O1, just give up searching NEXT_BLOCK. */
368 next_block = NULLnullptr;
369 for (i = dregno; i < end_dregno; i++)
370 {
371 CLEAR_REGNO_REG_SET (live_out, i)bitmap_clear_bit (live_out, i);
372 CLEAR_REGNO_REG_SET (live_in, i)bitmap_clear_bit (live_in, i);
373 }
374
375 for (i = sregno; i < end_sregno; i++)
376 {
377 SET_REGNO_REG_SET (live_out, i)bitmap_set_bit (live_out, i);
378 SET_REGNO_REG_SET (live_in, i)bitmap_set_bit (live_in, i);
379 }
380 }
381
382 /* If we don't need to add the move to BB, look for a single
383 successor block. */
384 if (next_block)
385 {
386 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
387 if (!live_edge || EDGE_COUNT (live_edge->dest->preds)vec_safe_length (live_edge->dest->preds) > 1)
388 break;
389 next_block = live_edge->dest;
390 }
391 }
392 while (next_block);
393
394 /* For the new created basic block, there is no dataflow info at all.
395 So skip the following dataflow update and check. */
396 if (!(*split_p))
397 {
398 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
399 (next loop). */
400 for (i = dregno; i < end_dregno; i++)
401 {
402 CLEAR_REGNO_REG_SET (bb_uses, i)bitmap_clear_bit (bb_uses, i);
403 SET_REGNO_REG_SET (bb_defs, i)bitmap_set_bit (bb_defs, i);
404 }
405
406 /* BB now uses SRC. */
407 for (i = sregno; i < end_sregno; i++)
408 SET_REGNO_REG_SET (bb_uses, i)bitmap_set_bit (bb_uses, i);
409 }
410
411 /* Insert debug temps for dead REGs used in subsequent debug insns. */
412 if (debug->used && !bitmap_empty_p (debug->used))
413 FOR_EACH_INSN_DEF (def, insn)for (def = (((df->insns[(INSN_UID (insn))]))->defs); def
; def = ((def)->base.next_loc))
414 dead_debug_insert_temp (debug, DF_REF_REGNO (def)((def)->base.regno), insn,
415 DEBUG_TEMP_BEFORE_WITH_VALUE);
416
417 rtx_insn *insn_copy = emit_insn_after (PATTERN (insn), bb_note (bb));
418 /* Update the LABEL_NUSES count on any referenced labels. The ideal
419 solution here would be to actually move the instruction instead
420 of copying/deleting it as this loses some notations on the
421 insn. */
422 mark_jump_label (PATTERN (insn), insn_copy, 0);
423 delete_insn (insn);
424 return true;
425}
426
427/* Look for register copies in the first block of the function, and move
428 them down into successor blocks if the register is used only on one
429 path. This exposes more opportunities for shrink-wrapping. These
430 kinds of sets often occur when incoming argument registers are moved
431 to call-saved registers because their values are live across one or
432 more calls during the function. */
433
434static void
435prepare_shrink_wrap (basic_block entry_block)
436{
437 rtx_insn *insn, *curr;
438 rtx x;
439 HARD_REG_SET uses, defs;
440 df_ref def, use;
441 bool split_p = false;
442 unsigned int i;
443 struct dead_debug_local debug;
444
445 if (JUMP_P (BB_END (entry_block))(((enum rtx_code) ((entry_block)->il.x.rtl->end_)->code
) == JUMP_INSN)
)
446 {
447 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
448 to sink the copies from parameter to callee saved register out of
449 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
450 to release some dependences. */
451 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
452 }
453
454 dead_debug_local_init (&debug, NULLnullptr, NULLnullptr);
455 CLEAR_HARD_REG_SET (uses);
456 CLEAR_HARD_REG_SET (defs);
457
458 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)for ((insn) = (entry_block)->il.x.rtl->end_,(curr) = (insn
) ? PREV_INSN ((insn)) : nullptr; (insn) && (insn) !=
PREV_INSN ((entry_block)->il.x.head_); (insn) = (curr), (
curr) = (insn) ? PREV_INSN ((insn)) : nullptr)
459 if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN))
460 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
461 &split_p, &debug))
462 {
463 /* Add all defined registers to DEFs. */
464 FOR_EACH_INSN_DEF (def, insn)for (def = (((df->insns[(INSN_UID (insn))]))->defs); def
; def = ((def)->base.next_loc))
465 {
466 x = DF_REF_REG (def)((def)->base.reg);
467 if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && HARD_REGISTER_P (x)((((rhs_regno(x))) < 76)))
468 for (i = REGNO (x)(rhs_regno(x)); i < END_REGNO (x); i++)
469 SET_HARD_REG_BIT (defs, i);
470 }
471
472 /* Add all used registers to USESs. */
473 FOR_EACH_INSN_USE (use, insn)for (use = (((df->insns[(INSN_UID (insn))]))->uses); use
; use = ((use)->base.next_loc))
474 {
475 x = DF_REF_REG (use)((use)->base.reg);
476 if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && HARD_REGISTER_P (x)((((rhs_regno(x))) < 76)))
477 for (i = REGNO (x)(rhs_regno(x)); i < END_REGNO (x); i++)
478 SET_HARD_REG_BIT (uses, i);
479 }
480 }
481
482 dead_debug_local_finish (&debug, NULLnullptr);
483}
484
485/* Return whether basic block PRO can get the prologue. It cannot if it
486 has incoming complex edges that need a prologue inserted (we make a new
487 block for the prologue, so those edges would need to be redirected, which
488 does not work). It also cannot if there exist registers live on entry
489 to PRO that are clobbered by the prologue. */
490
491static bool
492can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
493{
494 edge e;
495 edge_iterator ei;
496 FOR_EACH_EDGE (e, ei, pro->preds)for ((ei) = ei_start_1 (&((pro->preds))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
497 if (e->flags & EDGE_COMPLEX(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE
)
498 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
499 return false;
500
501 HARD_REG_SET live;
502 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro))do { CLEAR_HARD_REG_SET (live); reg_set_to_hard_reg_set (&
live, df_get_live_in (pro)); } while (0)
;
503 if (hard_reg_set_intersect_p (live, prologue_clobbered))
504 return false;
505
506 return true;
507}
508
509/* Return whether we can duplicate basic block BB for shrink wrapping. We
510 cannot if the block cannot be duplicated at all, or if any of its incoming
511 edges are complex and come from a block that does not require a prologue
512 (we cannot redirect such edges), or if the block is too big to copy.
513 PRO is the basic block before which we would put the prologue, MAX_SIZE is
514 the maximum size block we allow to be copied. */
515
516static bool
517can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
518{
519 if (!can_duplicate_block_p (bb))
520 return false;
521
522 edge e;
523 edge_iterator ei;
524 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
525 if (e->flags & (EDGE_COMPLEX(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE
)
| EDGE_CROSSING)
526 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
527 return false;
528
529 unsigned size = 0;
530
531 rtx_insn *insn;
532 FOR_BB_INSNS (bb, insn)for ((insn) = (bb)->il.x.head_; (insn) && (insn) !=
NEXT_INSN ((bb)->il.x.rtl->end_); (insn) = NEXT_INSN (
insn))
533 if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN))
)
534 {
535 size += get_attr_min_length (insn);
536 if (size > max_size)
537 return false;
538 }
539
540 return true;
541}
542
543/* Do whatever needs to be done for exits that run without prologue.
544 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
545
546static void
547handle_simple_exit (edge e)
548{
549
550 if (e->flags & EDGE_SIBCALL)
551 {
552 /* Tell function.cc to take no further action on this edge. */
553 e->flags |= EDGE_IGNORE;
554
555 e->flags &= ~EDGE_FALLTHRU;
556 emit_barrier_after_bb (e->src);
557 return;
558 }
559
560 /* If the basic block the edge comes from has multiple successors,
561 split the edge. */
562 if (EDGE_COUNT (e->src->succs)vec_safe_length (e->src->succs) > 1)
563 {
564 basic_block old_bb = e->src;
565 rtx_insn *end = BB_END (old_bb)(old_bb)->il.x.rtl->end_;
566 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
567 basic_block new_bb = create_basic_block (note, note, old_bb);
568 BB_COPY_PARTITION (new_bb, old_bb)do { basic_block bb_ = (new_bb); bb_->flags = ((bb_->flags
& ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) | (((old_bb)->
flags & (BB_HOT_PARTITION|BB_COLD_PARTITION)))); } while (
0)
;
569 BB_END (old_bb)(old_bb)->il.x.rtl->end_ = end;
570
571 redirect_edge_succ (e, new_bb);
572 new_bb->count = e->count ();
573 e->flags |= EDGE_FALLTHRU;
574
575 e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr), 0);
576 }
577
578 e->flags &= ~EDGE_FALLTHRU;
579 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
580 BB_END (e->src)(e->src)->il.x.rtl->end_);
581 JUMP_LABEL (ret)(((ret)->u.fld[7]).rt_rtx) = simple_return_rtx;
582 emit_barrier_after_bb (e->src);
583
584 if (dump_file)
585 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
586 INSN_UID (ret), e->src->index);
587}
588
589/* Try to perform a kind of shrink-wrapping, making sure the
590 prologue/epilogue is emitted only around those parts of the
591 function that require it.
592
593 There will be exactly one prologue, and it will be executed either
594 zero or one time, on any path. Depending on where the prologue is
595 placed, some of the basic blocks can be reached via both paths with
596 and without a prologue. Such blocks will be duplicated here, and the
597 edges changed to match.
598
599 Paths that go to the exit without going through the prologue will use
600 a simple_return instead of the epilogue. We maximize the number of
601 those, making sure to only duplicate blocks that can be duplicated.
602 If the prologue can then still be placed in multiple locations, we
603 place it as early as possible.
604
605 An example, where we duplicate blocks with control flow (legend:
606 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
607 be taken to point down or to the right, to simplify the diagram; here,
608 block 3 needs a prologue, the rest does not):
609
610
611 B B
612 | |
613 2 2
614 |\ |\
615 | 3 becomes | 3
616 |/ | \
617 4 7 4
618 |\ |\ |\
619 | 5 | 8 | 5
620 |/ |/ |/
621 6 9 6
622 | | |
623 R S R
624
625
626 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
627 edge 2->3).
