File: | build/gcc/rtlanal.cc |
Warning: | line 5194, column 25 The result of the left shift is undefined because the right operand is negative |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Analyze RTL for GNU compiler. | |||
2 | Copyright (C) 1987-2023 Free Software Foundation, Inc. | |||
3 | ||||
4 | This file is part of GCC. | |||
5 | ||||
6 | GCC is free software; you can redistribute it and/or modify it under | |||
7 | the terms of the GNU General Public License as published by the Free | |||
8 | Software Foundation; either version 3, or (at your option) any later | |||
9 | version. | |||
10 | ||||
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |||
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
14 | for more details. | |||
15 | ||||
16 | You should have received a copy of the GNU General Public License | |||
17 | along with GCC; see the file COPYING3. If not see | |||
18 | <http://www.gnu.org/licenses/>. */ | |||
19 | ||||
20 | ||||
21 | #include "config.h" | |||
22 | #include "system.h" | |||
23 | #include "coretypes.h" | |||
24 | #include "backend.h" | |||
25 | #include "target.h" | |||
26 | #include "rtl.h" | |||
27 | #include "rtlanal.h" | |||
28 | #include "tree.h" | |||
29 | #include "predict.h" | |||
30 | #include "df.h" | |||
31 | #include "memmodel.h" | |||
32 | #include "tm_p.h" | |||
33 | #include "insn-config.h" | |||
34 | #include "regs.h" | |||
35 | #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */ | |||
36 | #include "recog.h" | |||
37 | #include "addresses.h" | |||
38 | #include "rtl-iter.h" | |||
39 | #include "hard-reg-set.h" | |||
40 | #include "function-abi.h" | |||
41 | ||||
42 | /* Forward declarations */ | |||
43 | static void set_of_1 (rtx, const_rtx, void *); | |||
44 | static bool covers_regno_p (const_rtx, unsigned int); | |||
45 | static bool covers_regno_no_parallel_p (const_rtx, unsigned int); | |||
46 | static int computed_jump_p_1 (const_rtx); | |||
47 | static void parms_set (rtx, const_rtx, void *); | |||
48 | ||||
49 | static unsigned HOST_WIDE_INTlong cached_nonzero_bits (const_rtx, scalar_int_mode, | |||
50 | const_rtx, machine_mode, | |||
51 | unsigned HOST_WIDE_INTlong); | |||
52 | static unsigned HOST_WIDE_INTlong nonzero_bits1 (const_rtx, scalar_int_mode, | |||
53 | const_rtx, machine_mode, | |||
54 | unsigned HOST_WIDE_INTlong); | |||
55 | static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode, | |||
56 | const_rtx, machine_mode, | |||
57 | unsigned int); | |||
58 | static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode, | |||
59 | const_rtx, machine_mode, | |||
60 | unsigned int); | |||
61 | ||||
62 | rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; | |||
63 | rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; | |||
64 | ||||
65 | /* Truncation narrows the mode from SOURCE mode to DESTINATION mode. | |||
66 | If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is | |||
67 | SIGN_EXTEND then while narrowing we also have to enforce the | |||
68 | representation and sign-extend the value to mode DESTINATION_REP. | |||
69 | ||||
70 | If the value is already sign-extended to DESTINATION_REP mode we | |||
71 | can just switch to DESTINATION mode on it. For each pair of | |||
72 | integral modes SOURCE and DESTINATION, when truncating from SOURCE | |||
73 | to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION] | |||
74 | contains the number of high-order bits in SOURCE that have to be | |||
75 | copies of the sign-bit so that we can do this mode-switch to | |||
76 | DESTINATION. */ | |||
77 | ||||
78 | static unsigned int | |||
79 | num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1]; | |||
80 | ||||
81 | /* Store X into index I of ARRAY. ARRAY is known to have at least I | |||
82 | elements. Return the new base of ARRAY. */ | |||
83 | ||||
84 | template <typename T> | |||
85 | typename T::value_type * | |||
86 | generic_subrtx_iterator <T>::add_single_to_queue (array_type &array, | |||
87 | value_type *base, | |||
88 | size_t i, value_type x) | |||
89 | { | |||
90 | if (base == array.stack) | |||
91 | { | |||
92 | if (i < LOCAL_ELEMS) | |||
93 | { | |||
94 | base[i] = x; | |||
95 | return base; | |||
96 | } | |||
97 | gcc_checking_assert (i == LOCAL_ELEMS)((void)(!(i == LOCAL_ELEMS) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 97, __FUNCTION__), 0 : 0)); | |||
98 | /* A previous iteration might also have moved from the stack to the | |||
99 | heap, in which case the heap array will already be big enough. */ | |||
100 | if (vec_safe_length (array.heap) <= i) | |||
101 | vec_safe_grow (array.heap, i + 1, true); | |||
102 | base = array.heap->address (); | |||
103 | memcpy (base, array.stack, sizeof (array.stack)); | |||
104 | base[LOCAL_ELEMS] = x; | |||
105 | return base; | |||
106 | } | |||
107 | unsigned int length = array.heap->length (); | |||
108 | if (length > i) | |||
109 | { | |||
110 | gcc_checking_assert (base == array.heap->address ())((void)(!(base == array.heap->address ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 110, __FUNCTION__), 0 : 0)); | |||
111 | base[i] = x; | |||
112 | return base; | |||
113 | } | |||
114 | else | |||
115 | { | |||
116 | gcc_checking_assert (i == length)((void)(!(i == length) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 116, __FUNCTION__), 0 : 0)); | |||
117 | vec_safe_push (array.heap, x); | |||
118 | return array.heap->address (); | |||
119 | } | |||
120 | } | |||
121 | ||||
122 | /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the | |||
123 | number of elements added to the worklist. */ | |||
124 | ||||
125 | template <typename T> | |||
126 | size_t | |||
127 | generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array, | |||
128 | value_type *base, | |||
129 | size_t end, rtx_type x) | |||
130 | { | |||
131 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
132 | const char *format = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
133 | size_t orig_end = end; | |||
134 | if (UNLIKELY (INSN_P (x))(__builtin_expect (((((((enum rtx_code) (x)->code) == INSN ) || (((enum rtx_code) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code) == CALL_INSN)) || (((enum rtx_code) ( x)->code) == DEBUG_INSN))), 0))) | |||
135 | { | |||
136 | /* Put the pattern at the top of the queue, since that's what | |||
137 | we're likely to want most. It also allows for the SEQUENCE | |||
138 | code below. */ | |||
139 | for (int i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; --i) | |||
140 | if (format[i] == 'e') | |||
141 | { | |||
142 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); | |||
143 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) | |||
144 | base[end++] = subx; | |||
145 | else | |||
146 | base = add_single_to_queue (array, base, end++, subx); | |||
147 | } | |||
148 | } | |||
149 | else | |||
150 | for (int i = 0; format[i]; ++i) | |||
151 | if (format[i] == 'e') | |||
152 | { | |||
153 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); | |||
154 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) | |||
155 | base[end++] = subx; | |||
156 | else | |||
157 | base = add_single_to_queue (array, base, end++, subx); | |||
158 | } | |||
159 | else if (format[i] == 'E') | |||
160 | { | |||
161 | unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec)((x->u.fld[i].rt_rtvec)->num_elem); | |||
162 | rtx *vec = x->u.fld[i].rt_rtvec->elem; | |||
163 | if (LIKELY (end + length <= LOCAL_ELEMS)(__builtin_expect ((end + length <= LOCAL_ELEMS), 1))) | |||
164 | for (unsigned int j = 0; j < length; j++) | |||
165 | base[end++] = T::get_value (vec[j]); | |||
166 | else | |||
167 | for (unsigned int j = 0; j < length; j++) | |||
168 | base = add_single_to_queue (array, base, end++, | |||
169 | T::get_value (vec[j])); | |||
170 | if (code == SEQUENCE && end == length) | |||
171 | /* If the subrtxes of the sequence fill the entire array then | |||
172 | we know that no other parts of a containing insn are queued. | |||
173 | The caller is therefore iterating over the sequence as a | |||
174 | PATTERN (...), so we also want the patterns of the | |||
175 | subinstructions. */ | |||
176 | for (unsigned int j = 0; j < length; j++) | |||
177 | { | |||
178 | typename T::rtx_type x = T::get_rtx (base[j]); | |||
179 | if (INSN_P (x)(((((enum rtx_code) (x)->code) == INSN) || (((enum rtx_code ) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code ) == CALL_INSN)) || (((enum rtx_code) (x)->code) == DEBUG_INSN ))) | |||
180 | base[j] = T::get_value (PATTERN (x)); | |||
181 | } | |||
182 | } | |||
183 | return end - orig_end; | |||
184 | } | |||
185 | ||||
186 | template <typename T> | |||
187 | void | |||
188 | generic_subrtx_iterator <T>::free_array (array_type &array) | |||
189 | { | |||
190 | vec_free (array.heap); | |||
191 | } | |||
192 | ||||
193 | template <typename T> | |||
194 | const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS; | |||
195 | ||||
196 | template class generic_subrtx_iterator <const_rtx_accessor>; | |||
197 | template class generic_subrtx_iterator <rtx_var_accessor>; | |||
198 | template class generic_subrtx_iterator <rtx_ptr_accessor>; | |||
199 | ||||
200 | /* Return 1 if the value of X is unstable | |||
201 | (would be different at a different point in the program). | |||
202 | The frame pointer, arg pointer, etc. are considered stable | |||
203 | (within one function) and so is anything marked `unchanging'. */ | |||
204 | ||||
205 | int | |||
206 | rtx_unstable_p (const_rtx x) | |||
207 | { | |||
208 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
209 | int i; | |||
210 | const char *fmt; | |||
211 | ||||
212 | switch (code) | |||
213 | { | |||
214 | case MEM: | |||
215 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 215, __FUNCTION__); _rtx; })->unchanging) || rtx_unstable_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
216 | ||||
217 | case CONST: | |||
218 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
219 | case SYMBOL_REF: | |||
220 | case LABEL_REF: | |||
221 | return 0; | |||
222 | ||||
223 | case REG: | |||
224 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ | |||
225 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | |||
226 | /* The arg pointer varies if it is not a fixed register. */ | |||
227 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | |||
228 | return 0; | |||
229 | /* ??? When call-clobbered, the value is stable modulo the restore | |||
230 | that must happen after a call. This currently screws up local-alloc | |||
231 | into believing that the restore is not needed. */ | |||
232 | if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 && x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx)) | |||
233 | return 0; | |||
234 | return 1; | |||
235 | ||||
236 | case ASM_OPERANDS: | |||
237 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 237, __FUNCTION__); _rtx; })->volatil)) | |||
238 | return 1; | |||
239 | ||||
240 | /* Fall through. */ | |||
241 | ||||
242 | default: | |||
243 | break; | |||
244 | } | |||
245 | ||||
246 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
247 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
248 | if (fmt[i] == 'e') | |||
249 | { | |||
250 | if (rtx_unstable_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | |||
251 | return 1; | |||
252 | } | |||
253 | else if (fmt[i] == 'E') | |||
254 | { | |||
255 | int j; | |||
256 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
257 | if (rtx_unstable_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
258 | return 1; | |||
259 | } | |||
260 | ||||
261 | return 0; | |||
262 | } | |||
263 | ||||
264 | /* Return 1 if X has a value that can vary even between two | |||
265 | executions of the program. 0 means X can be compared reliably | |||
266 | against certain constants or near-constants. | |||
267 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is | |||
268 | zero, we are slightly more conservative. | |||
269 | The frame pointer and the arg pointer are considered constant. */ | |||
270 | ||||
271 | bool | |||
272 | rtx_varies_p (const_rtx x, bool for_alias) | |||
273 | { | |||
274 | RTX_CODEenum rtx_code code; | |||
275 | int i; | |||
276 | const char *fmt; | |||
277 | ||||
278 | if (!x) | |||
279 | return 0; | |||
280 | ||||
281 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
282 | switch (code) | |||
283 | { | |||
284 | case MEM: | |||
285 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 285, __FUNCTION__); _rtx; })->unchanging) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); | |||
286 | ||||
287 | case CONST: | |||
288 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
289 | case SYMBOL_REF: | |||
290 | case LABEL_REF: | |||
291 | return 0; | |||
292 | ||||
293 | case REG: | |||
294 | /* Note that we have to test for the actual rtx used for the frame | |||
295 | and arg pointers and not just the register number in case we have | |||
296 | eliminated the frame and/or arg pointer and are using it | |||
297 | for pseudos. */ | |||
298 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | |||
299 | /* The arg pointer varies if it is not a fixed register. */ | |||
300 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | |||
301 | return 0; | |||
302 | if (x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | |||
303 | /* ??? When call-clobbered, the value is stable modulo the restore | |||
304 | that must happen after a call. This currently screws up | |||
305 | local-alloc into believing that the restore is not needed, so we | |||
306 | must return 0 only if we are called from alias analysis. */ | |||
307 | && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 || for_alias)) | |||
308 | return 0; | |||
309 | return 1; | |||
310 | ||||
311 | case LO_SUM: | |||
312 | /* The operand 0 of a LO_SUM is considered constant | |||
313 | (in fact it is related specifically to operand 1) | |||
314 | during alias analysis. */ | |||
315 | return (! for_alias && rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias)) | |||
316 | || rtx_varies_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), for_alias); | |||
317 | ||||
318 | case ASM_OPERANDS: | |||
319 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 319, __FUNCTION__); _rtx; })->volatil)) | |||
320 | return 1; | |||
321 | ||||
322 | /* Fall through. */ | |||
323 | ||||
324 | default: | |||
325 | break; | |||
326 | } | |||
327 | ||||
328 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
329 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
330 | if (fmt[i] == 'e') | |||
331 | { | |||
332 | if (rtx_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) | |||
333 | return 1; | |||
334 | } | |||
335 | else if (fmt[i] == 'E') | |||
336 | { | |||
337 | int j; | |||
338 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
339 | if (rtx_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) | |||
340 | return 1; | |||
341 | } | |||
342 | ||||
343 | return 0; | |||
344 | } | |||
345 | ||||
346 | /* Compute an approximation for the offset between the register | |||
347 | FROM and TO for the current function, as it was at the start | |||
348 | of the routine. */ | |||
349 | ||||
350 | static poly_int64 | |||
351 | get_initial_register_offset (int from, int to) | |||
352 | { | |||
353 | static const struct elim_table_t | |||
354 | { | |||
355 | const int from; | |||
356 | const int to; | |||
357 | } table[] = ELIMINABLE_REGS{{ 16, 7}, { 16, 6}, { 19, 7}, { 19, 6}}; | |||
358 | poly_int64 offset1, offset2; | |||
359 | unsigned int i, j; | |||
360 | ||||
361 | if (to == from) | |||
362 | return 0; | |||
363 | ||||
364 | /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue | |||
365 | is completed, but we need to give at least an estimate for the stack | |||
366 | pointer based on the frame size. */ | |||
367 | if (!epilogue_completed) | |||
368 | { | |||
369 | offset1 = crtl(&x_rtl)->outgoing_args_size + get_frame_size (); | |||
370 | #if !STACK_GROWS_DOWNWARD1 | |||
371 | offset1 = - offset1; | |||
372 | #endif | |||
373 | if (to == STACK_POINTER_REGNUM7) | |||
374 | return offset1; | |||
375 | else if (from == STACK_POINTER_REGNUM7) | |||
376 | return - offset1; | |||
377 | else | |||
378 | return 0; | |||
379 | } | |||
380 | ||||
381 | for (i = 0; i < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); i++) | |||
382 | if (table[i].from == from) | |||
383 | { | |||
384 | if (table[i].to == to) | |||
385 | { | |||
386 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
387 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
388 | return offset1; | |||
389 | } | |||
390 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) | |||
391 | { | |||
392 | if (table[j].to == to | |||
393 | && table[j].from == table[i].to) | |||
394 | { | |||
395 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
396 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
397 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | |||
398 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | |||
399 | return offset1 + offset2; | |||
400 | } | |||
401 | if (table[j].from == to | |||
402 | && table[j].to == table[i].to) | |||
403 | { | |||
404 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
405 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
406 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | |||
407 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | |||
408 | return offset1 - offset2; | |||
409 | } | |||
410 | } | |||
411 | } | |||
412 | else if (table[i].to == from) | |||
413 | { | |||
414 | if (table[i].from == to) | |||
415 | { | |||
416 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
417 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
418 | return - offset1; | |||
419 | } | |||
420 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) | |||
421 | { | |||
422 | if (table[j].to == to | |||
423 | && table[j].from == table[i].from) | |||
424 | { | |||
425 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
426 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
427 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | |||
428 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | |||
429 | return - offset1 + offset2; | |||
430 | } | |||
431 | if (table[j].from == to | |||
432 | && table[j].to == table[i].from) | |||
433 | { | |||
434 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | |||
435 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | |||
436 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | |||
437 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | |||
438 | return - offset1 - offset2; | |||
439 | } | |||
440 | } | |||
441 | } | |||
442 | ||||
443 | /* If the requested register combination was not found, | |||
444 | try a different more simple combination. */ | |||
445 | if (from == ARG_POINTER_REGNUM16) | |||
446 | return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM6, to); | |||
447 | else if (to == ARG_POINTER_REGNUM16) | |||
448 | return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM6); | |||
449 | else if (from == HARD_FRAME_POINTER_REGNUM6) | |||
450 | return get_initial_register_offset (FRAME_POINTER_REGNUM19, to); | |||
451 | else if (to == HARD_FRAME_POINTER_REGNUM6) | |||
452 | return get_initial_register_offset (from, FRAME_POINTER_REGNUM19); | |||
453 | else | |||
454 | return 0; | |||
455 | } | |||
456 | ||||
457 | /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE | |||
458 | bytes can cause a trap. MODE is the mode of the MEM (not that of X) and | |||
459 | UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory | |||
460 | references on strict alignment machines. */ | |||
461 | ||||
462 | static int | |||
463 | rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size, | |||
464 | machine_mode mode, bool unaligned_mems) | |||
465 | { | |||
466 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
467 | gcc_checking_assert (mode == BLKmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) | |||
468 | || mode == VOIDmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) | |||
469 | || known_size_p (size))((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)); | |||
470 | poly_int64 const_x1; | |||
471 | ||||
472 | /* The offset must be a multiple of the mode size if we are considering | |||
473 | unaligned memory references on strict alignment machines. */ | |||
474 | if (STRICT_ALIGNMENT0 | |||
475 | && unaligned_mems | |||
476 | && mode != BLKmode((void) 0, E_BLKmode) | |||
477 | && mode != VOIDmode((void) 0, E_VOIDmode)) | |||
478 | { | |||
479 | poly_int64 actual_offset = offset; | |||
480 | ||||
481 | #ifdef SPARC_STACK_BOUNDARY_HACK | |||
482 | /* ??? The SPARC port may claim a STACK_BOUNDARY higher than | |||
483 | the real alignment of %sp. However, when it does this, the | |||
484 | alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ | |||
485 | if (SPARC_STACK_BOUNDARY_HACK | |||
486 | && (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]))) | |||