628
629 Another example, where part of a loop is duplicated (again, bb 3 is
630 the only block that needs a prologue):
631
632
633 B 3<-- B ->3<--
634 | | | | | | |
635 | v | becomes | | v |
636 2---4--- 2---5-- 4---
637 | | |
638 R S R
639
640
641 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
642
643 ENTRY_EDGE is the edge where the prologue will be placed, possibly
644 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
645
646void
647try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
648{
649 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
650 no sense to shrink-wrap: then do not shrink-wrap! */
651
652 if (!SHRINK_WRAPPING_ENABLED(global_options.x_flag_shrink_wrap && targetm.have_simple_return
())
)
1
Assuming field 'x_flag_shrink_wrap' is not equal to 0
2
Assuming the condition is false
653 return;
654
655 if (crtl(&x_rtl)->profile && !targetm.profile_before_prologue ())
3
Assuming field 'profile' is false
656 return;
657
658 if (crtl(&x_rtl)->calls_eh_return)
4
Assuming field 'calls_eh_return' is false
5
Taking false branch
659 return;
660
661 bool empty_prologue = true;
662 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
663 if (!(NOTE_P (insn)(((enum rtx_code) (insn)->code) == NOTE) && NOTE_KIND (insn)(((insn)->u.fld[4]).rt_int) == NOTE_INSN_PROLOGUE_END))
6
Loop condition is true. Entering loop body
7
Assuming field 'code' is not equal to NOTE
8
Taking true branch
664 {
665 empty_prologue = false;
666 break;
667 }
668 if (empty_prologue
9.1
'empty_prologue' is false
9.1
'empty_prologue' is false
9.1
'empty_prologue' is false
)
9
Execution continues on line 668
10
Taking false branch
669 return;
670
671 /* Move some code down to expose more shrink-wrapping opportunities. */
672
673 basic_block entry = (*entry_edge)->dest;
674 prepare_shrink_wrap (entry);
675
676 if (dump_file)
11
Assuming 'dump_file' is null
12
Taking false branch
677 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
678
679 /* Compute the registers set and used in the prologue. */
680
681 HARD_REG_SET prologue_clobbered, prologue_used;
682 CLEAR_HARD_REG_SET (prologue_clobbered);
683 CLEAR_HARD_REG_SET (prologue_used);
684 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
18
Loop condition is false. Execution continues on line 694
685 if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN))
)
13
Loop condition is true. Entering loop body
14
Assuming field 'code' is not equal to INSN
15
Assuming field 'code' is not equal to JUMP_INSN
16
Assuming field 'code' is not equal to CALL_INSN
17
Taking false branch
686 {
687 HARD_REG_SET this_used;
688 CLEAR_HARD_REG_SET (this_used);
689 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
690 this_used &= ~prologue_clobbered;
691 prologue_used |= this_used;
692 note_stores (insn, record_hard_reg_sets, &prologue_clobbered);
693 }
694 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM7);
695 if (frame_pointer_needed((&x_rtl)->frame_pointer_needed))
19
Assuming field 'frame_pointer_needed' is false
20
Taking false branch
696 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM6);
697
698 /* Find out what registers are set up by the prologue; any use of these
699 cannot happen before the prologue. */
700
701 struct hard_reg_set_container set_up_by_prologue;
702 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
21
Calling 'CLEAR_HARD_REG_SET'
25
Returning from 'CLEAR_HARD_REG_SET'
703 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode (
(scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode
::from_int) E_SImode)))
, STACK_POINTER_REGNUM7)
;
26
Assuming field 'x_ix86_pmode' is equal to PMODE_DI
27
'?' condition is true
28
Calling 'add_to_hard_reg_set'
33
Returning from 'add_to_hard_reg_set'
704 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode (
(scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode
::from_int) E_SImode)))
, ARG_POINTER_REGNUM16)
;
34
'?' condition is true
35
Calling 'add_to_hard_reg_set'
40
Returning from 'add_to_hard_reg_set'
705 if (frame_pointer_needed((&x_rtl)->frame_pointer_needed))
706 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode (
(scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode
::from_int) E_SImode)))
,
707 HARD_FRAME_POINTER_REGNUM6);
708 if (pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx)
41
Assuming field 'x_pic_offset_table_rtx' is non-null
47
Taking true branch
709 && (unsigned) PIC_OFFSET_TABLE_REGNUM(ix86_use_pseudo_pic_reg () ? ((this_target_rtl->x_pic_offset_table_rtx
) ? (~(unsigned int) 0) : (((global_options.x_ix86_isa_flags &
(1UL << 1)) != 0) ? 43 : 3)) : (~(unsigned int) 0))
!= INVALID_REGNUM(~(unsigned int) 0))
42
Assuming the condition is true
43
'?' condition is true
44
Assuming field 'x_pic_offset_table_rtx' is null
45
Assuming the condition is false
46
'?' condition is false
710 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode (
(scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode
::from_int) E_SImode)))
,
48
Assuming field 'x_ix86_pmode' is not equal to PMODE_DI
49
'?' condition is false
52
Calling 'add_to_hard_reg_set'
711 PIC_OFFSET_TABLE_REGNUM(ix86_use_pseudo_pic_reg () ? ((this_target_rtl->x_pic_offset_table_rtx
) ? (~(unsigned int) 0) : (((global_options.x_ix86_isa_flags &
(1UL << 1)) != 0) ? 43 : 3)) : (~(unsigned int) 0))
)
;
50
Assuming the condition is false
51
'?' condition is false
712 if (crtl(&x_rtl)->drap_reg)
713 add_to_hard_reg_set (&set_up_by_prologue.set,
714 GET_MODE (crtl->drap_reg)((machine_mode) ((&x_rtl)->drap_reg)->mode),
715 REGNO (crtl->drap_reg)(rhs_regno((&x_rtl)->drap_reg)));
716 if (targetm.set_up_by_prologue)
717 targetm.set_up_by_prologue (&set_up_by_prologue);
718
719 /* We will insert the prologue before the basic block PRO. PRO should
720 dominate all basic blocks that need the prologue to be executed
721 before them. First, make PRO the "tightest wrap" possible. */
722
723 calculate_dominance_info (CDI_DOMINATORS);
724
725 basic_block pro = 0;
726
727 basic_block bb;
728 edge e;
729 edge_iterator ei;
730 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
731 {
732 rtx_insn *insn;
733 FOR_BB_INSNS (bb, insn)for ((insn) = (bb)->il.x.head_; (insn) && (insn) !=
NEXT_INSN ((bb)->il.x.rtl->end_); (insn) = NEXT_INSN (
insn))
734 if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN))
735 && requires_stack_frame_p (insn, prologue_used,
736 set_up_by_prologue.set))
737 {
738 if (dump_file)
739 {
740 fprintf (dump_file, "Block %d needs prologue due to insn %d:\n",
741 bb->index, INSN_UID (insn));
742 print_rtl_single (dump_file, insn);
743 }
744 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
745 break;
746 }
747 }
748
749 /* If nothing needs a prologue, just put it at the start. This really
750 shouldn't happen, but we cannot fix it here. */
751
752 if (pro == 0)
753 {
754 if (dump_file)
755 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
756 "putting it at the start.\n");
757 pro = entry;
758 }
759
760 if (dump_file)
761 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
762 pro->index);
763
764 /* Now see if we can put the prologue at the start of PRO. Putting it
765 there might require duplicating a block that cannot be duplicated,
766 or in some cases we cannot insert the prologue there at all. If PRO
767 wont't do, try again with the immediate dominator of PRO, and so on.
768
769 The blocks that need duplicating are those reachable from PRO but
770 not dominated by it. We keep in BB_WITH a bitmap of the blocks
771 reachable from PRO that we already found, and in VEC a stack of
772 those we still need to consider (to find successors). */
773
774 auto_bitmap bb_with;
775 bitmap_set_bit (bb_with, pro->index);
776
777 vec<basic_block> vec;
778 vec.create (n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks));
779 vec.quick_push (pro);
780
781 unsigned max_grow_size = get_uncond_jump_length ();
782 max_grow_size *= param_max_grow_copy_bb_insnsglobal_options.x_param_max_grow_copy_bb_insns;
783
784 basic_block checked_pro = NULLnullptr;
785
786 while (pro != entry)
787 {
788 if (pro != checked_pro)
789 {
790 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
791 {
792 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
793
794 if (bitmap_set_bit (bb_with, pro->index))
795 vec.quick_push (pro);
796 }
797 checked_pro = pro;
798 }
799
800 if (vec.is_empty ())
801 break;
802
803 basic_block bb = vec.pop ();
804 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
805 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
806 {
807 gcc_assert (pro != entry)((void)(!(pro != entry) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 807, __FUNCTION__), 0 : 0))
;
808
809 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
810
811 if (bitmap_set_bit (bb_with, pro->index))
812 vec.quick_push (pro);
813 }
814
815 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
816 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr)
817 && bitmap_set_bit (bb_with, e->dest->index))
818 vec.quick_push (e->dest);
819 }
820
821 if (dump_file)
822 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
823 pro->index);
824
825 /* If we can move PRO back without having to duplicate more blocks, do so.
826 We do this because putting the prologue earlier is better for scheduling.
827
828 We can move back to a block PRE if every path from PRE will eventually
829 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
830 to dominate every block reachable from itself. We keep in BB_TMP a
831 bitmap of the blocks reachable from PRE that we already found, and in
832 VEC a stack of those we still need to consider.
833
834 Any block reachable from PRE is also reachable from all predecessors
835 of PRE, so if we find we need to move PRE back further we can leave
836 everything not considered so far on the stack. Any block dominated
837 by PRE is also dominated by all other dominators of PRE, so anything
838 found good for some PRE does not need to be reconsidered later.
839
840 We don't need to update BB_WITH because none of the new blocks found
841 can jump to a block that does not need the prologue. */
842
843 if (pro != entry)
844 {
845 calculate_dominance_info (CDI_POST_DOMINATORS);
846
847 auto_bitmap bb_tmp;
848 bitmap_copy (bb_tmp, bb_with);
849 basic_block last_ok = pro;
850 vec.truncate (0);
851
852 while (pro != entry)
853 {
854 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
855 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
856 break;
857
858 if (bitmap_set_bit (bb_tmp, pre->index))
859 vec.quick_push (pre);
860
861 bool ok = true;
862 while (!vec.is_empty ())
863 {
864 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
865 {
866 ok = false;
867 break;
868 }
869
870 basic_block bb = vec.pop ();
871 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
872 if (bitmap_set_bit (bb_tmp, e->dest->index))
873 vec.quick_push (e->dest);
874 }
875
876 if (ok && can_get_prologue (pre, prologue_clobbered))
877 last_ok = pre;
878
879 pro = pre;
880 }
881
882 pro = last_ok;
883
884 free_dominance_info (CDI_POST_DOMINATORS);
885 }
886
887 vec.release ();
888
889 if (dump_file)
890 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
891 pro->index);
892
893 if (pro == entry)
894 {
895 free_dominance_info (CDI_DOMINATORS);
896 return;
897 }
898
899 /* Compute what fraction of the frequency and count of the blocks that run
900 both with and without prologue are for running with prologue. This gives
901 the correct answer for reducible flow graphs; for irreducible flow graphs
902 our profile is messed up beyond repair anyway. */
903
904 profile_count num = profile_count::zero ();
905 profile_count den = profile_count::zero ();
906
907 FOR_EACH_EDGE (e, ei, pro->preds)for ((ei) = ei_start_1 (&((pro->preds))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
908 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
909 {
910 if (e->count ().initialized_p ())
911 num += e->count ();
912 if (e->src->count.initialized_p ())
913 den += e->src->count;
914 }
915
916 /* All is okay, so do it. */
917
918 crtl(&x_rtl)->shrink_wrapped = true;
919 if (dump_file)
920 fprintf (dump_file, "Performing shrink-wrapping.\n");
921
922 /* Copy the blocks that can run both with and without prologue. The
923 originals run with prologue, the copies without. Store a pointer to
924 the copy in the ->aux field of the original. */
925
926 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
927 if (bitmap_bit_p (bb_with, bb->index)
928 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
929 {
930 basic_block dup = duplicate_block (bb, 0, 0);
931
932 bb->aux = dup;
933
934 if (JUMP_P (BB_END (dup))(((enum rtx_code) ((dup)->il.x.rtl->end_)->code) == JUMP_INSN
)
&& !any_condjump_p (BB_END (dup)(dup)->il.x.rtl->end_))
935 emit_barrier_after_bb (dup);
936
937 if (EDGE_COUNT (dup->succs)vec_safe_length (dup->succs) == 0)
938 emit_barrier_after_bb (dup);
939
940 if (dump_file)
941 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
942
943 if (num == profile_count::zero () || den.nonzero_p ())
944 bb->count = bb->count.apply_scale (num, den);
945 dup->count -= bb->count;
946 }
947
948 /* Now change the edges to point to the copies, where appropriate. */
949
950 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
951 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
952 {
953 basic_block src = bb;
954 if (bitmap_bit_p (bb_with, bb->index))
955 src = (basic_block) bb->aux;
956
957 FOR_EACH_EDGE (e, ei, src->succs)for ((ei) = ei_start_1 (&((src->succs))); ei_cond ((ei
), &(e)); ei_next (&(ei)))
958 {
959 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
960 continue;
961
962 if (bitmap_bit_p (bb_with, e->dest->index)
963 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
964 {
965 if (dump_file)
966 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
967 e->src->index, e->dest->index,
968 ((basic_block) e->dest->aux)->index);
969 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
970 }
971 else if (e->flags & EDGE_FALLTHRU
972 && bitmap_bit_p (bb_with, bb->index))
973 force_nonfallthru (e);
974 }
975 }
976
977 /* Also redirect the function entry edge if necessary. */
978
979 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)for ((ei) = ei_start_1 (&(((((cfun + 0))->cfg->x_entry_block_ptr
)->succs))); ei_cond ((ei), &(e)); ei_next (&(ei))
)
980 if (bitmap_bit_p (bb_with, e->dest->index)
981 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
982 {
983 basic_block split_bb = split_edge (e);
984 e = single_succ_edge (split_bb);
985 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
986 }
987
988 /* Make a simple_return for those exits that run without prologue. */
989
990 FOR_EACH_BB_REVERSE_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_exit_block_ptr->prev_bb
; bb != ((cfun + 0))->cfg->x_entry_block_ptr; bb = bb->
prev_bb)
991 if (!bitmap_bit_p (bb_with, bb->index))
992 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
993 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
994 handle_simple_exit (e);
995
996 /* Finally, we want a single edge to put the prologue on. Make a new
997 block before the PRO block; the edge beteen them is the edge we want.