487 | actual_offset -= STACK_POINTER_OFFSET0; | |||
488 | #endif | |||
489 | ||||
490 | if (!multiple_p (actual_offset, GET_MODE_SIZE (mode))) | |||
491 | return 1; | |||
492 | } | |||
493 | ||||
494 | switch (code) | |||
495 | { | |||
496 | case SYMBOL_REF: | |||
497 | if (SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 497, __FUNCTION__); _rtx; })->return_val)) | |||
498 | return 1; | |||
499 | if (!CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; })->unchanging) && !SYMBOL_REF_FUNCTION_P (x)(((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if ((( enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 0)) != 0)) | |||
500 | { | |||
501 | tree decl; | |||
502 | poly_int64 decl_size; | |||
503 | ||||
504 | if (maybe_lt (offset, 0)) | |||
505 | return 1; | |||
506 | if (!known_size_p (size)) | |||
507 | return maybe_ne (offset, 0); | |||
508 | ||||
509 | /* If the size of the access or of the symbol is unknown, | |||
510 | assume the worst. */ | |||
511 | decl = SYMBOL_REF_DECL (x)((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 511, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((x))->u.fld[1]).rt_tree)); | |||
512 | ||||
513 | /* Else check that the access is in bounds. TODO: restructure | |||
514 | expr_size/tree_expr_size/int_expr_size and just use the latter. */ | |||
515 | if (!decl) | |||
516 | decl_size = -1; | |||
517 | else if (DECL_P (decl)(tree_code_type_tmpl <0>::tree_code_type[(int) (((enum tree_code ) (decl)->base.code))] == tcc_declaration) && DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 517, __FUNCTION__))->decl_common.size_unit)) | |||
518 | { | |||
519 | if (!poly_int_tree_p (DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 519, __FUNCTION__))->decl_common.size_unit), &decl_size)) | |||
520 | decl_size = -1; | |||
521 | } | |||
522 | else if (TREE_CODE (decl)((enum tree_code) (decl)->base.code) == STRING_CST) | |||
523 | decl_size = TREE_STRING_LENGTH (decl)((tree_check ((decl), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 523, __FUNCTION__, (STRING_CST)))->string.length); | |||
524 | else if (TYPE_SIZE_UNIT (TREE_TYPE (decl))((tree_class_check ((((contains_struct_check ((decl), (TS_TYPED ), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->type_common.size_unit)) | |||
525 | decl_size = int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 525, __FUNCTION__))->typed.type)); | |||
526 | else | |||
527 | decl_size = -1; | |||
528 | ||||
529 | return (!known_size_p (decl_size) || known_eq (decl_size, 0)(!maybe_ne (decl_size, 0)) | |||
530 | ? maybe_ne (offset, 0) | |||
531 | : !known_subrange_p (offset, size, 0, decl_size)); | |||
532 | } | |||
533 | ||||
534 | return 0; | |||
535 | ||||
536 | case LABEL_REF: | |||
537 | return 0; | |||
538 | ||||
539 | case REG: | |||
540 | /* Stack references are assumed not to trap, but we need to deal with | |||
541 | nonsensical offsets. */ | |||
542 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | |||
543 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | |||
544 | /* The arg pointer varies if it is not a fixed register. */ | |||
545 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | |||
546 | { | |||
547 | #ifdef RED_ZONE_SIZE128 | |||
548 | poly_int64 red_zone_size = RED_ZONE_SIZE128; | |||
549 | #else | |||
550 | poly_int64 red_zone_size = 0; | |||
551 | #endif | |||
552 | poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARYix86_preferred_stack_boundary / BITS_PER_UNIT(8); | |||
553 | poly_int64 low_bound, high_bound; | |||
554 | ||||
555 | if (!known_size_p (size)) | |||
556 | return 1; | |||
557 | ||||
558 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER])) | |||
559 | { | |||
560 | if (FRAME_GROWS_DOWNWARD1) | |||
561 | { | |||
562 | high_bound = targetm.starting_frame_offset (); | |||
563 | low_bound = high_bound - get_frame_size (); | |||
564 | } | |||
565 | else | |||
566 | { | |||
567 | low_bound = targetm.starting_frame_offset (); | |||
568 | high_bound = low_bound + get_frame_size (); | |||
569 | } | |||
570 | } | |||
571 | else if (x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER])) | |||
572 | { | |||
573 | poly_int64 sp_offset | |||
574 | = get_initial_register_offset (STACK_POINTER_REGNUM7, | |||
575 | HARD_FRAME_POINTER_REGNUM6); | |||
576 | poly_int64 ap_offset | |||
577 | = get_initial_register_offset (ARG_POINTER_REGNUM16, | |||
578 | HARD_FRAME_POINTER_REGNUM6); | |||
579 | ||||
580 | #if STACK_GROWS_DOWNWARD1 | |||
581 | low_bound = sp_offset - red_zone_size - stack_boundary; | |||
582 | high_bound = ap_offset | |||
583 | + FIRST_PARM_OFFSET (current_function_decl)0 | |||
584 | #if !ARGS_GROW_DOWNWARD0 | |||
585 | + crtl(&x_rtl)->args.size | |||
586 | #endif | |||
587 | + stack_boundary; | |||
588 | #else | |||
589 | high_bound = sp_offset + red_zone_size + stack_boundary; | |||
590 | low_bound = ap_offset | |||
591 | + FIRST_PARM_OFFSET (current_function_decl)0 | |||
592 | #if ARGS_GROW_DOWNWARD0 | |||
593 | - crtl(&x_rtl)->args.size | |||
594 | #endif | |||
595 | - stack_boundary; | |||
596 | #endif | |||
597 | } | |||
598 | else if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | |||
599 | { | |||
600 | poly_int64 ap_offset | |||
601 | = get_initial_register_offset (ARG_POINTER_REGNUM16, | |||
602 | STACK_POINTER_REGNUM7); | |||
603 | ||||
604 | #if STACK_GROWS_DOWNWARD1 | |||
605 | low_bound = - red_zone_size - stack_boundary; | |||
606 | high_bound = ap_offset | |||
607 | + FIRST_PARM_OFFSET (current_function_decl)0 | |||
608 | #if !ARGS_GROW_DOWNWARD0 | |||
609 | + crtl(&x_rtl)->args.size | |||
610 | #endif | |||
611 | + stack_boundary; | |||
612 | #else | |||
613 | high_bound = red_zone_size + stack_boundary; | |||
614 | low_bound = ap_offset | |||
615 | + FIRST_PARM_OFFSET (current_function_decl)0 | |||
616 | #if ARGS_GROW_DOWNWARD0 | |||
617 | - crtl(&x_rtl)->args.size | |||
618 | #endif | |||
619 | - stack_boundary; | |||
620 | #endif | |||
621 | } | |||
622 | else | |||
623 | { | |||
624 | /* We assume that accesses are safe to at least the | |||
625 | next stack boundary. | |||
626 | Examples are varargs and __builtin_return_address. */ | |||
627 | #if ARGS_GROW_DOWNWARD0 | |||
628 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 | |||
629 | + stack_boundary; | |||
630 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 | |||
631 | - crtl(&x_rtl)->args.size - stack_boundary; | |||
632 | #else | |||
633 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 | |||
634 | - stack_boundary; | |||
635 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 | |||
636 | + crtl(&x_rtl)->args.size + stack_boundary; | |||
637 | #endif | |||
638 | } | |||
639 | ||||
640 | if (known_ge (offset, low_bound)(!maybe_lt (offset, low_bound)) | |||
641 | && known_le (offset, high_bound - size)(!maybe_lt (high_bound - size, offset))) | |||
642 | return 0; | |||
643 | return 1; | |||
644 | } | |||
645 | /* All of the virtual frame registers are stack references. */ | |||
646 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) | |||
647 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | |||
648 | return 0; | |||
649 | return 1; | |||
650 | ||||
651 | case CONST: | |||
652 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, | |||
653 | mode, unaligned_mems); | |||
654 | ||||
655 | case PLUS: | |||
656 | /* An address is assumed not to trap if: | |||
657 | - it is the pic register plus a const unspec without offset. */ | |||
658 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | |||
659 | && GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST | |||
660 | && GET_CODE (XEXP (XEXP (x, 1), 0))((enum rtx_code) (((((((x)->u.fld[1]).rt_rtx))->u.fld[0 ]).rt_rtx))->code) == UNSPEC | |||
661 | && known_eq (offset, 0)(!maybe_ne (offset, 0))) | |||
662 | return 0; | |||
663 | ||||
664 | /* - or it is an address that can't trap plus a constant integer. */ | |||
665 | if (poly_int_rtx_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), &const_x1) | |||
666 | && !rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset + const_x1, | |||
667 | size, mode, unaligned_mems)) | |||
668 | return 0; | |||
669 | ||||
670 | return 1; | |||
671 | ||||
672 | case LO_SUM: | |||
673 | case PRE_MODIFY: | |||
674 | return rtx_addr_can_trap_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), offset, size, | |||
675 | mode, unaligned_mems); | |||
676 | ||||
677 | case PRE_DEC: | |||
678 | case PRE_INC: | |||
679 | case POST_DEC: | |||
680 | case POST_INC: | |||
681 | case POST_MODIFY: | |||
682 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, | |||
683 | mode, unaligned_mems); | |||
684 | ||||
685 | default: | |||
686 | break; | |||
687 | } | |||
688 | ||||
689 | /* If it isn't one of the case above, it can cause a trap. */ | |||
690 | return 1; | |||
691 | } | |||
692 | ||||
693 | /* Return nonzero if the use of X as an address in a MEM can cause a trap. */ | |||
694 | ||||
695 | int | |||
696 | rtx_addr_can_trap_p (const_rtx x) | |||
697 | { | |||
698 | return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode((void) 0, E_BLKmode), false); | |||
699 | } | |||
700 | ||||
701 | /* Return true if X contains a MEM subrtx. */ | |||
702 | ||||
703 | bool | |||
704 | contains_mem_rtx_p (rtx x) | |||
705 | { | |||
706 | subrtx_iterator::array_type array; | |||
707 | FOR_EACH_SUBRTX (iter, array, x, ALL)for (subrtx_iterator iter (array, x, rtx_all_subrtx_bounds); ! iter.at_end (); iter.next ()) | |||
708 | if (MEM_P (*iter)(((enum rtx_code) (*iter)->code) == MEM)) | |||
709 | return true; | |||
710 | ||||
711 | return false; | |||
712 | } | |||
713 | ||||
714 | /* Return true if X is an address that is known to not be zero. */ | |||
715 | ||||
716 | bool | |||
717 | nonzero_address_p (const_rtx x) | |||
718 | { | |||
719 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
720 | ||||
721 | switch (code) | |||
722 | { | |||
723 | case SYMBOL_REF: | |||
724 | return flag_delete_null_pointer_checksglobal_options.x_flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 724, __FUNCTION__); _rtx; })->return_val); | |||
725 | ||||
726 | case LABEL_REF: | |||
727 | return true; | |||
728 | ||||
729 | case REG: | |||
730 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ | |||
731 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | |||
732 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | |||
733 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | |||
734 | return true; | |||
735 | /* All of the virtual frame registers are stack references. */ | |||
736 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) | |||
737 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | |||
738 | return true; | |||
739 | return false; | |||
740 | ||||
741 | case CONST: | |||
742 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
743 | ||||
744 | case PLUS: | |||
745 | /* Handle PIC references. */ | |||
746 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | |||
747 | && CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) | |||
748 | return true; | |||
749 | return false; | |||
750 | ||||
751 | case PRE_MODIFY: | |||
752 | /* Similar to the above; allow positive offsets. Further, since | |||
753 | auto-inc is only allowed in memories, the register must be a | |||
754 | pointer. */ | |||
755 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
756 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) > 0) | |||
757 | return true; | |||
758 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
759 | ||||
760 | case PRE_INC: | |||
761 | /* Similarly. Further, the offset is always positive. */ | |||
762 | return true; | |||
763 | ||||
764 | case PRE_DEC: | |||
765 | case POST_DEC: | |||
766 | case POST_INC: | |||
767 | case POST_MODIFY: | |||
768 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
769 | ||||
770 | case LO_SUM: | |||
771 | return nonzero_address_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)); | |||
772 | ||||
773 | default: | |||
774 | break; | |||
775 | } | |||
776 | ||||
777 | /* If it isn't one of the case above, might be zero. */ | |||
778 | return false; | |||
779 | } | |||
780 | ||||
781 | /* Return 1 if X refers to a memory location whose address | |||
782 | cannot be compared reliably with constant addresses, | |||
783 | or if X refers to a BLKmode memory object. | |||
784 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is | |||
785 | zero, we are slightly more conservative. */ | |||
786 | ||||
787 | bool | |||
788 | rtx_addr_varies_p (const_rtx x, bool for_alias) | |||
789 | { | |||
790 | enum rtx_code code; | |||
791 | int i; | |||
792 | const char *fmt; | |||
793 | ||||
794 | if (x == 0) | |||
795 | return 0; | |||
796 | ||||
797 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
798 | if (code == MEM) | |||
799 | return GET_MODE (x)((machine_mode) (x)->mode) == BLKmode((void) 0, E_BLKmode) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); | |||
800 | ||||
801 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
802 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
803 | if (fmt[i] == 'e') | |||
804 | { | |||
805 | if (rtx_addr_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) | |||
806 | return 1; | |||
807 | } | |||
808 | else if (fmt[i] == 'E') | |||
809 | { | |||
810 | int j; | |||
811 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
812 | if (rtx_addr_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) | |||
813 | return 1; | |||
814 | } | |||
815 | return 0; | |||
816 | } | |||
817 | ||||
818 | /* Return the CALL in X if there is one. */ | |||
819 | ||||
820 | rtx | |||
821 | get_call_rtx_from (const rtx_insn *insn) | |||
822 | { | |||
823 | rtx x = PATTERN (insn); | |||
824 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) | |||
825 | x = XVECEXP (x, 0, 0)(((((x)->u.fld[0]).rt_rtvec))->elem[0]); | |||
826 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) | |||
827 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); | |||
828 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CALL && MEM_P (XEXP (x, 0))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | |||
829 | return x; | |||
830 | return NULL_RTX(rtx) 0; | |||
831 | } | |||
832 | ||||
833 | /* Get the declaration of the function called by INSN. */ | |||
834 | ||||
835 | tree | |||
836 | get_call_fndecl (const rtx_insn *insn) | |||
837 | { | |||
838 | rtx note, datum; | |||
839 | ||||
840 | note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX(rtx) 0); | |||
841 | if (note == NULL_RTX(rtx) 0) | |||
842 | return NULL_TREE(tree) nullptr; | |||
843 | ||||
844 | datum = XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); | |||
845 | if (datum != NULL_RTX(rtx) 0) | |||
846 | return SYMBOL_REF_DECL (datum)((__extension__ ({ __typeof ((datum)) const _rtx = ((datum)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 846, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((datum))->u.fld[1]).rt_tree)); | |||
847 | ||||
848 | return NULL_TREE(tree) nullptr; | |||
849 | } | |||
850 | ||||
851 | /* Return the value of the integer term in X, if one is apparent; | |||
852 | otherwise return 0. | |||
853 | Only obvious integer terms are detected. | |||
854 | This is used in cse.cc with the `related_value' field. */ | |||
855 | ||||
856 | HOST_WIDE_INTlong | |||
857 | get_integer_term (const_rtx x) | |||
858 | { | |||
859 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) | |||
860 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
861 | ||||
862 | if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS | |||
863 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
864 | return - INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | |||
865 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS | |||
866 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
867 | return INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | |||
868 | return 0; | |||
869 | } | |||
870 | ||||
871 | /* If X is a constant, return the value sans apparent integer term; | |||
872 | otherwise return 0. | |||
873 | Only obvious integer terms are detected. */ | |||
874 | ||||
875 | rtx | |||
876 | get_related_value (const_rtx x) | |||
877 | { | |||
878 | if (GET_CODE (x)((enum rtx_code) (x)->code) != CONST) | |||
879 | return 0; | |||
880 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
881 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS | |||
882 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
883 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
884 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS | |||
885 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
886 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
887 | return 0; | |||
888 | } | |||
889 | ||||
890 | /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points | |||
891 | to somewhere in the same object or object_block as SYMBOL. */ | |||
892 | ||||
893 | bool | |||
894 | offset_within_block_p (const_rtx symbol, HOST_WIDE_INTlong offset) | |||
895 | { | |||
896 | tree decl; | |||
897 | ||||
898 | if (GET_CODE (symbol)((enum rtx_code) (symbol)->code) != SYMBOL_REF) | |||
899 | return false; | |||
900 | ||||
901 | if (offset == 0) | |||
902 | return true; | |||
903 | ||||
904 | if (offset > 0) | |||
905 | { | |||
906 | if (CONSTANT_POOL_ADDRESS_P (symbol)(__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol)) ; if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 906, __FUNCTION__); _rtx; })->unchanging) | |||
907 | && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol))) | |||
908 | return true; | |||
909 | ||||
910 | decl = SYMBOL_REF_DECL (symbol)((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol) ); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 910, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((symbol))->u.fld[1]).rt_tree)); | |||
911 | if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 911, __FUNCTION__))->typed.type))) | |||
912 | return true; | |||
913 | } | |||
914 | ||||
915 | if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)(((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol )); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 915, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 7)) != 0) | |||
916 | && SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block) | |||
917 | && SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) >= 0 | |||
918 | && ((unsigned HOST_WIDE_INTlong) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) | |||
919 | < (unsigned HOST_WIDE_INTlong) SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block)->size)) | |||
920 | return true; | |||
921 | ||||
922 | return false; | |||
923 | } | |||
924 | ||||
925 | /* Split X into a base and a constant offset, storing them in *BASE_OUT | |||
926 | and *OFFSET_OUT respectively. */ | |||
927 | ||||
928 | void | |||
929 | split_const (rtx x, rtx *base_out, rtx *offset_out) | |||
930 | { | |||
931 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) | |||
932 | { | |||
933 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
934 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
935 | { | |||
936 | *base_out = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
937 | *offset_out = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | |||
938 | return; | |||
939 | } | |||
940 | } | |||
941 | *base_out = x; | |||
942 | *offset_out = const0_rtx(const_int_rtx[64]); | |||
943 | } | |||
944 | ||||
945 | /* Express integer value X as some value Y plus a polynomial offset, | |||
946 | where Y is either const0_rtx, X or something within X (as opposed | |||
947 | to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */ | |||
948 | ||||
949 | rtx | |||
950 | strip_offset (rtx x, poly_int64_pod *offset_out) | |||
951 | { | |||
952 | rtx base = const0_rtx(const_int_rtx[64]); | |||
953 | rtx test = x; | |||
954 | if (GET_CODE (test)((enum rtx_code) (test)->code) == CONST) | |||
955 | test = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); | |||
956 | if (GET_CODE (test)((enum rtx_code) (test)->code) == PLUS) | |||
957 | { | |||
958 | base = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); | |||
959 | test = XEXP (test, 1)(((test)->u.fld[1]).rt_rtx); | |||
960 | } | |||
961 | if (poly_int_rtx_p (test, offset_out)) | |||
962 | return base; | |||
963 | *offset_out = 0; | |||
964 | return x; | |||
965 | } | |||
966 | ||||
967 | /* Return the argument size in REG_ARGS_SIZE note X. */ | |||
968 | ||||
969 | poly_int64 | |||
970 | get_args_size (const_rtx x) | |||
971 | { | |||
972 | gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE)((void)(!(((enum reg_note) ((machine_mode) (x)->mode)) == REG_ARGS_SIZE ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 972, __FUNCTION__), 0 : 0)); | |||
973 | return rtx_to_poly_int64 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
974 | } | |||
975 | ||||