998 Then redirect those edges into PRO that come from blocks without the
999 prologue, to point to the new block instead. The new prologue block
1000 is put at the end of the insn chain. */
1001
1002 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr)->prev_bb);
1003 BB_COPY_PARTITION (new_bb, pro)do { basic_block bb_ = (new_bb); bb_->flags = ((bb_->flags
& ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) | (((pro)->flags
& (BB_HOT_PARTITION|BB_COLD_PARTITION)))); } while (0)
;
1004 new_bb->count = profile_count::zero ();
1005 if (dump_file)
1006 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
1007
1008 for (ei = ei_start (pro->preds)ei_start_1 (&(pro->preds)); (e = ei_safe_edge (ei)); )
1009 {
1010 if (bitmap_bit_p (bb_with, e->src->index)
1011 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
1012 {
1013 ei_next (&ei);
1014 continue;
1015 }
1016
1017 new_bb->count += e->count ();
1018
1019 redirect_edge_and_branch_force (e, new_bb);
1020 if (dump_file)
1021 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1022 }
1023
1024 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1025 force_nonfallthru (*entry_edge);
1026
1027 free_dominance_info (CDI_DOMINATORS);
1028}
1029
1030/* Separate shrink-wrapping
1031
1032 Instead of putting all of the prologue and epilogue in one spot, we
1033 can put parts of it in places where those components are executed less
1034 frequently. The following code does this, for prologue and epilogue
1035 components that can be put in more than one location, and where those
1036 components can be executed more than once (the epilogue component will
1037 always be executed before the prologue component is executed a second
1038 time).
1039
1040 What exactly is a component is target-dependent. The more usual
1041 components are simple saves/restores to/from the frame of callee-saved
1042 registers. This code treats components abstractly (as an sbitmap),
1043 letting the target handle all details.
1044
1045 Prologue components are placed in such a way that for every component
1046 the prologue is executed as infrequently as possible. We do this by
1047 walking the dominator tree, comparing the cost of placing a prologue
1048 component before a block to the sum of costs determined for all subtrees
1049 of that block.
1050
1051 From this placement, we then determine for each component all blocks
1052 where at least one of this block's dominators (including itself) will
1053 get a prologue inserted. That then is how the components are placed.
1054 We could place the epilogue components a bit smarter (we can save a
1055 bit of code size sometimes); this is a possible future improvement.
1056
1057 Prologues and epilogues are preferably placed into a block, either at
1058 the beginning or end of it, if it is needed for all predecessor resp.
1059 successor edges; or placed on the edge otherwise.
1060
1061 If the placement of any prologue/epilogue leads to a situation we cannot
1062 handle (for example, an abnormal edge would need to be split, or some
1063 targets want to use some specific registers that may not be available
1064 where we want to put them), separate shrink-wrapping for the components
1065 in that prologue/epilogue is aborted. */
1066
1067
1068/* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1069 label LABEL. */
1070static void
1071dump_components (const char *label, sbitmap components)
1072{
1073 if (bitmap_empty_p (components))
1074 return;
1075
1076 fprintf (dump_file, " [%s", label);
1077
1078 for (unsigned int j = 0; j < components->n_bits; j++)
1079 if (bitmap_bit_p (components, j))
1080 fprintf (dump_file, " %u", j);
1081
1082 fprintf (dump_file, "]");
1083}
1084
1085/* The data we collect for each bb. */
1086struct sw {
1087 /* What components does this BB need? */
1088 sbitmap needs_components;
1089
1090 /* What components does this BB have? This is the main decision this
1091 pass makes. */
1092 sbitmap has_components;
1093
1094 /* The components for which we placed code at the start of the BB (instead
1095 of on all incoming edges). */
1096 sbitmap head_components;
1097
1098 /* The components for which we placed code at the end of the BB (instead
1099 of on all outgoing edges). */
1100 sbitmap tail_components;
1101
1102 /* The frequency of executing the prologue for this BB, if a prologue is
1103 placed on this BB. This is a pessimistic estimate (no prologue is
1104 needed for edges from blocks that have the component under consideration
1105 active already). */
1106 gcov_type own_cost;
1107
1108 /* The frequency of executing the prologue for this BB and all BBs
1109 dominated by it. */
1110 gcov_type total_cost;
1111};
1112
1113/* A helper function for accessing the pass-specific info. */
1114static inline struct sw *
1115SW (basic_block bb)
1116{
1117 gcc_assert (bb->aux)((void)(!(bb->aux) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1117, __FUNCTION__), 0 : 0))
;
1118 return (struct sw *) bb->aux;
1119}
1120
1121/* Create the pass-specific data structures for separately shrink-wrapping
1122 with components COMPONENTS. */
1123static void
1124init_separate_shrink_wrap (sbitmap components)
1125{
1126 basic_block bb;
1127 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1128 {
1129 bb->aux = xcalloc (1, sizeof (struct sw));
1130
1131 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1132
1133 /* Mark all basic blocks without successor as needing all components.
1134 This avoids problems in at least cfgcleanup, sel-sched, and
1135 regrename (largely to do with all paths to such a block still
1136 needing the same dwarf CFI info). */
1137 if (EDGE_COUNT (bb->succs)vec_safe_length (bb->succs) == 0)
1138 bitmap_copy (SW (bb)->needs_components, components);
1139
1140 if (dump_file)
1141 {
1142 fprintf (dump_file, "bb %d components:", bb->index);
1143 dump_components ("has", SW (bb)->needs_components);
1144 fprintf (dump_file, "\n");
1145 }
1146
1147 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components)((components)->n_bits));
1148 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components)((components)->n_bits));
1149 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components)((components)->n_bits));
1150 bitmap_clear (SW (bb)->has_components);
1151 }
1152}
1153
1154/* Destroy the pass-specific data. */
1155static void
1156fini_separate_shrink_wrap (void)
1157{
1158 basic_block bb;
1159 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1160 if (bb->aux)
1161 {
1162 sbitmap_free (SW (bb)->needs_components);
1163 sbitmap_free (SW (bb)->has_components);
1164 sbitmap_free (SW (bb)->head_components);
1165 sbitmap_free (SW (bb)->tail_components);
1166 free (bb->aux);
1167 bb->aux = 0;
1168 }
1169}
1170
1171/* Place the prologue for component WHICH, in the basic blocks dominated
1172 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1173 HAS_COMPONENTS of a block if either the block has that bit set in
1174 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1175 dominator subtrees separately. */
1176static void
1177place_prologue_for_one_component (unsigned int which, basic_block head)
1178{
1179 /* The block we are currently dealing with. */
1180 basic_block bb = head;
1181 /* Is this the first time we visit this block, i.e. have we just gone
1182 down the tree. */
1183 bool first_visit = true;
1184
1185 /* Walk the dominator tree, visit one block per iteration of this loop.
1186 Each basic block is visited twice: once before visiting any children
1187 of the block, and once after visiting all of them (leaf nodes are
1188 visited only once). As an optimization, we do not visit subtrees
1189 that can no longer influence the prologue placement. */
1190 for (;;)
1191 {
1192 /* First visit of a block: set the (children) cost accumulator to zero;
1193 if the block does not have the component itself, walk down. */
1194 if (first_visit)
1195 {
1196 /* Initialize the cost. The cost is the block execution frequency
1197 that does not come from backedges. Calculating this by simply
1198 adding the cost of all edges that aren't backedges does not
1199 work: this does not always add up to the block frequency at
1200 all, and even if it does, rounding error makes for bad
1201 decisions. */
1202 SW (bb)->own_cost = bb->count.to_frequency (cfun(cfun + 0));
1203
1204 edge e;
1205 edge_iterator ei;
1206 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1207 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1208 {
1209 if (SW (bb)->own_cost > EDGE_FREQUENCY (e)e->count ().to_frequency ((cfun + 0)))
1210 SW (bb)->own_cost -= EDGE_FREQUENCY (e)e->count ().to_frequency ((cfun + 0));
1211 else
1212 SW (bb)->own_cost = 0;
1213 }
1214
1215 SW (bb)->total_cost = 0;
1216
1217 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1218 && first_dom_son (CDI_DOMINATORS, bb))
1219 {
1220 bb = first_dom_son (CDI_DOMINATORS, bb);
1221 continue;
1222 }
1223 }
1224
1225 /* If this block does need the component itself, or it is cheaper to
1226 put the prologue here than in all the descendants that need it,
1227 mark it so. If this block's immediate post-dominator is dominated
1228 by this block, and that needs the prologue, we can put it on this
1229 block as well (earlier is better). */
1230 if (bitmap_bit_p (SW (bb)->needs_components, which)
1231 || SW (bb)->total_cost > SW (bb)->own_cost)
1232 {
1233 SW (bb)->total_cost = SW (bb)->own_cost;
1234 bitmap_set_bit (SW (bb)->has_components, which);
1235 }
1236 else
1237 {
1238 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1239 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1240 && bitmap_bit_p (SW (kid)->has_components, which))
1241 {
1242 SW (bb)->total_cost = SW (bb)->own_cost;
1243 bitmap_set_bit (SW (bb)->has_components, which);
1244 }
1245 }
1246
1247 /* We are back where we started, so we are done now. */
1248 if (bb == head)
1249 return;
1250
1251 /* We now know the cost of the subtree rooted at the current block.