976 | /* Return the number of places FIND appears within X. If COUNT_DEST is | |||
977 | zero, we do not count occurrences inside the destination of a SET. */ | |||
978 | ||||
979 | int | |||
980 | count_occurrences (const_rtx x, const_rtx find, int count_dest) | |||
981 | { | |||
982 | int i, j; | |||
983 | enum rtx_code code; | |||
984 | const char *format_ptr; | |||
985 | int count; | |||
986 | ||||
987 | if (x == find) | |||
988 | return 1; | |||
989 | ||||
990 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
991 | ||||
992 | switch (code) | |||
993 | { | |||
994 | case REG: | |||
995 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
996 | case SYMBOL_REF: | |||
997 | case CODE_LABEL: | |||
998 | case PC: | |||
999 | return 0; | |||
1000 | ||||
1001 | case EXPR_LIST: | |||
1002 | count = count_occurrences (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), find, count_dest); | |||
1003 | if (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | |||
1004 | count += count_occurrences (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), find, count_dest); | |||
1005 | return count; | |||
1006 | ||||
1007 | case MEM: | |||
1008 | if (MEM_P (find)(((enum rtx_code) (find)->code) == MEM) && rtx_equal_p (x, find)) | |||
1009 | return 1; | |||
1010 | break; | |||
1011 | ||||
1012 | case SET: | |||
1013 | if (SET_DEST (x)(((x)->u.fld[0]).rt_rtx) == find && ! count_dest) | |||
1014 | return count_occurrences (SET_SRC (x)(((x)->u.fld[1]).rt_rtx), find, count_dest); | |||
1015 | break; | |||
1016 | ||||
1017 | default: | |||
1018 | break; | |||
1019 | } | |||
1020 | ||||
1021 | format_ptr = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
1022 | count = 0; | |||
1023 | ||||
1024 | for (i = 0; i < GET_RTX_LENGTH (code)(rtx_length[(int) (code)]); i++) | |||
1025 | { | |||
1026 | switch (*format_ptr++) | |||
1027 | { | |||
1028 | case 'e': | |||
1029 | count += count_occurrences (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), find, count_dest); | |||
1030 | break; | |||
1031 | ||||
1032 | case 'E': | |||
1033 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
1034 | count += count_occurrences (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), find, count_dest); | |||
1035 | break; | |||
1036 | } | |||
1037 | } | |||
1038 | return count; | |||
1039 | } | |||
1040 | ||||
1041 | ||||
1042 | /* Return TRUE if OP is a register or subreg of a register that | |||
1043 | holds an unsigned quantity. Otherwise, return FALSE. */ | |||
1044 | ||||
1045 | bool | |||
1046 | unsigned_reg_p (rtx op) | |||
1047 | { | |||
1048 | if (REG_P (op)(((enum rtx_code) (op)->code) == REG) | |||
1049 | && REG_EXPR (op)(((&(op)->u.reg)->attrs) == 0 ? 0 : ((&(op)-> u.reg)->attrs)->decl) | |||
1050 | && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op)))((tree_class_check ((((contains_struct_check (((((&(op)-> u.reg)->attrs) == 0 ? 0 : ((&(op)->u.reg)->attrs )->decl)), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->base.u.bits.unsigned_flag)) | |||
1051 | return true; | |||
1052 | ||||
1053 | if (GET_CODE (op)((enum rtx_code) (op)->code) == SUBREG | |||
1054 | && SUBREG_PROMOTED_SIGN (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ("SUBREG_PROMOTED_SIGN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1054, __FUNCTION__); _rtx; })->volatil) ? 1 : (op)->unchanging - 1)) | |||
1055 | return true; | |||
1056 | ||||
1057 | return false; | |||
1058 | } | |||
1059 | ||||
1060 | ||||
1061 | /* Nonzero if register REG appears somewhere within IN. | |||
1062 | Also works if REG is not a register; in this case it checks | |||
1063 | for a subexpression of IN that is Lisp "equal" to REG. */ | |||
1064 | ||||
1065 | int | |||
1066 | reg_mentioned_p (const_rtx reg, const_rtx in) | |||
1067 | { | |||
1068 | const char *fmt; | |||
1069 | int i; | |||
1070 | enum rtx_code code; | |||
1071 | ||||
1072 | if (in == 0) | |||
1073 | return 0; | |||
1074 | ||||
1075 | if (reg == in) | |||
1076 | return 1; | |||
1077 | ||||
1078 | if (GET_CODE (in)((enum rtx_code) (in)->code) == LABEL_REF) | |||
1079 | return reg == label_ref_label (in); | |||
1080 | ||||
1081 | code = GET_CODE (in)((enum rtx_code) (in)->code); | |||
1082 | ||||
1083 | switch (code) | |||
1084 | { | |||
1085 | /* Compare registers by number. */ | |||
1086 | case REG: | |||
1087 | return REG_P (reg)(((enum rtx_code) (reg)->code) == REG) && REGNO (in)(rhs_regno(in)) == REGNO (reg)(rhs_regno(reg)); | |||
1088 | ||||
1089 | /* These codes have no constituent expressions | |||
1090 | and are unique. */ | |||
1091 | case SCRATCH: | |||
1092 | case PC: | |||
1093 | return 0; | |||
1094 | ||||
1095 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
1096 | /* These are kept unique for a given value. */ | |||
1097 | return 0; | |||
1098 | ||||
1099 | default: | |||
1100 | break; | |||
1101 | } | |||
1102 | ||||
1103 | if (GET_CODE (reg)((enum rtx_code) (reg)->code) == code && rtx_equal_p (reg, in)) | |||
1104 | return 1; | |||
1105 | ||||
1106 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
1107 | ||||
1108 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
1109 | { | |||
1110 | if (fmt[i] == 'E') | |||
1111 | { | |||
1112 | int j; | |||
1113 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
1114 | if (reg_mentioned_p (reg, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
1115 | return 1; | |||
1116 | } | |||
1117 | else if (fmt[i] == 'e' | |||
1118 | && reg_mentioned_p (reg, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | |||
1119 | return 1; | |||
1120 | } | |||
1121 | return 0; | |||
1122 | } | |||
1123 | ||||
1124 | /* Return 1 if in between BEG and END, exclusive of BEG and END, there is | |||
1125 | no CODE_LABEL insn. */ | |||
1126 | ||||
1127 | int | |||
1128 | no_labels_between_p (const rtx_insn *beg, const rtx_insn *end) | |||
1129 | { | |||
1130 | rtx_insn *p; | |||
1131 | if (beg == end) | |||
1132 | return 0; | |||
1133 | for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p)) | |||
1134 | if (LABEL_P (p)(((enum rtx_code) (p)->code) == CODE_LABEL)) | |||
1135 | return 0; | |||
1136 | return 1; | |||
1137 | } | |||
1138 | ||||
1139 | /* Nonzero if register REG is used in an insn between | |||
1140 | FROM_INSN and TO_INSN (exclusive of those two). */ | |||
1141 | ||||
1142 | int | |||
1143 | reg_used_between_p (const_rtx reg, const rtx_insn *from_insn, | |||
1144 | const rtx_insn *to_insn) | |||
1145 | { | |||
1146 | rtx_insn *insn; | |||
1147 | ||||
1148 | if (from_insn == to_insn) | |||
1149 | return 0; | |||
1150 | ||||
1151 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) | |||
1152 | if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) | |||
1153 | && (reg_overlap_mentioned_p (reg, PATTERN (insn)) | |||
1154 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && find_reg_fusage (insn, USE, reg)))) | |||
1155 | return 1; | |||
1156 | return 0; | |||
1157 | } | |||
1158 | ||||
1159 | /* Nonzero if the old value of X, a register, is referenced in BODY. If X | |||
1160 | is entirely replaced by a new value and the only use is as a SET_DEST, | |||
1161 | we do not consider it a reference. */ | |||
1162 | ||||
1163 | int | |||
1164 | reg_referenced_p (const_rtx x, const_rtx body) | |||
1165 | { | |||
1166 | int i; | |||
1167 | ||||
1168 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) | |||
1169 | { | |||
1170 | case SET: | |||
1171 | if (reg_overlap_mentioned_p (x, SET_SRC (body)(((body)->u.fld[1]).rt_rtx))) | |||
1172 | return 1; | |||
1173 | ||||
1174 | /* If the destination is anything other than PC, a REG or a SUBREG | |||
1175 | of a REG that occupies all of the REG, the insn references X if | |||
1176 | it is mentioned in the destination. */ | |||
1177 | if (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) != PC | |||
1178 | && !REG_P (SET_DEST (body))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == REG) | |||
1179 | && ! (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == SUBREG | |||
1180 | && REG_P (SUBREG_REG (SET_DEST (body)))(((enum rtx_code) (((((((body)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))->code) == REG) | |||
1181 | && !read_modify_subreg_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) | |||
1182 | && reg_overlap_mentioned_p (x, SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) | |||
1183 | return 1; | |||
1184 | return 0; | |||
1185 | ||||
1186 | case ASM_OPERANDS: | |||
1187 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1188 | if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]))) | |||
1189 | return 1; | |||
1190 | return 0; | |||
1191 | ||||
1192 | case CALL: | |||
1193 | case USE: | |||
1194 | case IF_THEN_ELSE: | |||
1195 | return reg_overlap_mentioned_p (x, body); | |||
1196 | ||||
1197 | case TRAP_IF: | |||
1198 | return reg_overlap_mentioned_p (x, TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx)); | |||
1199 | ||||
1200 | case PREFETCH: | |||
1201 | return reg_overlap_mentioned_p (x, XEXP (body, 0)(((body)->u.fld[0]).rt_rtx)); | |||
1202 | ||||
1203 | case UNSPEC: | |||
1204 | case UNSPEC_VOLATILE: | |||
1205 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1206 | if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) | |||
1207 | return 1; | |||
1208 | return 0; | |||
1209 | ||||
1210 | case PARALLEL: | |||
1211 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1212 | if (reg_referenced_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) | |||
1213 | return 1; | |||
1214 | return 0; | |||
1215 | ||||
1216 | case CLOBBER: | |||
1217 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) | |||
1218 | if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) | |||
1219 | return 1; | |||
1220 | return 0; | |||
1221 | ||||
1222 | case COND_EXEC: | |||
1223 | if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx))) | |||
1224 | return 1; | |||
1225 | return reg_referenced_p (x, COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx)); | |||
1226 | ||||
1227 | default: | |||
1228 | return 0; | |||
1229 | } | |||
1230 | } | |||
1231 | ||||
1232 | /* Nonzero if register REG is set or clobbered in an insn between | |||
1233 | FROM_INSN and TO_INSN (exclusive of those two). */ | |||
1234 | ||||
1235 | int | |||
1236 | reg_set_between_p (const_rtx reg, const rtx_insn *from_insn, | |||
1237 | const rtx_insn *to_insn) | |||
1238 | { | |||
1239 | const rtx_insn *insn; | |||
1240 | ||||
1241 | if (from_insn == to_insn) | |||
1242 | return 0; | |||
1243 | ||||
1244 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) | |||
1245 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && reg_set_p (reg, insn)) | |||
1246 | return 1; | |||
1247 | return 0; | |||
1248 | } | |||
1249 | ||||
1250 | /* Return true if REG is set or clobbered inside INSN. */ | |||
1251 | ||||
1252 | int | |||
1253 | reg_set_p (const_rtx reg, const_rtx insn) | |||
1254 | { | |||
1255 | /* After delay slot handling, call and branch insns might be in a | |||
1256 | sequence. Check all the elements there. */ | |||
1257 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == SEQUENCE) | |||
1258 | { | |||
1259 | for (int i = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); ++i) | |||
1260 | if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->elem[i]))) | |||
1261 | return true; | |||
1262 | ||||
1263 | return false; | |||
1264 | } | |||
1265 | ||||
1266 | /* We can be passed an insn or part of one. If we are passed an insn, | |||
1267 | check if a side-effect of the insn clobbers REG. */ | |||
1268 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) | |||
1269 | && (FIND_REG_INC_NOTE (insn, reg)0 | |||
1270 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) | |||
1271 | && ((REG_P (reg)(((enum rtx_code) (reg)->code) == REG) | |||
1272 | && REGNO (reg)(rhs_regno(reg)) < FIRST_PSEUDO_REGISTER76 | |||
1273 | && (insn_callee_abi (as_a<const rtx_insn *> (insn)) | |||
1274 | .clobbers_reg_p (GET_MODE (reg)((machine_mode) (reg)->mode), REGNO (reg)(rhs_regno(reg))))) | |||
1275 | || MEM_P (reg)(((enum rtx_code) (reg)->code) == MEM) | |||
1276 | || find_reg_fusage (insn, CLOBBER, reg))))) | |||
1277 | return true; | |||
1278 | ||||
1279 | /* There are no REG_INC notes for SP autoinc. */ | |||
1280 | if (reg == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | |||
1281 | { | |||
1282 | subrtx_var_iterator::array_type array; | |||
1283 | FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)for (subrtx_var_iterator iter (array, PATTERN (insn), rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
1284 | { | |||
1285 | rtx mem = *iter; | |||
1286 | if (mem | |||
1287 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) | |||
1288 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) | |||
1289 | { | |||
1290 | if (XEXP (XEXP (mem, 0), 0)((((((mem)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | |||
1291 | return true; | |||
1292 | iter.skip_subrtxes (); | |||
1293 | } | |||
1294 | } | |||
1295 | } | |||
1296 | ||||
1297 | return set_of (reg, insn) != NULL_RTX(rtx) 0; | |||
1298 | } | |||
1299 | ||||
1300 | /* Similar to reg_set_between_p, but check all registers in X. Return 0 | |||
1301 | only if none of them are modified between START and END. Return 1 if | |||
1302 | X contains a MEM; this routine does use memory aliasing. */ | |||
1303 | ||||
1304 | int | |||
1305 | modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end) | |||
1306 | { | |||
1307 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
1308 | const char *fmt; | |||
1309 | int i, j; | |||
1310 | rtx_insn *insn; | |||
1311 | ||||
1312 | if (start == end) | |||
1313 | return 0; | |||
1314 | ||||
1315 | switch (code) | |||
1316 | { | |||
1317 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
1318 | case CONST: | |||
1319 | case SYMBOL_REF: | |||
1320 | case LABEL_REF: | |||
1321 | return 0; | |||
1322 | ||||
1323 | case PC: | |||
1324 | return 1; | |||
1325 | ||||
1326 | case MEM: | |||
1327 | if (modified_between_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), start, end)) | |||
1328 | return 1; | |||
1329 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1329, __FUNCTION__); _rtx; })->unchanging)) | |||
1330 | return 0; | |||
1331 | for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn)) | |||
1332 | if (memory_modified_in_insn_p (x, insn)) | |||
1333 | return 1; | |||
1334 | return 0; | |||
1335 | ||||
1336 | case REG: | |||
1337 | return reg_set_between_p (x, start, end); | |||
1338 | ||||
1339 | default: | |||
1340 | break; | |||
1341 | } | |||
1342 | ||||
1343 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
1344 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
1345 | { | |||
1346 | if (fmt[i] == 'e' && modified_between_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), start, end)) | |||
1347 | return 1; | |||
1348 | ||||
1349 | else if (fmt[i] == 'E') | |||
1350 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
1351 | if (modified_between_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), start, end)) | |||
1352 | return 1; | |||
1353 | } | |||
1354 | ||||
1355 | return 0; | |||
1356 | } | |||
1357 | ||||
1358 | /* Similar to reg_set_p, but check all registers in X. Return 0 only if none | |||
1359 | of them are modified in INSN. Return 1 if X contains a MEM; this routine | |||
1360 | does use memory aliasing. */ | |||
1361 | ||||
1362 | int | |||
1363 | modified_in_p (const_rtx x, const_rtx insn) | |||
1364 | { | |||
1365 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
1366 | const char *fmt; | |||
1367 | int i, j; | |||
1368 | ||||
1369 | switch (code) | |||
1370 | { | |||
1371 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
1372 | case CONST: | |||
1373 | case SYMBOL_REF: | |||
1374 | case LABEL_REF: | |||
1375 | return 0; | |||
1376 | ||||
1377 | case PC: | |||
1378 | return 1; | |||
1379 | ||||
1380 | case MEM: | |||
1381 | if (modified_in_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), insn)) | |||
1382 | return 1; | |||
1383 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1383, __FUNCTION__); _rtx; })->unchanging)) | |||
1384 | return 0; | |||
1385 | if (memory_modified_in_insn_p (x, insn)) | |||
1386 | return 1; | |||
1387 | return 0; | |||
1388 | ||||
1389 | case REG: | |||
1390 | return reg_set_p (x, insn); | |||
1391 | ||||
1392 | default: | |||
1393 | break; | |||
1394 | } | |||
1395 | ||||
1396 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
1397 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
1398 | { | |||
1399 | if (fmt[i] == 'e' && modified_in_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), insn)) | |||
1400 | return 1; | |||
1401 | ||||
1402 | else if (fmt[i] == 'E') | |||
1403 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
1404 | if (modified_in_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), insn)) | |||
1405 | return 1; | |||
1406 | } | |||
1407 | ||||
1408 | return 0; | |||
1409 | } | |||
1410 | ||||
1411 | /* Return true if X is a SUBREG and if storing a value to X would | |||
1412 | preserve some of its SUBREG_REG. For example, on a normal 32-bit | |||
1413 | target, using a SUBREG to store to one half of a DImode REG would | |||
1414 | preserve the other half. */ | |||
1415 | ||||
1416 | bool | |||
1417 | read_modify_subreg_p (const_rtx x) | |||
1418 | { | |||
1419 | if (GET_CODE (x)((enum rtx_code) (x)->code) != SUBREG) | |||
1420 | return false; | |||
1421 | poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | |||
1422 | poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x)((machine_mode) (x)->mode)); | |||
1423 | poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)))ix86_regmode_natural_size (((machine_mode) ((((x)->u.fld[0 ]).rt_rtx))->mode)); | |||
1424 | /* The inner and outer modes of a subreg must be ordered, so that we | |||
1425 | can tell whether they're paradoxical or partial. */ | |||
1426 | gcc_checking_assert (ordered_p (isize, osize))((void)(!(ordered_p (isize, osize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1426, __FUNCTION__), 0 : 0)); | |||
1427 | return (maybe_gt (isize, osize)maybe_lt (osize, isize) && maybe_gt (isize, regsize)maybe_lt (regsize, isize)); | |||
1428 | } | |||
1429 | ||||
1430 | /* Helper function for set_of. */ | |||
1431 | struct set_of_data | |||
1432 | { | |||
1433 | const_rtx found; | |||
1434 | const_rtx pat; | |||
1435 | }; | |||
1436 | ||||
1437 | static void | |||
1438 | set_of_1 (rtx x, const_rtx pat, void *data1) | |||
1439 | { | |||
1440 | struct set_of_data *const data = (struct set_of_data *) (data1); | |||
1441 | if (rtx_equal_p (x, data->pat) | |||
1442 | || (!MEM_P (x)(((enum rtx_code) (x)->code) == MEM) && reg_overlap_mentioned_p (data->pat, x))) | |||
1443 | data->found = pat; | |||
1444 | } | |||
1445 | ||||
1446 | /* Give an INSN, return a SET or CLOBBER expression that does modify PAT | |||
1447 | (either directly or via STRICT_LOW_PART and similar modifiers). */ | |||
1448 | const_rtx | |||
1449 | set_of (const_rtx pat, const_rtx insn) | |||
1450 | { | |||
1451 | struct set_of_data data; | |||
1452 | data.found = NULL_RTX(rtx) 0; | |||
1453 | data.pat = pat; | |||
1454 | note_pattern_stores (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) ? PATTERN (insn) : insn, set_of_1, &data); | |||
1455 | return data.found; | |||
1456 | } | |||
1457 | ||||
1458 | /* Check whether instruction pattern PAT contains a SET with the following | |||
1459 | properties: | |||
1460 | ||||
1461 | - the SET is executed unconditionally; and | |||
1462 | - either: | |||
1463 | - the destination of the SET is a REG that contains REGNO; or | |||
1464 | - both: | |||
1465 | - the destination of the SET is a SUBREG of such a REG; and | |||
1466 | - writing to the subreg clobbers all of the SUBREG_REG | |||
1467 | (in other words, read_modify_subreg_p is false). | |||
1468 | ||||
1469 | If PAT does have a SET like that, return the set, otherwise return null. | |||
1470 | ||||
1471 | This is intended to be an alternative to single_set for passes that | |||
1472 | can handle patterns with multiple_sets. */ | |||
1473 | rtx | |||
1474 | simple_regno_set (rtx pat, unsigned int regno) | |||
1475 | { | |||
1476 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | |||
1477 | { | |||
1478 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; | |||
1479 | for (int i = 0; i < last; ++i) | |||
1480 | if (rtx set = simple_regno_set (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]), regno)) | |||
1481 | return set; | |||
1482 | ||||
1483 | pat = XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last]); | |||
1484 | } | |||
1485 | ||||
1486 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET | |||
1487 | && covers_regno_no_parallel_p (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx), regno)) | |||
1488 | return pat; | |||
1489 | ||||
1490 | return nullptr; | |||
1491 | } | |||
1492 | ||||
1493 | /* Add all hard register in X to *PSET. */ | |||