1252 Accumulate this cost in the parent. */
1253 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1254 SW (parent)->total_cost += SW (bb)->total_cost;
1255
1256 /* Don't walk the tree down unless necessary. */
1257 if (next_dom_son (CDI_DOMINATORS, bb)
1258 && SW (parent)->total_cost <= SW (parent)->own_cost)
1259 {
1260 bb = next_dom_son (CDI_DOMINATORS, bb);
1261 first_visit = true;
1262 }
1263 else
1264 {
1265 bb = parent;
1266 first_visit = false;
1267 }
1268 }
1269}
1270
1271/* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1272 setting it on any path from entry to exit where it was not already set
1273 somewhere (or, for blocks that have no path to the exit, consider only
1274 paths from the entry to the block itself). Return whether any changes
1275 were made to some HAS_COMPONENTS. */
1276static bool
1277spread_components (sbitmap components)
1278{
1279 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr);
1280 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr);
1281
1282 /* A stack of all blocks left to consider, and a bitmap of all blocks
1283 on that stack. */
1284 vec<basic_block> todo;
1285 todo.create (n_basic_blocks_for_fn (cfun)(((cfun + 0))->cfg->x_n_basic_blocks));
1286 auto_bitmap seen;
1287
1288 auto_sbitmap old (SBITMAP_SIZE (components)((components)->n_bits));
1289
1290 /* Find for every block the components that are *not* needed on some path
1291 from the entry to that block. Do this with a flood fill from the entry
1292 block. Every block can be visited at most as often as the number of
1293 components (plus one), and usually much less often. */
1294
1295 if (dump_file)
1296 fprintf (dump_file, "Spreading down...\n");
1297
1298 basic_block bb;
1299 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1300 bitmap_clear (SW (bb)->head_components);
1301
1302 bitmap_copy (SW (entry_block)->head_components, components);
1303
1304 edge e;
1305 edge_iterator ei;
1306
1307 todo.quick_push (single_succ (entry_block));
1308 bitmap_set_bit (seen, single_succ (entry_block)->index);
1309 while (!todo.is_empty ())
1310 {
1311 bb = todo.pop ();
1312
1313 bitmap_copy (old, SW (bb)->head_components);
1314
1315 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1316 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1317 SW (e->src)->head_components);
1318
1319 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1320 SW (bb)->has_components);
1321
1322 if (!bitmap_equal_p (old, SW (bb)->head_components))
1323 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1324 if (bitmap_set_bit (seen, e->dest->index))
1325 todo.quick_push (e->dest);
1326
1327 bitmap_clear_bit (seen, bb->index);
1328 }
1329
1330 /* Find for every block the components that are *not* needed on some reverse
1331 path from the exit to that block. */
1332
1333 if (dump_file)
1334 fprintf (dump_file, "Spreading up...\n");
1335
1336 /* First, mark all blocks not reachable from the exit block as not needing
1337 any component on any path to the exit. Mark everything, and then clear
1338 again by a flood fill. */
1339
1340 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1341 bitmap_copy (SW (bb)->tail_components, components);
1342
1343 FOR_EACH_EDGE (e, ei, exit_block->preds)for ((ei) = ei_start_1 (&((exit_block->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
1344 {
1345 todo.quick_push (e->src);
1346 bitmap_set_bit (seen, e->src->index);
1347 }
1348
1349 while (!todo.is_empty ())
1350 {
1351 bb = todo.pop ();
1352
1353 if (!bitmap_empty_p (SW (bb)->tail_components))
1354 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1355 if (bitmap_set_bit (seen, e->src->index))
1356 todo.quick_push (e->src);
1357
1358 bitmap_clear (SW (bb)->tail_components);
1359
1360 bitmap_clear_bit (seen, bb->index);
1361 }
1362
1363 /* And then, flood fill backwards to find for every block the components
1364 not needed on some path to the exit. */
1365
1366 bitmap_copy (SW (exit_block)->tail_components, components);
1367
1368 FOR_EACH_EDGE (e, ei, exit_block->preds)for ((ei) = ei_start_1 (&((exit_block->preds))); ei_cond
((ei), &(e)); ei_next (&(ei)))
1369 {
1370 todo.quick_push (e->src);
1371 bitmap_set_bit (seen, e->src->index);
1372 }
1373
1374 while (!todo.is_empty ())
1375 {
1376 bb = todo.pop ();
1377
1378 bitmap_copy (old, SW (bb)->tail_components);
1379
1380 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1381 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1382 SW (e->dest)->tail_components);
1383
1384 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1385 SW (bb)->has_components);
1386
1387 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1388 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1389 if (bitmap_set_bit (seen, e->src->index))
1390 todo.quick_push (e->src);
1391
1392 bitmap_clear_bit (seen, bb->index);
1393 }
1394
1395 todo.release ();
1396
1397 /* Finally, mark everything not needed both forwards and backwards. */
1398
1399 bool did_changes = false;
1400
1401 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1402 {
1403 bitmap_copy (old, SW (bb)->has_components);
1404
1405 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1406 SW (bb)->tail_components);
1407 bitmap_and_compl (SW (bb)->has_components, components,
1408 SW (bb)->head_components);
1409
1410 if (!did_changes && !bitmap_equal_p (old, SW (bb)->has_components))
1411 did_changes = true;
1412 }
1413
1414 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1415 {
1416 if (dump_file)
1417 {
1418 fprintf (dump_file, "bb %d components:", bb->index);
1419 dump_components ("has", SW (bb)->has_components);
1420 fprintf (dump_file, "\n");
1421 }
1422 }
1423
1424 return did_changes;
1425}
1426
1427/* If we cannot handle placing some component's prologues or epilogues where
1428 we decided we should place them, unmark that component in COMPONENTS so
1429 that it is not wrapped separately. */
1430static void
1431disqualify_problematic_components (sbitmap components)
1432{
1433 auto_sbitmap pro (SBITMAP_SIZE (components)((components)->n_bits));
1434 auto_sbitmap epi (SBITMAP_SIZE (components)((components)->n_bits));
1435
1436 basic_block bb;
1437 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1438 {
1439 edge e;
1440 edge_iterator ei;
1441 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1442 {
1443 /* Find which components we want pro/epilogues for here. */
1444 bitmap_and_compl (epi, SW (e->src)->has_components,
1445 SW (e->dest)->has_components);
1446 bitmap_and_compl (pro, SW (e->dest)->has_components,
1447 SW (e->src)->has_components);
1448
1449 /* Ask the target what it thinks about things. */
1450 if (!bitmap_empty_p (epi))
1451 targetm.shrink_wrap.disqualify_components (components, e, epi,
1452 false);
1453 if (!bitmap_empty_p (pro))
1454 targetm.shrink_wrap.disqualify_components (components, e, pro,
1455 true);
1456
1457 /* If this edge doesn't need splitting, we're fine. */
1458 if (single_pred_p (e->dest)
1459 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
1460 continue;
1461
1462 /* If the edge can be split, that is fine too. */
1463 if ((e->flags & EDGE_ABNORMAL) == 0)
1464 continue;
1465
1466 /* We also can handle sibcalls. */
1467 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
1468 {
1469 gcc_assert (e->flags & EDGE_SIBCALL)((void)(!(e->flags & EDGE_SIBCALL) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1469, __FUNCTION__), 0 : 0))
;
1470 continue;
1471 }
1472
1473 /* Remove from consideration those components we would need
1474 pro/epilogues for on edges where we cannot insert them. */
1475 bitmap_and_compl (components, components, epi);
1476 bitmap_and_compl (components, components, pro);
1477
1478 if (dump_file && !bitmap_subset_p (epi, components))
1479 {
1480 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1481 e->dest->index);
1482 if (e->flags & EDGE_EH)
1483 fprintf (dump_file, " for EH");
1484 dump_components ("epi", epi);
1485 fprintf (dump_file, "\n");
1486 }
1487
1488 if (dump_file && !bitmap_subset_p (pro, components))
1489 {
1490 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1491 e->dest->index);
1492 if (e->flags & EDGE_EH)
1493 fprintf (dump_file, " for EH");
1494 dump_components ("pro", pro);
1495 fprintf (dump_file, "\n");
1496 }
1497 }
1498 }
1499}
1500
1501/* Place code for prologues and epilogues for COMPONENTS where we can put
1502 that code at the start of basic blocks. */
1503static void
1504emit_common_heads_for_components (sbitmap components)
1505{
1506 auto_sbitmap pro (SBITMAP_SIZE (components)((components)->n_bits));
1507 auto_sbitmap epi (SBITMAP_SIZE (components)((components)->n_bits));
1508 auto_sbitmap tmp (SBITMAP_SIZE (components)((components)->n_bits));
1509
1510 basic_block bb;
1511 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1512 bitmap_clear (SW (bb)->head_components);
1513
1514 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1515 {
1516 /* Find which prologue resp. epilogue components are needed for all
1517 predecessor edges to this block. */
1518
1519 /* First, select all possible components. */
1520 bitmap_copy (epi, components);
1521 bitmap_copy (pro, components);
1522
1523 edge e;
1524 edge_iterator ei;
1525 FOR_EACH_EDGE (e, ei, bb->preds)for ((ei) = ei_start_1 (&((bb->preds))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1526 {
1527 if (e->flags & EDGE_ABNORMAL)
1528 {
1529 bitmap_clear (epi);
1530 bitmap_clear (pro);
1531 break;
1532 }
1533
1534 /* Deselect those epilogue components that should not be inserted
1535 for this edge. */
1536 bitmap_and_compl (tmp, SW (e->src)->has_components,
1537 SW (e->dest)->has_components);
1538 bitmap_and (epi, epi, tmp);
1539
1540 /* Similar, for the prologue. */
1541 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1542 SW (e->src)->has_components);
1543 bitmap_and (pro, pro, tmp);
1544 }
1545
1546 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1547 fprintf (dump_file, " bb %d", bb->index);
1548
1549 if (dump_file && !bitmap_empty_p (epi))
1550 dump_components ("epi", epi);
1551 if (dump_file && !bitmap_empty_p (pro))
1552 dump_components ("pro", pro);
1553
1554 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1555 fprintf (dump_file, "\n");
1556
1557 /* Place code after the BB note. */
1558 if (!bitmap_empty_p (pro))
1559 {
1560 start_sequence ();
1561 targetm.shrink_wrap.emit_prologue_components (pro);
1562 rtx_insn *seq = get_insns ();
1563 end_sequence ();
1564 record_prologue_seq (seq);
1565
1566 emit_insn_after (seq, bb_note (bb));
1567
1568 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1569 }
1570
1571 if (!bitmap_empty_p (epi))
1572 {
1573 start_sequence ();
1574 targetm.shrink_wrap.emit_epilogue_components (epi);
1575 rtx_insn *seq = get_insns ();
1576 end_sequence ();
1577 record_epilogue_seq (seq);
1578
1579 emit_insn_after (seq, bb_note (bb));
1580
1581 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1582 }
1583 }
1584}
1585
1586/* Place code for prologues and epilogues for COMPONENTS where we can put
1587 that code at the end of basic blocks. */
1588static void
1589emit_common_tails_for_components (sbitmap components)
1590{
1591 auto_sbitmap pro (SBITMAP_SIZE (components)((components)->n_bits));
1592 auto_sbitmap epi (SBITMAP_SIZE (components)((components)->n_bits));
1593 auto_sbitmap tmp (SBITMAP_SIZE (components)((components)->n_bits));