1494 | void | |||
1495 | find_all_hard_regs (const_rtx x, HARD_REG_SET *pset) | |||
1496 | { | |||
1497 | subrtx_iterator::array_type array; | |||
1498 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
1499 | { | |||
1500 | const_rtx x = *iter; | |||
1501 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76) | |||
1502 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); | |||
1503 | } | |||
1504 | } | |||
1505 | ||||
1506 | /* This function, called through note_stores, collects sets and | |||
1507 | clobbers of hard registers in a HARD_REG_SET, which is pointed to | |||
1508 | by DATA. */ | |||
1509 | void | |||
1510 | record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) | |||
1511 | { | |||
1512 | HARD_REG_SET *pset = (HARD_REG_SET *)data; | |||
1513 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && HARD_REGISTER_P (x)((((rhs_regno(x))) < 76))) | |||
1514 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); | |||
1515 | } | |||
1516 | ||||
1517 | /* Examine INSN, and compute the set of hard registers written by it. | |||
1518 | Store it in *PSET. Should only be called after reload. | |||
1519 | ||||
1520 | IMPLICIT is true if we should include registers that are fully-clobbered | |||
1521 | by calls. This should be used with caution, since it doesn't include | |||
1522 | partially-clobbered registers. */ | |||
1523 | void | |||
1524 | find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit) | |||
1525 | { | |||
1526 | rtx link; | |||
1527 | ||||
1528 | CLEAR_HARD_REG_SET (*pset); | |||
1529 | note_stores (insn, record_hard_reg_sets, pset); | |||
1530 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && implicit) | |||
1531 | *pset |= insn_callee_abi (insn).full_reg_clobbers (); | |||
1532 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
1533 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_INC) | |||
1534 | record_hard_reg_sets (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), NULLnullptr, pset); | |||
1535 | } | |||
1536 | ||||
1537 | /* Like record_hard_reg_sets, but called through note_uses. */ | |||
1538 | void | |||
1539 | record_hard_reg_uses (rtx *px, void *data) | |||
1540 | { | |||
1541 | find_all_hard_regs (*px, (HARD_REG_SET *) data); | |||
1542 | } | |||
1543 | ||||
1544 | /* Given an INSN, return a SET expression if this insn has only a single SET. | |||
1545 | It may also have CLOBBERs, USEs, or SET whose output | |||
1546 | will not be used, which we ignore. */ | |||
1547 | ||||
1548 | rtx | |||
1549 | single_set_2 (const rtx_insn *insn, const_rtx pat) | |||
1550 | { | |||
1551 | rtx set = NULLnullptr; | |||
1552 | int set_verified = 1; | |||
1553 | int i; | |||
1554 | ||||
1555 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | |||
1556 | { | |||
1557 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) | |||
1558 | { | |||
1559 | rtx sub = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); | |||
1560 | switch (GET_CODE (sub)((enum rtx_code) (sub)->code)) | |||
1561 | { | |||
1562 | case USE: | |||
1563 | case CLOBBER: | |||
1564 | break; | |||
1565 | ||||
1566 | case SET: | |||
1567 | /* We can consider insns having multiple sets, where all | |||
1568 | but one are dead as single set insns. In common case | |||
1569 | only single set is present in the pattern so we want | |||
1570 | to avoid checking for REG_UNUSED notes unless necessary. | |||
1571 | ||||
1572 | When we reach set first time, we just expect this is | |||
1573 | the single set we are looking for and only when more | |||
1574 | sets are found in the insn, we check them. */ | |||
1575 | if (!set_verified) | |||
1576 | { | |||
1577 | if (find_reg_note (insn, REG_UNUSED, SET_DEST (set)(((set)->u.fld[0]).rt_rtx)) | |||
1578 | && !side_effects_p (set)) | |||
1579 | set = NULLnullptr; | |||
1580 | else | |||
1581 | set_verified = 1; | |||
1582 | } | |||
1583 | if (!set) | |||
1584 | set = sub, set_verified = 0; | |||
1585 | else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub)(((sub)->u.fld[0]).rt_rtx)) | |||
1586 | || side_effects_p (sub)) | |||
1587 | return NULL_RTX(rtx) 0; | |||
1588 | break; | |||
1589 | ||||
1590 | default: | |||
1591 | return NULL_RTX(rtx) 0; | |||
1592 | } | |||
1593 | } | |||
1594 | } | |||
1595 | return set; | |||
1596 | } | |||
1597 | ||||
1598 | /* Given an INSN, return nonzero if it has more than one SET, else return | |||
1599 | zero. */ | |||
1600 | ||||
1601 | int | |||
1602 | multiple_sets (const_rtx insn) | |||
1603 | { | |||
1604 | int found; | |||
1605 | int i; | |||
1606 | ||||
1607 | /* INSN must be an insn. */ | |||
1608 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | |||
1609 | return 0; | |||
1610 | ||||
1611 | /* Only a PARALLEL can have multiple SETs. */ | |||
1612 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL) | |||
1613 | { | |||
1614 | for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); i++) | |||
1615 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i))((enum rtx_code) ((((((PATTERN (insn))->u.fld[0]).rt_rtvec ))->elem[i]))->code) == SET) | |||
1616 | { | |||
1617 | /* If we have already found a SET, then return now. */ | |||
1618 | if (found) | |||
1619 | return 1; | |||
1620 | else | |||
1621 | found = 1; | |||
1622 | } | |||
1623 | } | |||
1624 | ||||
1625 | /* Either zero or one SET. */ | |||
1626 | return 0; | |||
1627 | } | |||
1628 | ||||
1629 | /* Return nonzero if the destination of SET equals the source | |||
1630 | and there are no side effects. */ | |||
1631 | ||||
1632 | int | |||
1633 | set_noop_p (const_rtx set) | |||
1634 | { | |||
1635 | rtx src = SET_SRC (set)(((set)->u.fld[1]).rt_rtx); | |||
1636 | rtx dst = SET_DEST (set)(((set)->u.fld[0]).rt_rtx); | |||
1637 | ||||
1638 | if (dst == pc_rtx && src == pc_rtx) | |||
1639 | return 1; | |||
1640 | ||||
1641 | if (MEM_P (dst)(((enum rtx_code) (dst)->code) == MEM) && MEM_P (src)(((enum rtx_code) (src)->code) == MEM)) | |||
1642 | return rtx_equal_p (dst, src) && !side_effects_p (dst); | |||
1643 | ||||
1644 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == ZERO_EXTRACT) | |||
1645 | return rtx_equal_p (XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx), src) | |||
1646 | && !BITS_BIG_ENDIAN0 && XEXP (dst, 2)(((dst)->u.fld[2]).rt_rtx) == const0_rtx(const_int_rtx[64]) | |||
1647 | && !side_effects_p (src); | |||
1648 | ||||
1649 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == STRICT_LOW_PART) | |||
1650 | dst = XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx); | |||
1651 | ||||
1652 | if (GET_CODE (src)((enum rtx_code) (src)->code) == SUBREG && GET_CODE (dst)((enum rtx_code) (dst)->code) == SUBREG) | |||
1653 | { | |||
1654 | if (maybe_ne (SUBREG_BYTE (src)(((src)->u.fld[1]).rt_subreg), SUBREG_BYTE (dst)(((dst)->u.fld[1]).rt_subreg))) | |||
1655 | return 0; | |||
1656 | src = SUBREG_REG (src)(((src)->u.fld[0]).rt_rtx); | |||
1657 | dst = SUBREG_REG (dst)(((dst)->u.fld[0]).rt_rtx); | |||
1658 | if (GET_MODE (src)((machine_mode) (src)->mode) != GET_MODE (dst)((machine_mode) (dst)->mode)) | |||
1659 | /* It is hard to tell whether subregs refer to the same bits, so act | |||
1660 | conservatively and return 0. */ | |||
1661 | return 0; | |||
1662 | } | |||
1663 | ||||
1664 | /* It is a NOOP if destination overlaps with selected src vector | |||
1665 | elements. */ | |||
1666 | if (GET_CODE (src)((enum rtx_code) (src)->code) == VEC_SELECT | |||
1667 | && REG_P (XEXP (src, 0))(((enum rtx_code) ((((src)->u.fld[0]).rt_rtx))->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) | |||
1668 | && HARD_REGISTER_P (XEXP (src, 0))((((rhs_regno((((src)->u.fld[0]).rt_rtx)))) < 76)) | |||
1669 | && HARD_REGISTER_P (dst)((((rhs_regno(dst))) < 76))) | |||
1670 | { | |||
1671 | int i; | |||
1672 | rtx par = XEXP (src, 1)(((src)->u.fld[1]).rt_rtx); | |||
1673 | rtx src0 = XEXP (src, 0)(((src)->u.fld[0]).rt_rtx); | |||
1674 | poly_int64 c0; | |||
1675 | if (!poly_int_rtx_p (XVECEXP (par, 0, 0)(((((par)->u.fld[0]).rt_rtvec))->elem[0]), &c0)) | |||
1676 | return 0; | |||
1677 | poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0))mode_to_unit_size (((machine_mode) (src0)->mode)) * c0; | |||
1678 | ||||
1679 | for (i = 1; i < XVECLEN (par, 0)(((((par)->u.fld[0]).rt_rtvec))->num_elem); i++) | |||
1680 | { | |||
1681 | poly_int64 c0i; | |||
1682 | if (!poly_int_rtx_p (XVECEXP (par, 0, i)(((((par)->u.fld[0]).rt_rtvec))->elem[i]), &c0i) | |||
1683 | || maybe_ne (c0i, c0 + i)) | |||
1684 | return 0; | |||
1685 | } | |||
1686 | return | |||
1687 | REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))(targetm.can_change_mode_class (((machine_mode) (src0)->mode ), ((machine_mode) (dst)->mode), (regclass_map[((rhs_regno (dst)))]))) | |||
1688 | && simplify_subreg_regno (REGNO (src0)(rhs_regno(src0)), GET_MODE (src0)((machine_mode) (src0)->mode), | |||
1689 | offset, GET_MODE (dst)((machine_mode) (dst)->mode)) == (int) REGNO (dst)(rhs_regno(dst)); | |||
1690 | } | |||
1691 | ||||
1692 | return (REG_P (src)(((enum rtx_code) (src)->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) | |||
1693 | && REGNO (src)(rhs_regno(src)) == REGNO (dst)(rhs_regno(dst))); | |||
1694 | } | |||
1695 | ||||
1696 | /* Return nonzero if an insn consists only of SETs, each of which only sets a | |||
1697 | value to itself. */ | |||
1698 | ||||
1699 | int | |||
1700 | noop_move_p (const rtx_insn *insn) | |||
1701 | { | |||
1702 | rtx pat = PATTERN (insn); | |||
1703 | ||||
1704 | if (INSN_CODE (insn)(((insn)->u.fld[5]).rt_int) == NOOP_MOVE_INSN_CODE2147483647) | |||
1705 | return 1; | |||
1706 | ||||
1707 | /* Check the code to be executed for COND_EXEC. */ | |||
1708 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == COND_EXEC) | |||
1709 | pat = COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx); | |||
1710 | ||||
1711 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET && set_noop_p (pat)) | |||
1712 | return 1; | |||
1713 | ||||
1714 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | |||
1715 | { | |||
1716 | int i; | |||
1717 | /* If nothing but SETs of registers to themselves, | |||
1718 | this insn can also be deleted. */ | |||
1719 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) | |||
1720 | { | |||
1721 | rtx tem = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); | |||
1722 | ||||
1723 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) == USE || GET_CODE (tem)((enum rtx_code) (tem)->code) == CLOBBER) | |||
1724 | continue; | |||
1725 | ||||