1594
1595 basic_block bb;
1596 FOR_ALL_BB_FN (bb, cfun)for (bb = (((cfun + 0))->cfg->x_entry_block_ptr); bb; bb
= bb->next_bb)
1597 bitmap_clear (SW (bb)->tail_components);
1598
1599 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1600 {
1601 /* Find which prologue resp. epilogue components are needed for all
1602 successor edges from this block. */
1603 if (EDGE_COUNT (bb->succs)vec_safe_length (bb->succs) == 0)
1604 continue;
1605
1606 /* First, select all possible components. */
1607 bitmap_copy (epi, components);
1608 bitmap_copy (pro, components);
1609
1610 edge e;
1611 edge_iterator ei;
1612 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1613 {
1614 if (e->flags & EDGE_ABNORMAL)
1615 {
1616 bitmap_clear (epi);
1617 bitmap_clear (pro);
1618 break;
1619 }
1620
1621 /* Deselect those epilogue components that should not be inserted
1622 for this edge, and also those that are already put at the head
1623 of the successor block. */
1624 bitmap_and_compl (tmp, SW (e->src)->has_components,
1625 SW (e->dest)->has_components);
1626 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1627 bitmap_and (epi, epi, tmp);
1628
1629 /* Similarly, for the prologue. */
1630 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1631 SW (e->src)->has_components);
1632 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1633 bitmap_and (pro, pro, tmp);
1634 }
1635
1636 /* If the last insn of this block is a control flow insn we cannot
1637 put anything after it. We can put our code before it instead,
1638 but only if that jump insn is a simple jump. */
1639 rtx_insn *last_insn = BB_END (bb)(bb)->il.x.rtl->end_;
1640 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1641 {
1642 bitmap_clear (epi);
1643 bitmap_clear (pro);
1644 }
1645
1646 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1647 fprintf (dump_file, " bb %d", bb->index);
1648
1649 if (dump_file && !bitmap_empty_p (epi))
1650 dump_components ("epi", epi);
1651 if (dump_file && !bitmap_empty_p (pro))
1652 dump_components ("pro", pro);
1653
1654 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1655 fprintf (dump_file, "\n");
1656
1657 /* Put the code at the end of the BB, but before any final jump. */
1658 if (!bitmap_empty_p (epi))
1659 {
1660 start_sequence ();
1661 targetm.shrink_wrap.emit_epilogue_components (epi);
1662 rtx_insn *seq = get_insns ();
1663 end_sequence ();
1664 record_epilogue_seq (seq);
1665
1666 if (control_flow_insn_p (last_insn))
1667 emit_insn_before (seq, last_insn);
1668 else
1669 emit_insn_after (seq, last_insn);
1670
1671 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1672 }
1673
1674 if (!bitmap_empty_p (pro))
1675 {
1676 start_sequence ();
1677 targetm.shrink_wrap.emit_prologue_components (pro);
1678 rtx_insn *seq = get_insns ();
1679 end_sequence ();
1680 record_prologue_seq (seq);
1681
1682 if (control_flow_insn_p (last_insn))
1683 emit_insn_before (seq, last_insn);
1684 else
1685 emit_insn_after (seq, last_insn);
1686
1687 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1688 }
1689 }
1690}
1691
1692/* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1693 placed them inside blocks directly. */
1694static void
1695insert_prologue_epilogue_for_components (sbitmap components)
1696{
1697 auto_sbitmap pro (SBITMAP_SIZE (components)((components)->n_bits));
1698 auto_sbitmap epi (SBITMAP_SIZE (components)((components)->n_bits));
1699
1700 basic_block bb;
1701 FOR_EACH_BB_FN (bb, cfun)for (bb = ((cfun + 0))->cfg->x_entry_block_ptr->next_bb
; bb != ((cfun + 0))->cfg->x_exit_block_ptr; bb = bb->
next_bb)
1702 {
1703 if (!bb->aux)
1704 continue;
1705
1706 edge e;
1707 edge_iterator ei;
1708 FOR_EACH_EDGE (e, ei, bb->succs)for ((ei) = ei_start_1 (&((bb->succs))); ei_cond ((ei)
, &(e)); ei_next (&(ei)))
1709 {
1710 /* Find which pro/epilogue components are needed on this edge. */
1711 bitmap_and_compl (epi, SW (e->src)->has_components,
1712 SW (e->dest)->has_components);
1713 bitmap_and_compl (pro, SW (e->dest)->has_components,
1714 SW (e->src)->has_components);
1715 bitmap_and (epi, epi, components);
1716 bitmap_and (pro, pro, components);
1717
1718 /* Deselect those we already have put at the head or tail of the
1719 edge's dest resp. src. */
1720 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1721 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1722 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1723 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1724
1725 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1726 {
1727 if (dump_file)
1728 {
1729 fprintf (dump_file, " %d->%d", e->src->index,
1730 e->dest->index);
1731 dump_components ("epi", epi);
1732 dump_components ("pro", pro);
1733 if (e->flags & EDGE_SIBCALL)
1734 fprintf (dump_file, " (SIBCALL)");
1735 else if (e->flags & EDGE_ABNORMAL)
1736 fprintf (dump_file, " (ABNORMAL)");
1737 fprintf (dump_file, "\n");
1738 }
1739
1740 /* Put the epilogue components in place. */
1741 start_sequence ();
1742 targetm.shrink_wrap.emit_epilogue_components (epi);
1743 rtx_insn *seq = get_insns ();
1744 end_sequence ();
1745 record_epilogue_seq (seq);
1746
1747 if (e->flags & EDGE_SIBCALL)
1748 {
1749 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))((void)(!(e->dest == (((cfun + 0))->cfg->x_exit_block_ptr
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1749, __FUNCTION__), 0 : 0))
;
1750
1751 rtx_insn *insn = BB_END (e->src)(e->src)->il.x.rtl->end_;
1752 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn))((void)(!((((enum rtx_code) (insn)->code) == CALL_INSN) &&
(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if
(((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag
("SIBLING_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1752, __FUNCTION__); _rtx; })->jump)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1752, __FUNCTION__), 0 : 0))
;
1753 emit_insn_before (seq, insn);
1754 }
1755 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_exit_block_ptr))
1756 {
1757 gcc_assert (e->flags & EDGE_FALLTHRU)((void)(!(e->flags & EDGE_FALLTHRU) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/shrink-wrap.cc"
, 1757, __FUNCTION__), 0 : 0))
;
1758 basic_block new_bb = split_edge (e);
1759 emit_insn_after (seq, BB_END (new_bb)(new_bb)->il.x.rtl->end_);
1760 }
1761 else
1762 insert_insn_on_edge (seq, e);
1763
1764 /* Put the prologue components in place. */
1765 start_sequence ();
1766 targetm.shrink_wrap.emit_prologue_components (pro);
1767 seq = get_insns ();
1768 end_sequence ();
1769 record_prologue_seq (seq);
1770
1771 insert_insn_on_edge (seq, e);
1772 }
1773 }
1774 }
1775
1776 commit_edge_insertions ();
1777}
1778
1779/* The main entry point to this subpass. FIRST_BB is where the prologue
1780 would be normally put. */
1781void
1782try_shrink_wrapping_separate (basic_block first_bb)
1783{
1784 if (!(SHRINK_WRAPPING_ENABLED(global_options.x_flag_shrink_wrap && targetm.have_simple_return
())
1785 && flag_shrink_wrap_separateglobal_options.x_flag_shrink_wrap_separate
1786 && optimize_function_for_speed_p (cfun(cfun + 0))
1787 && targetm.shrink_wrap.get_separate_components))
1788 return;
1789
1790 /* We don't handle "strange" functions. */
1791 if (cfun(cfun + 0)->calls_alloca
1792 || cfun(cfun + 0)->calls_setjmp
1793 || cfun(cfun + 0)->can_throw_non_call_exceptions
1794 || crtl(&x_rtl)->calls_eh_return
1795 || crtl(&x_rtl)->has_nonlocal_goto
1796 || crtl(&x_rtl)->saves_all_registers)
1797 return;
1798
1799 /* Ask the target what components there are. If it returns NULL, don't
1800 do anything. */
1801 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1802 if (!components)
1803 return;
1804
1805 /* We need LIVE info, not defining anything in the entry block and not
1806 using anything in the exit block. A block then needs a component if
1807 the register for that component is in the IN or GEN or KILL set for
1808 that block. */
1809 df_scan(df->problems_by_index[DF_SCAN])->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1810 df_update_entry_exit_and_calls ();
1811 df_live_add_problem ();
1812 df_live_set_all_dirty ();
1813 df_analyze ();
1814
1815 calculate_dominance_info (CDI_DOMINATORS);
1816 calculate_dominance_info (CDI_POST_DOMINATORS);
1817
1818 init_separate_shrink_wrap (components);
1819
1820 sbitmap_iterator sbi;
1821 unsigned int j;
1822 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)for (bmp_iter_set_init (&(sbi), (components), (0), &(
j)); bmp_iter_set (&(sbi), &(j)); bmp_iter_next (&
(sbi), &(j)))
1823 place_prologue_for_one_component (j, first_bb);
1824
1825 /* Try to minimize the number of saves and restores. Do this as long as
1826 it changes anything. This does not iterate more than a few times. */
1827 int spread_times = 0;
1828 while (spread_components (components))
1829 {
1830 spread_times++;
1831
1832 if (dump_file)
1833 fprintf (dump_file, "Now spread %d times.\n", spread_times);
1834 }
1835
1836 disqualify_problematic_components (components);
1837
1838 /* Don't separately shrink-wrap anything where the "main" prologue will
1839 go; the target code can often optimize things if it is presented with
1840 all components together (say, if it generates store-multiple insns). */
1841 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1842
1843 if (bitmap_empty_p (components))
1844 {
1845 if (dump_file)
1846 fprintf (dump_file, "Not wrapping anything separately.\n");
1847 }
1848 else
1849 {
1850 if (dump_file)
1851 {
1852 fprintf (dump_file, "The components we wrap separately are");
1853 dump_components ("sep", components);
1854 fprintf (dump_file, "\n");
1855
1856 fprintf (dump_file, "... Inserting common heads...\n");
1857 }
1858
1859 emit_common_heads_for_components (components);
1860
1861 if (dump_file)
1862 fprintf (dump_file, "... Inserting common tails...\n");
1863
1864 emit_common_tails_for_components (components);
1865
1866 if (dump_file)
1867 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1868
1869 insert_prologue_epilogue_for_components (components);
1870
1871 if (dump_file)
1872 fprintf (dump_file, "... Done.\n");
1873
1874 targetm.shrink_wrap.set_handled_components (components);
1875
1876 crtl(&x_rtl)->shrink_wrapped_separate = true;
1877 }
1878
1879 fini_separate_shrink_wrap ();
1880
1881 sbitmap_free (components);
1882 free_dominance_info (CDI_DOMINATORS);
1883 free_dominance_info (CDI_POST_DOMINATORS);
1884
1885 /* All done. */
1886 df_scan(df->problems_by_index[DF_SCAN])->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1887 df_update_entry_exit_and_calls ();
1888 df_live_set_all_dirty ();
1889 df_analyze ();
1890}

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/hard-reg-set.h

1/* Sets (bit vectors) of hard registers, and operations on them.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_HARD_REG_SET_H
21#define GCC_HARD_REG_SET_H
22
23#include "array-traits.h"
24
25/* Define the type of a set of hard registers. */
26
27/* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
28 will be used for hard reg sets, either alone or in an array.
29
30 If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
31 and it has enough bits to represent all the target machine's hard
32 registers. Otherwise, it is a typedef for a suitably sized array
33 of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many.
34
35 Note that lots of code assumes that the first part of a regset is
36 the same format as a HARD_REG_SET. To help make sure this is true,
37 we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
38 instead of all the smaller types. This approach loses only if
39 there are very few registers and then only in the few cases where
40 we have an array of HARD_REG_SETs, so it needn't be as complex as
41 it used to be. */
42
43typedef unsigned HOST_WIDEST_FAST_INTlong HARD_REG_ELT_TYPE;
44
45#if FIRST_PSEUDO_REGISTER76 <= HOST_BITS_PER_WIDEST_FAST_INT(8 * 8)
46
47typedef HARD_REG_ELT_TYPE HARD_REG_SET;
48typedef const HARD_REG_SET const_hard_reg_set;
49
50#else
51
52#define HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8)) \
53 ((FIRST_PSEUDO_REGISTER76 + HOST_BITS_PER_WIDEST_FAST_INT(8 * 8) - 1) \
54 / HOST_BITS_PER_WIDEST_FAST_INT(8 * 8))
55
56struct HARD_REG_SET
57{
58 HARD_REG_SET
59 operator~ () const
60 {
61 HARD_REG_SET res;
62 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
63 res.elts[i] = ~elts[i];
64 return res;
65 }
66
67 HARD_REG_SET
68 operator& (const HARD_REG_SET &other) const
69 {
70 HARD_REG_SET res;
71 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
72 res.elts[i] = elts[i] & other.elts[i];
73 return res;
74 }
75
76 HARD_REG_SET &
77 operator&= (const HARD_REG_SET &other)
78 {
79 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
80 elts[i] &= other.elts[i];
81 return *this;
82 }
83
84 HARD_REG_SET
85 operator| (const HARD_REG_SET &other) const
86 {
87 HARD_REG_SET res;
88 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
89 res.elts[i] = elts[i] | other.elts[i];
90 return res;
91 }
92
93 HARD_REG_SET &
94 operator|= (const HARD_REG_SET &other)
95 {
96 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
97 elts[i] |= other.elts[i];
98 return *this;
99 }
100
101 bool
102 operator== (const HARD_REG_SET &other) const
103 {
104 HARD_REG_ELT_TYPE bad = 0;
105 for (unsigned int i = 0; i < ARRAY_SIZE (elts)(sizeof (elts) / sizeof ((elts)[0])); ++i)
106 bad |= (elts[i] ^ other.elts[i]);
107 return bad == 0;
108 }
109
110 bool
111 operator!= (const HARD_REG_SET &other) const
112 {
113 return !operator== (other);
114 }
115
116 HARD_REG_ELT_TYPE elts[HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8))];
117};
118typedef const HARD_REG_SET &const_hard_reg_set;
119
120template<>
121struct array_traits<HARD_REG_SET>
122{
123 typedef HARD_REG_ELT_TYPE element_type;
124 static const bool has_constant_size = true;
125 static const size_t constant_size = HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8));
126 static const element_type *base (const HARD_REG_SET &x) { return x.elts; }
127 static size_t size (const HARD_REG_SET &) { return HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8)); }
128};
129
130#endif
131
132/* HARD_REG_SET wrapped into a structure, to make it possible to
133 use HARD_REG_SET even in APIs that should not include
134 hard-reg-set.h. */
135struct hard_reg_set_container
136{
137 HARD_REG_SET set;
138};
139
140/* HARD_CONST is used to cast a constant to the appropriate type
141 for use with a HARD_REG_SET. */
142
143#define HARD_CONST(X)((HARD_REG_ELT_TYPE) (X)) ((HARD_REG_ELT_TYPE) (X))
144
145/* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
146 to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
147 All three take two arguments: the set and the register number.
148
149 In the case where sets are arrays of longs, the first argument
150 is actually a pointer to a long.
151
152 Define two macros for initializing a set:
153 CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
154 These take just one argument.
155
156 Also define:
157
158 hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
159 hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
160 hard_reg_set_empty_p (X), which returns true if X is empty. */
161
162#define UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8)) ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT(8 * 8))
163
164#if FIRST_PSEUDO_REGISTER76 <= HOST_BITS_PER_WIDEST_FAST_INT(8 * 8)
165
166#define SET_HARD_REG_BIT(SET, BIT) \
167 ((SET) |= HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (BIT))
168#define CLEAR_HARD_REG_BIT(SET, BIT) \
169 ((SET) &= ~(HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (BIT)))
170#define TEST_HARD_REG_BIT(SET, BIT) \
171 (!!((SET) & (HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (BIT))))
172
173#define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0)((HARD_REG_ELT_TYPE) (0)))
174#define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0)((HARD_REG_ELT_TYPE) (0)))
175
176inline bool
177hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
178{
179 return (x & ~y) == HARD_CONST (0)((HARD_REG_ELT_TYPE) (0));
180}
181
182inline bool
183hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
184{
185 return (x & y) != HARD_CONST (0)((HARD_REG_ELT_TYPE) (0));
186}
187
188inline bool
189hard_reg_set_empty_p (const_hard_reg_set x)
190{
191 return x == HARD_CONST (0)((HARD_REG_ELT_TYPE) (0));
192}
193
194#else
195
196inline void
197SET_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
198{
199 set.elts[bit / UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8))]
200 |= HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (bit % UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8)));
54
The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage
201}
202
203inline void
204CLEAR_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
205{
206 set.elts[bit / UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8))]
207 &= ~(HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (bit % UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8))));
208}
209
210inline bool
211TEST_HARD_REG_BIT (const_hard_reg_set set, unsigned int bit)
212{
213 return (set.elts[bit / UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8))]
214 & (HARD_CONST (1)((HARD_REG_ELT_TYPE) (1)) << (bit % UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8)))));
215}
216
217inline void
218CLEAR_HARD_REG_SET (HARD_REG_SET &set)
219{
220 for (unsigned int i = 0; i < ARRAY_SIZE (set.elts)(sizeof (set.elts) / sizeof ((set.elts)[0])); ++i)
22
Loop condition is true. Entering loop body
23
Loop condition is true. Entering loop body
24
Loop condition is false. Execution continues on line 220
221 set.elts[i] = 0;
222}
223
224inline void
225SET_HARD_REG_SET (HARD_REG_SET &set)
226{
227 for (unsigned int i = 0; i < ARRAY_SIZE (set.elts)(sizeof (set.elts) / sizeof ((set.elts)[0])); ++i)
228 set.elts[i] = -1;
229}
230
231inline bool
232hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
233{
234 HARD_REG_ELT_TYPE bad = 0;
235 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts)(sizeof (x.elts) / sizeof ((x.elts)[0])); ++i)
236 bad |= (x.elts[i] & ~y.elts[i]);
237 return bad == 0;
238}
239
240inline bool
241hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
242{
243 HARD_REG_ELT_TYPE good = 0;
244 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts)(sizeof (x.elts) / sizeof ((x.elts)[0])); ++i)
245 good |= (x.elts[i] & y.elts[i]);
246 return good != 0;
247}
248
249inline bool
250hard_reg_set_empty_p (const_hard_reg_set x)
251{
252 HARD_REG_ELT_TYPE bad = 0;
253 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts)(sizeof (x.elts) / sizeof ((x.elts)[0])); ++i)
254 bad |= x.elts[i];
255 return bad == 0;
256}
257#endif
258
259/* Iterator for hard register sets. */
260
261struct hard_reg_set_iterator
262{
263 /* Pointer to the current element. */
264 const HARD_REG_ELT_TYPE *pelt;
265
266 /* The length of the set. */
267 unsigned short length;
268
269 /* Word within the current element. */
270 unsigned short word_no;
271
272 /* Contents of the actually processed word. When finding next bit
273 it is shifted right, so that the actual bit is always the least
274 significant bit of ACTUAL. */
275 HARD_REG_ELT_TYPE bits;
276};
277
278#define HARD_REG_ELT_BITS((unsigned) (8 * 8)) UHOST_BITS_PER_WIDE_INT((unsigned) (8 * 8))
279
280/* The implementation of the iterator functions is fully analogous to
281 the bitmap iterators. */
282inline void
283hard_reg_set_iter_init (hard_reg_set_iterator *iter, const_hard_reg_set set,
284 unsigned min, unsigned *regno)
285{
286#ifdef HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8))
287 iter->pelt = set.elts;
288 iter->length = HARD_REG_SET_LONGS((76 + (8 * 8) - 1) / (8 * 8));
289#else
290 iter->pelt = &set;
291 iter->length = 1;
292#endif
293 iter->word_no = min / HARD_REG_ELT_BITS((unsigned) (8 * 8));
294 if (iter->word_no < iter->length)
295 {
296 iter->bits = iter->pelt[iter->word_no];
297 iter->bits >>= min % HARD_REG_ELT_BITS((unsigned) (8 * 8));
298
299 /* This is required for correct search of the next bit. */
300 min += !iter->bits;
301 }
302 *regno = min;
303}
304
305inline bool
306hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
307{
308 while (1)
309 {
310 /* Return false when we're advanced past the end of the set. */
311 if (iter->word_no >= iter->length)
312 return false;
313
314 if (iter->bits)
315 {
316 /* Find the correct bit and return it. */
317 while (!(iter->bits & 1))
318 {
319 iter->bits >>= 1;
320 *regno += 1;
321 }
322 return (*regno < FIRST_PSEUDO_REGISTER76);
323 }
324
325 /* Round to the beginning of the next word. */
326 *regno = (*regno + HARD_REG_ELT_BITS((unsigned) (8 * 8)) - 1);
327 *regno -= *regno % HARD_REG_ELT_BITS((unsigned) (8 * 8));
328
329 /* Find the next non-zero word. */
330 while (++iter->word_no < iter->length)
331 {
332 iter->bits = iter->pelt[iter->word_no];
333 if (iter->bits)
334 break;
335 *regno += HARD_REG_ELT_BITS((unsigned) (8 * 8));
336 }
337 }
338}
339
340inline void
341hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
342{
343 iter->bits >>= 1;
344 *regno += 1;
345}
346
347#define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER)for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &
(REGNUM)); hard_reg_set_iter_set (&(ITER), &(REGNUM))
; hard_reg_set_iter_next (&(ITER), &(REGNUM)))
\
348 for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \
349 hard_reg_set_iter_set (&(ITER), &(REGNUM)); \
350 hard_reg_set_iter_next (&(ITER), &(REGNUM)))
351
352
353/* Define some standard sets of registers. */
354
355/* Indexed by hard register number, contains 1 for registers
356 that are being used for global register decls.
357 These must be exempt from ordinary flow analysis
358 and are also considered fixed. */
359
360extern char global_regs[FIRST_PSEUDO_REGISTER76];
361
362extern HARD_REG_SET global_reg_set;
363
364class simplifiable_subreg;
365class subreg_shape;
366
367struct simplifiable_subregs_hasher : nofree_ptr_hash <simplifiable_subreg>
368{
369 typedef const subreg_shape *compare_type;
370
371 static inline hashval_t hash (const simplifiable_subreg *);
372 static inline bool equal (const simplifiable_subreg *, const subreg_shape *);
373};
374
375struct target_hard_regs {
376 void finalize ();
377
378 /* The set of registers that actually exist on the current target. */
379 HARD_REG_SET x_accessible_reg_set;
380
381 /* The set of registers that should be considered to be register
382 operands. It is a subset of x_accessible_reg_set. */
383 HARD_REG_SET x_operand_reg_set;
384
385 /* Indexed by hard register number, contains 1 for registers
386 that are fixed use (stack pointer, pc, frame pointer, etc.;.
387 These are the registers that cannot be used to allocate
388 a pseudo reg whose life does not cross calls. */
389 char x_fixed_regs[FIRST_PSEUDO_REGISTER76];
390
391 /* The same info as a HARD_REG_SET. */
392 HARD_REG_SET x_fixed_reg_set;
393
394 /* Indexed by hard register number, contains 1 for registers
395 that are fixed use or are clobbered by function calls.
396 These are the registers that cannot be used to allocate
397 a pseudo reg whose life crosses calls. */
398 char x_call_used_regs[FIRST_PSEUDO_REGISTER76];
399
400 /* For targets that use reload rather than LRA, this is the set
401 of registers that we are able to save and restore around calls
402 (i.e. those for which we know a suitable mode and set of
403 load/store instructions exist). For LRA targets it contains
404 all registers.
405
406 This is legacy information and should be removed if all targets
407 switch to LRA. */
408 HARD_REG_SET x_savable_regs;
409
410 /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- but
411 only if they are not merely part of that set because they are global
412 regs. Global regs that are not otherwise fixed can still take part
413 in register allocation. */
414 HARD_REG_SET x_fixed_nonglobal_reg_set;
415
416 /* Contains 1 for registers that are set or clobbered by calls. */
417 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
418 for someone's bright idea to have call_used_regs strictly include
419 fixed_regs. Which leaves us guessing as to the set of fixed_regs
420 that are actually preserved. We know for sure that those associated
421 with the local stack frame are safe, but scant others. */
422 HARD_REG_SET x_regs_invalidated_by_call;
423
424 /* Table of register numbers in the order in which to try to use them. */
425 int x_reg_alloc_order[FIRST_PSEUDO_REGISTER76];
426
427 /* The inverse of reg_alloc_order. */
428 int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER76];
429
430 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
431 HARD_REG_SET x_reg_class_contents[N_REG_CLASSES((int) LIM_REG_CLASSES)];
432
433 /* For each reg class, a boolean saying whether the class contains only
434 fixed registers. */
435 bool x_class_only_fixed_regs[N_REG_CLASSES((int) LIM_REG_CLASSES)];
436
437 /* For each reg class, number of regs it contains. */
438 unsigned int x_reg_class_size[N_REG_CLASSES((int) LIM_REG_CLASSES)];
439
440 /* For each reg class, table listing all the classes contained in it. */
441 enum reg_class x_reg_class_subclasses[N_REG_CLASSES((int) LIM_REG_CLASSES)][N_REG_CLASSES((int) LIM_REG_CLASSES)];
442
443 /* For each pair of reg classes,
444 a largest reg class contained in their union. */
445 enum reg_class x_reg_class_subunion[N_REG_CLASSES((int) LIM_REG_CLASSES)][N_REG_CLASSES((int) LIM_REG_CLASSES)];
446
447 /* For each pair of reg classes,
448 the smallest reg class that contains their union. */
449 enum reg_class x_reg_class_superunion[N_REG_CLASSES((int) LIM_REG_CLASSES)][N_REG_CLASSES((int) LIM_REG_CLASSES)];
450
451 /* Vector indexed by hardware reg giving its name. */
452 const char *x_reg_names[FIRST_PSEUDO_REGISTER76];
453
454 /* Records which registers can form a particular subreg, with the subreg
455 being identified by its outer mode, inner mode and offset. */
456 hash_table <simplifiable_subregs_hasher> *x_simplifiable_subregs;
457};
458
459extern struct target_hard_regs default_target_hard_regs;
460#if SWITCHABLE_TARGET1
461extern struct target_hard_regs *this_target_hard_regs;
462#else
463#define this_target_hard_regs (&default_target_hard_regs)
464#endif
465
466#define accessible_reg_set(this_target_hard_regs->x_accessible_reg_set) \
467 (this_target_hard_regs->x_accessible_reg_set)
468#define operand_reg_set(this_target_hard_regs->x_operand_reg_set) \
469 (this_target_hard_regs->x_operand_reg_set)
470#define fixed_regs(this_target_hard_regs->x_fixed_regs) \
471 (this_target_hard_regs->x_fixed_regs)
472#define fixed_reg_set(this_target_hard_regs->x_fixed_reg_set) \
473 (this_target_hard_regs->x_fixed_reg_set)
474#define fixed_nonglobal_reg_set(this_target_hard_regs->x_fixed_nonglobal_reg_set) \
475 (this_target_hard_regs->x_fixed_nonglobal_reg_set)
476#ifdef IN_TARGET_CODE
477#define call_used_regs \
478 (this_target_hard_regs->x_call_used_regs)
479#endif
480#define savable_regs(this_target_hard_regs->x_savable_regs) \
481 (this_target_hard_regs->x_savable_regs)
482#ifdef IN_TARGET_CODE
483#define regs_invalidated_by_call \
484 (this_target_hard_regs->x_regs_invalidated_by_call)
485#define call_used_or_fixed_regs \
486 (regs_invalidated_by_call | fixed_reg_set(this_target_hard_regs->x_fixed_reg_set))
487#endif
488#define reg_alloc_order(this_target_hard_regs->x_reg_alloc_order) \
489 (this_target_hard_regs->x_reg_alloc_order)
490#define inv_reg_alloc_order(this_target_hard_regs->x_inv_reg_alloc_order) \
491 (this_target_hard_regs->x_inv_reg_alloc_order)
492#define reg_class_contents(this_target_hard_regs->x_reg_class_contents) \
493 (this_target_hard_regs->x_reg_class_contents)
494#define class_only_fixed_regs(this_target_hard_regs->x_class_only_fixed_regs) \
495 (this_target_hard_regs->x_class_only_fixed_regs)
496#define reg_class_size(this_target_hard_regs->x_reg_class_size) \
497 (this_target_hard_regs->x_reg_class_size)
498#define reg_class_subclasses(this_target_hard_regs->x_reg_class_subclasses) \
499 (this_target_hard_regs->x_reg_class_subclasses)
500#define reg_class_subunion(this_target_hard_regs->x_reg_class_subunion) \
501 (this_target_hard_regs->x_reg_class_subunion)
502#define reg_class_superunion(this_target_hard_regs->x_reg_class_superunion) \
503 (this_target_hard_regs->x_reg_class_superunion)
504#define reg_names(this_target_hard_regs->x_reg_names) \
505 (this_target_hard_regs->x_reg_names)
506
507/* Vector indexed by reg class giving its name. */
508
509extern const char * reg_class_names[];
510
511/* Given a hard REGN a FROM mode and a TO mode, return true if
512 REGN can change from mode FROM to mode TO. */
513#define REG_CAN_CHANGE_MODE_P(REGN, FROM, TO)(targetm.can_change_mode_class (FROM, TO, (regclass_map[(REGN
)])))
\
514 (targetm.can_change_mode_class (FROM, TO, REGNO_REG_CLASS (REGN)(regclass_map[(REGN)])))
515
516#ifdef IN_TARGET_CODE
517/* Return true if register REGNO is either fixed or call-used
518 (aka call-clobbered). */
519
520inline bool
521call_used_or_fixed_reg_p (unsigned int regno)
522{
523 return fixed_regs(this_target_hard_regs->x_fixed_regs)[regno] || this_target_hard_regs->x_call_used_regs[regno];
524}
525#endif
526
527#endif /* ! GCC_HARD_REG_SET_H */

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/regs.h

1/* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_REGS_H
21#define GCC_REGS_H
22
23#define REG_BYTES(R)mode_size[(int) ((machine_mode) (R)->mode)] mode_size[(int) GET_MODE (R)((machine_mode) (R)->mode)]
24
25/* When you only have the mode of a pseudo register before it has a hard
26 register chosen for it, this reports the size of each hard register
27 a pseudo in such a mode would get allocated to. A target may
28 override this. */
29
30#ifndef REGMODE_NATURAL_SIZE
31#define REGMODE_NATURAL_SIZE(MODE)ix86_regmode_natural_size (MODE) UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) !=
0) ? 8 : 4)
32#endif
33
34/* Maximum register number used in this function, plus one. */
35
36extern int max_regno;
37
38/* REG_N_REFS and REG_N_SETS are initialized by a call to
39 regstat_init_n_sets_and_refs from the current values of
40 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
41 should only be used if a pass need to change these values in some
42 magical way or the pass needs to have accurate values for these
43 and is not using incremental df scanning.
44
45 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
46 should be made to regstat_free_n_sets_and_refs.
47
48 Local alloc seems to play pretty loose with these values.
49 REG_N_REFS is set to 0 if the register is used in an asm.
50 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
51 REG_N_SETS for three address insns. Other passes seem to have
52 other special values. */
53
54
55
56/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
57
58struct regstat_n_sets_and_refs_t
59{
60 int sets; /* # of times (REG n) is set */
61 int refs; /* # of times (REG n) is used or set */
62};
63
64extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
65
66/* Indexed by n, gives number of times (REG n) is used or set. */
67inline int
68REG_N_REFS (int regno)
69{
70 return regstat_n_sets_and_refs[regno].refs;
71}
72
73/* Indexed by n, gives number of times (REG n) is used or set. */
74#define SET_REG_N_REFS(N,V)(regstat_n_sets_and_refs[N].refs = V) (regstat_n_sets_and_refs[N].refs = V)
75#define INC_REG_N_REFS(N,V)(regstat_n_sets_and_refs[N].refs += V) (regstat_n_sets_and_refs[N].refs += V)
76
77/* Indexed by n, gives number of times (REG n) is set. */
78inline int
79REG_N_SETS (int regno)
80{
81 return regstat_n_sets_and_refs[regno].sets;
82}
83
84/* Indexed by n, gives number of times (REG n) is set. */
85#define SET_REG_N_SETS(N,V)(regstat_n_sets_and_refs[N].sets = V) (regstat_n_sets_and_refs[N].sets = V)
86#define INC_REG_N_SETS(N,V)(regstat_n_sets_and_refs[N].sets += V) (regstat_n_sets_and_refs[N].sets += V)
87
88/* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise. */
89extern bool reg_is_parm_p (rtx);
90
91/* Functions defined in regstat.cc. */
92extern void regstat_init_n_sets_and_refs (void);
93extern void regstat_free_n_sets_and_refs (void);
94extern void regstat_compute_ri (void);
95extern void regstat_free_ri (void);
96extern bitmap regstat_get_setjmp_crosses (void);
97extern void regstat_compute_calls_crossed (void);
98extern void regstat_free_calls_crossed (void);
99extern void dump_reg_info (FILE *);
100
101/* Register information indexed by register number. This structure is
102 initialized by calling regstat_compute_ri and is destroyed by
103 calling regstat_free_ri. */
104struct reg_info_t
105{
106 int freq; /* # estimated frequency (REG n) is used or set */
107 int deaths; /* # of times (REG n) dies */
108 int calls_crossed; /* # of calls (REG n) is live across */
109 int basic_block; /* # of basic blocks (REG n) is used in */
110};
111
112extern struct reg_info_t *reg_info_p;
113
114/* The number allocated elements of reg_info_p. */
115extern size_t reg_info_p_size;
116
117/* Estimate frequency of references to register N. */
118
119#define REG_FREQ(N)(reg_info_p[N].freq) (reg_info_p[N].freq)
120
121/* The weights for each insn varies from 0 to REG_FREQ_BASE.
122 This constant does not need to be high, as in infrequently executed
123 regions we want to count instructions equivalently to optimize for
124 size instead of speed. */
125#define REG_FREQ_MAX1000 1000
126
127/* Compute register frequency from the BB frequency. When optimizing for size,
128 or profile driven feedback is available and the function is never executed,
129 frequency is always equivalent. Otherwise rescale the basic block
130 frequency. */
131#define REG_FREQ_FROM_BB(bb)((optimize_function_for_size_p ((cfun + 0)) || !(cfun + 0)->
cfg->count_max.initialized_p ()) ? 1000 : ((bb)->count.
to_frequency ((cfun + 0)) * 1000 / 10000) ? ((bb)->count.to_frequency
((cfun + 0)) * 1000 / 10000) : 1)
((optimize_function_for_size_p (cfun(cfun + 0)) \
132 || !cfun(cfun + 0)->cfg->count_max.initialized_p ()) \
133 ? REG_FREQ_MAX1000 \
134 : ((bb)->count.to_frequency (cfun(cfun + 0)) \
135 * REG_FREQ_MAX1000 / BB_FREQ_MAX10000) \
136 ? ((bb)->count.to_frequency (cfun(cfun + 0)) \
137 * REG_FREQ_MAX1000 / BB_FREQ_MAX10000) \
138 : 1)
139
140/* Indexed by N, gives number of insns in which register N dies.
141 Note that if register N is live around loops, it can die
142 in transitions between basic blocks, and that is not counted here.
143 So this is only a reliable indicator of how many regions of life there are
144 for registers that are contained in one basic block. */
145
146#define REG_N_DEATHS(N)(reg_info_p[N].deaths) (reg_info_p[N].deaths)
147
148/* Get the number of consecutive words required to hold pseudo-reg N. */
149
150#define PSEUDO_REGNO_SIZE(N)((GET_MODE_SIZE (((machine_mode) (regno_reg_rtx[N])->mode)
) + (((global_options.x_ix86_isa_flags & (1UL << 1)
) != 0) ? 8 : 4) - 1) / (((global_options.x_ix86_isa_flags &
(1UL << 1)) != 0) ? 8 : 4))
\
151 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)((machine_mode) (regno_reg_rtx[N])->mode)) + UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) !=
0) ? 8 : 4)
- 1) \
152 / UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) !=
0) ? 8 : 4)
)
153
154/* Get the number of bytes required to hold pseudo-reg N. */
155
156#define PSEUDO_REGNO_BYTES(N)GET_MODE_SIZE (((machine_mode) (regno_reg_rtx[N])->mode)) \
157 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)((machine_mode) (regno_reg_rtx[N])->mode))
158
159/* Get the machine mode of pseudo-reg N. */
160
161#define PSEUDO_REGNO_MODE(N)((machine_mode) (regno_reg_rtx[N])->mode) GET_MODE (regno_reg_rtx[N])((machine_mode) (regno_reg_rtx[N])->mode)
162
163/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
164
165#define REG_N_CALLS_CROSSED(N)(reg_info_p[N].calls_crossed) (reg_info_p[N].calls_crossed)
166
167/* Indexed by n, gives number of basic block that (REG n) is used in.
168 If the value is REG_BLOCK_GLOBAL (-1),
169 it means (REG n) is used in more than one basic block.
170 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
171 This information remains valid for the rest of the compilation
172 of the current function; it is used to control register allocation. */
173
174#define REG_BLOCK_UNKNOWN0 0
175#define REG_BLOCK_GLOBAL-1 -1
176
177#define REG_BASIC_BLOCK(N)(reg_info_p[N].basic_block) (reg_info_p[N].basic_block)
178
179/* Vector of substitutions of register numbers,
180 used to map pseudo regs into hardware regs.
181
182 This can't be folded into reg_n_info without changing all of the
183 machine dependent directories, since the reload functions
184 in the machine dependent files access it. */
185
186extern short *reg_renumber;
187
188/* Flag set by local-alloc or global-alloc if they decide to allocate
189 something in a call-clobbered register. */
190
191extern int caller_save_needed;
192
193/* Select a register mode required for caller save of hard regno REGNO. */
194#ifndef HARD_REGNO_CALLER_SAVE_MODE
195#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)(((REGNO) == 17) ? ((void) 0, E_VOIDmode) : (MODE) == ((void)
0, E_VOIDmode) && (NREGS) != 1 ? ((void) 0, E_VOIDmode
) : (MODE) == ((void) 0, E_VOIDmode) ? choose_hard_reg_mode (
(REGNO), (NREGS), nullptr) : (MODE) == (scalar_int_mode ((scalar_int_mode
::from_int) E_HImode)) && !((((((unsigned long) ((REGNO
)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned
long) (0))) || ((unsigned long) ((REGNO)) - (unsigned long) (
36) <= (unsigned long) (43) - (unsigned long) (36))) &&
ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]) || ((unsigned
long) ((REGNO)) - (unsigned long) (68) <= (unsigned long)
(75) - (unsigned long) (68))) ? (scalar_int_mode ((scalar_int_mode
::from_int) E_SImode)) : (MODE) == (scalar_int_mode ((scalar_int_mode
::from_int) E_QImode)) && !((((global_options.x_ix86_isa_flags
& (1UL << 1)) != 0) ? ((((unsigned long) ((REGNO))
- (unsigned long) (0) <= (unsigned long) (7) - (unsigned long
) (0))) || ((unsigned long) ((REGNO)) - (unsigned long) (36) <=
(unsigned long) (43) - (unsigned long) (36))) : ((unsigned long
) ((REGNO)) - (unsigned long) (0) <= (unsigned long) (3) -
(unsigned long) (0))) || ((unsigned long) ((REGNO)) - (unsigned
long) (68) <= (unsigned long) (75) - (unsigned long) (68)
)) ? (scalar_int_mode ((scalar_int_mode::from_int) E_SImode))
: (MODE))
\
196 choose_hard_reg_mode (REGNO, NREGS, NULLnullptr)
197#endif
198
199/* Target-dependent globals. */
200struct target_regs {
201 /* For each starting hard register, the number of consecutive hard
202 registers that a given machine mode occupies. */
203 unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER76][MAX_MACHINE_MODE];
204
205 /* The max value found in x_hard_regno_nregs. */
206 unsigned char x_hard_regno_max_nregs;
207
208 /* For each hard register, the widest mode object that it can contain.
209 This will be a MODE_INT mode if the register can hold integers. Otherwise
210 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
211 register. */
212 machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER76];
213
214 /* Vector indexed by machine mode saying whether there are regs of
215 that mode. */
216 bool x_have_regs_of_mode[MAX_MACHINE_MODE];
217
218 /* 1 if the corresponding class contains a register of the given mode. */
219 char x_contains_reg_of_mode[N_REG_CLASSES((int) LIM_REG_CLASSES)][MAX_MACHINE_MODE];
220
221 /* 1 if the corresponding class contains a register of the given mode
222 which is not global and can therefore be allocated. */
223 char x_contains_allocatable_reg_of_mode[N_REG_CLASSES((int) LIM_REG_CLASSES)][MAX_MACHINE_MODE];
224
225 /* Record for each mode whether we can move a register directly to or
226 from an object of that mode in memory. If we can't, we won't try
227 to use that mode directly when accessing a field of that mode. */
228 char x_direct_load[NUM_MACHINE_MODES];
229 char x_direct_store[NUM_MACHINE_MODES];
230
231 /* Record for each mode whether we can float-extend from memory. */
232 bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
233};
234
235extern struct target_regs default_target_regs;
236#if SWITCHABLE_TARGET1
237extern struct target_regs *this_target_regs;
238#else
239#define this_target_regs (&default_target_regs)
240#endif
241#define hard_regno_max_nregs(this_target_regs->x_hard_regno_max_nregs) \
242 (this_target_regs->x_hard_regno_max_nregs)
243#define reg_raw_mode(this_target_regs->x_reg_raw_mode) \
244 (this_target_regs->x_reg_raw_mode)
245#define have_regs_of_mode(this_target_regs->x_have_regs_of_mode) \
246 (this_target_regs->x_have_regs_of_mode)
247#define contains_reg_of_mode(this_target_regs->x_contains_reg_of_mode) \
248 (this_target_regs->x_contains_reg_of_mode)
249#define contains_allocatable_reg_of_mode(this_target_regs->x_contains_allocatable_reg_of_mode) \
250 (this_target_regs->x_contains_allocatable_reg_of_mode)
251#define direct_load(this_target_regs->x_direct_load) \
252 (this_target_regs->x_direct_load)
253#define direct_store(this_target_regs->x_direct_store) \
254 (this_target_regs->x_direct_store)
255#define float_extend_from_mem(this_target_regs->x_float_extend_from_mem) \
256 (this_target_regs->x_float_extend_from_mem)
257
258/* Return the number of hard registers in (reg:MODE REGNO). */
259
260ALWAYS_INLINEinline __attribute__ ((always_inline)) unsigned char
261hard_regno_nregs (unsigned int regno, machine_mode mode)
262{
263 return this_target_regs->x_hard_regno_nregs[regno][mode];
264}
265
266/* Return an exclusive upper bound on the registers occupied by hard
267 register (reg:MODE REGNO). */
268
269inline unsigned int
270end_hard_regno (machine_mode mode, unsigned int regno)
271{
272 return regno + hard_regno_nregs (regno, mode);
273}
274
275/* Add to REGS all the registers required to store a value of mode MODE
276 in register REGNO. */
277
278inline void
279add_to_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
280 unsigned int regno)
281{
282 unsigned int end_regno;
283
284 end_regno = end_hard_regno (mode, regno);
285 do
32
Loop condition is false. Exiting loop
39
Loop condition is false. Exiting loop
286 SET_HARD_REG_BIT (*regs, regno);
29
Calling 'SET_HARD_REG_BIT'
30
Returning from 'SET_HARD_REG_BIT'
36
Calling 'SET_HARD_REG_BIT'
37
Returning from 'SET_HARD_REG_BIT'
53
Calling 'SET_HARD_REG_BIT'
287 while (++regno < end_regno);
31
Assuming the condition is false
38
Assuming the condition is false
288}
289
290/* Likewise, but remove the registers. */
291
292inline void
293remove_from_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
294 unsigned int regno)
295{
296 unsigned int end_regno;
297
298 end_regno = end_hard_regno (mode, regno);
299 do
300 CLEAR_HARD_REG_BIT (*regs, regno);
301 while (++regno < end_regno);
302}
303
304/* Return true if REGS contains the whole of (reg:MODE REGNO). */
305
306inline bool
307in_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
308 unsigned int regno)
309{
310 unsigned int end_regno;
311
312 gcc_assert (HARD_REGISTER_NUM_P (regno))((void)(!(((regno) < 76)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/regs.h"
, 312, __FUNCTION__), 0 : 0))
;
313
314 if (!TEST_HARD_REG_BIT (regs, regno))
315 return false;
316
317 end_regno = end_hard_regno (mode, regno);
318
319 if (!HARD_REGISTER_NUM_P (end_regno - 1)((end_regno - 1) < 76))
320 return false;
321
322 while (++regno < end_regno)
323 if (!TEST_HARD_REG_BIT (regs, regno))
324 return false;
325
326 return true;
327}
328
329/* Return true if (reg:MODE REGNO) includes an element of REGS. */
330
331inline bool
332overlaps_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
333 unsigned int regno)
334{
335 unsigned int end_regno;
336
337 if (TEST_HARD_REG_BIT (regs, regno))
338 return true;
339
340 end_regno = end_hard_regno (mode, regno);
341 while (++regno < end_regno)
342 if (TEST_HARD_REG_BIT (regs, regno))
343 return true;
344
345 return false;
346}
347
348/* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
349 REGNO and MODE. */
350
351inline void
352add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
353 int nregs)
354{
355 while (nregs-- > 0)
356 SET_HARD_REG_BIT (*regs, regno + nregs);
357}
358
359/* Likewise, but remove the registers. */
360
361inline void
362remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
363 int nregs)
364{
365 while (nregs-- > 0)
366 CLEAR_HARD_REG_BIT (*regs, regno + nregs);
367}
368
369/* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
370 REGNO and MODE. */
371inline bool
372range_overlaps_hard_reg_set_p (const_hard_reg_set set, unsigned regno,
373 int nregs)
374{
375 while (nregs-- > 0)
376 if (TEST_HARD_REG_BIT (set, regno + nregs))
377 return true;
378 return false;
379}
380
381/* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
382 REGNO and MODE. */
383inline bool
384range_in_hard_reg_set_p (const_hard_reg_set set, unsigned regno, int nregs)
385{
386 while (nregs-- > 0)
387 if (!TEST_HARD_REG_BIT (set, regno + nregs))
388 return false;
389 return true;
390}
391
392#endif /* GCC_REGS_H */