1726 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) != SET || ! set_noop_p (tem)) | |||
1727 | return 0; | |||
1728 | } | |||
1729 | ||||
1730 | return 1; | |||
1731 | } | |||
1732 | return 0; | |||
1733 | } | |||
1734 | ||||
1735 | ||||
1736 | /* Return nonzero if register in range [REGNO, ENDREGNO) | |||
1737 | appears either explicitly or implicitly in X | |||
1738 | other than being stored into. | |||
1739 | ||||
1740 | References contained within the substructure at LOC do not count. | |||
1741 | LOC may be zero, meaning don't ignore anything. */ | |||
1742 | ||||
1743 | bool | |||
1744 | refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x, | |||
1745 | rtx *loc) | |||
1746 | { | |||
1747 | int i; | |||
1748 | unsigned int x_regno; | |||
1749 | RTX_CODEenum rtx_code code; | |||
1750 | const char *fmt; | |||
1751 | ||||
1752 | repeat: | |||
1753 | /* The contents of a REG_NONNEG note is always zero, so we must come here | |||
1754 | upon repeat in case the last REG_NOTE is a REG_NONNEG note. */ | |||
1755 | if (x == 0) | |||
1756 | return false; | |||
1757 | ||||
1758 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
1759 | ||||
1760 | switch (code) | |||
1761 | { | |||
1762 | case REG: | |||
1763 | x_regno = REGNO (x)(rhs_regno(x)); | |||
1764 | ||||
1765 | /* If we modifying the stack, frame, or argument pointer, it will | |||
1766 | clobber a virtual register. In fact, we could be more precise, | |||
1767 | but it isn't worth it. */ | |||
1768 | if ((x_regno == STACK_POINTER_REGNUM7 | |||
1769 | || (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 | |||
1770 | && x_regno == ARG_POINTER_REGNUM16) | |||
1771 | || x_regno == FRAME_POINTER_REGNUM19) | |||
1772 | && regno >= FIRST_VIRTUAL_REGISTER(76) && regno <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | |||
1773 | return true; | |||
1774 | ||||
1775 | return endregno > x_regno && regno < END_REGNO (x); | |||
1776 | ||||
1777 | case SUBREG: | |||
1778 | /* If this is a SUBREG of a hard reg, we can see exactly which | |||
1779 | registers are being modified. Otherwise, handle normally. */ | |||
1780 | if (REG_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) | |||
1781 | && REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76) | |||
1782 | { | |||
1783 | unsigned int inner_regno = subreg_regno (x); | |||
1784 | unsigned int inner_endregno | |||
1785 | = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER76 | |||
1786 | ? subreg_nregs (x) : 1); | |||
1787 | ||||
1788 | return endregno > inner_regno && regno < inner_endregno; | |||
1789 | } | |||
1790 | break; | |||
1791 | ||||
1792 | case CLOBBER: | |||
1793 | case SET: | |||
1794 | if (&SET_DEST (x)(((x)->u.fld[0]).rt_rtx) != loc | |||
1795 | /* Note setting a SUBREG counts as referring to the REG it is in for | |||
1796 | a pseudo but not for hard registers since we can | |||
1797 | treat each word individually. */ | |||
1798 | && ((GET_CODE (SET_DEST (x))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SUBREG | |||
1799 | && loc != &SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) | |||
1800 | && REG_P (SUBREG_REG (SET_DEST (x)))(((enum rtx_code) (((((((x)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) | |||
1801 | && REGNO (SUBREG_REG (SET_DEST (x)))(rhs_regno(((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx ))) >= FIRST_PSEUDO_REGISTER76 | |||
1802 | && refers_to_regno_p (regno, endregno, | |||
1803 | SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), loc)) | |||
1804 | || (!REG_P (SET_DEST (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) | |||
1805 | && refers_to_regno_p (regno, endregno, SET_DEST (x)(((x)->u.fld[0]).rt_rtx), loc)))) | |||
1806 | return true; | |||
1807 | ||||
1808 | if (code == CLOBBER || loc == &SET_SRC (x)(((x)->u.fld[1]).rt_rtx)) | |||
1809 | return false; | |||
1810 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); | |||
1811 | goto repeat; | |||
1812 | ||||
1813 | default: | |||
1814 | break; | |||
1815 | } | |||
1816 | ||||
1817 | /* X does not match, so try its subexpressions. */ | |||
1818 | ||||
1819 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
1820 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
1821 | { | |||
1822 | if (fmt[i] == 'e' && loc != &XEXP (x, i)(((x)->u.fld[i]).rt_rtx)) | |||
1823 | { | |||
1824 | if (i == 0) | |||
1825 | { | |||
1826 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
1827 | goto repeat; | |||
1828 | } | |||
1829 | else | |||
1830 | if (refers_to_regno_p (regno, endregno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx), loc)) | |||
1831 | return true; | |||
1832 | } | |||
1833 | else if (fmt[i] == 'E') | |||
1834 | { | |||
1835 | int j; | |||
1836 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
1837 | if (loc != &XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) | |||
1838 | && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), loc)) | |||
1839 | return true; | |||
1840 | } | |||
1841 | } | |||
1842 | return false; | |||
1843 | } | |||
1844 | ||||
1845 | /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG, | |||
1846 | we check if any register number in X conflicts with the relevant register | |||
1847 | numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN | |||
1848 | contains a MEM (we don't bother checking for memory addresses that can't | |||
1849 | conflict because we expect this to be a rare case. */ | |||
1850 | ||||
1851 | int | |||
1852 | reg_overlap_mentioned_p (const_rtx x, const_rtx in) | |||
1853 | { | |||
1854 | unsigned int regno, endregno; | |||
1855 | ||||
1856 | /* If either argument is a constant, then modifying X cannot | |||
1857 | affect IN. Here we look at IN, we can profitably combine | |||
1858 | CONSTANT_P (x) with the switch statement below. */ | |||
1859 | if (CONSTANT_P (in)((rtx_class[(int) (((enum rtx_code) (in)->code))]) == RTX_CONST_OBJ )) | |||
1860 | return 0; | |||
1861 | ||||
1862 | recurse: | |||
1863 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | |||
1864 | { | |||
1865 | case CLOBBER: | |||
1866 | case STRICT_LOW_PART: | |||
1867 | case ZERO_EXTRACT: | |||
1868 | case SIGN_EXTRACT: | |||
1869 | /* Overly conservative. */ | |||
1870 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
1871 | goto recurse; | |||
1872 | ||||
1873 | case SUBREG: | |||
1874 | regno = REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))); | |||
1875 | if (regno < FIRST_PSEUDO_REGISTER76) | |||
1876 | regno = subreg_regno (x); | |||
1877 | endregno = regno + (regno < FIRST_PSEUDO_REGISTER76 | |||
1878 | ? subreg_nregs (x) : 1); | |||
1879 | goto do_reg; | |||
1880 | ||||
1881 | case REG: | |||
1882 | regno = REGNO (x)(rhs_regno(x)); | |||
1883 | endregno = END_REGNO (x); | |||
1884 | do_reg: | |||
1885 | return refers_to_regno_p (regno, endregno, in, (rtx*) 0); | |||
1886 | ||||
1887 | case MEM: | |||
1888 | { | |||
1889 | const char *fmt; | |||
1890 | int i; | |||
1891 | ||||
1892 | if (MEM_P (in)(((enum rtx_code) (in)->code) == MEM)) | |||
1893 | return 1; | |||
1894 | ||||
1895 | fmt = GET_RTX_FORMAT (GET_CODE (in))(rtx_format[(int) (((enum rtx_code) (in)->code))]); | |||
1896 | for (i = GET_RTX_LENGTH (GET_CODE (in))(rtx_length[(int) (((enum rtx_code) (in)->code))]) - 1; i >= 0; i--) | |||
1897 | if (fmt[i] == 'e') | |||
1898 | { | |||
1899 | if (reg_overlap_mentioned_p (x, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | |||
1900 | return 1; | |||
1901 | } | |||
1902 | else if (fmt[i] == 'E') | |||
1903 | { | |||
1904 | int j; | |||
1905 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; --j) | |||
1906 | if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
1907 | return 1; | |||
1908 | } | |||
1909 | ||||
1910 | return 0; | |||
1911 | } | |||
1912 | ||||
1913 | case SCRATCH: | |||
1914 | case PC: | |||
1915 | return reg_mentioned_p (x, in); | |||
1916 | ||||
1917 | case PARALLEL: | |||
1918 | { | |||
1919 | int i; | |||
1920 | ||||
1921 | /* If any register in here refers to it we return true. */ | |||
1922 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1923 | if (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx) != 0 | |||
1924 | && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx), in)) | |||
1925 | return 1; | |||
1926 | return 0; | |||
1927 | } | |||
1928 | ||||
1929 | default: | |||
1930 | gcc_assert (CONSTANT_P (x))((void)(!(((rtx_class[(int) (((enum rtx_code) (x)->code))] ) == RTX_CONST_OBJ)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1930, __FUNCTION__), 0 : 0)); | |||
1931 | return 0; | |||
1932 | } | |||
1933 | } | |||
1934 | ||||
1935 | /* Call FUN on each register or MEM that is stored into or clobbered by X. | |||
1936 | (X would be the pattern of an insn). DATA is an arbitrary pointer, | |||
1937 | ignored by note_stores, but passed to FUN. | |||
1938 | ||||
1939 | FUN receives three arguments: | |||
1940 | 1. the REG, MEM or PC being stored in or clobbered, | |||
1941 | 2. the SET or CLOBBER rtx that does the store, | |||
1942 | 3. the pointer DATA provided to note_stores. | |||
1943 | ||||
1944 | If the item being stored in or clobbered is a SUBREG of a hard register, | |||
1945 | the SUBREG will be passed. */ | |||
1946 | ||||
1947 | void | |||
1948 | note_pattern_stores (const_rtx x, | |||
1949 | void (*fun) (rtx, const_rtx, void *), void *data) | |||
1950 | { | |||
1951 | int i; | |||
1952 | ||||
1953 | if (GET_CODE (x)((enum rtx_code) (x)->code) == COND_EXEC) | |||
1954 | x = COND_EXEC_CODE (x)(((x)->u.fld[1]).rt_rtx); | |||
1955 | ||||
1956 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET || GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) | |||
1957 | { | |||
1958 | rtx dest = SET_DEST (x)(((x)->u.fld[0]).rt_rtx); | |||
1959 | ||||
1960 | while ((GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG | |||
1961 | && (!REG_P (SUBREG_REG (dest))(((enum rtx_code) ((((dest)->u.fld[0]).rt_rtx))->code) == REG) | |||
1962 | || REGNO (SUBREG_REG (dest))(rhs_regno((((dest)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76)) | |||
1963 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT | |||
1964 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) | |||
1965 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); | |||
1966 | ||||
1967 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, | |||
1968 | each of whose first operand is a register. */ | |||
1969 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) | |||
1970 | { | |||
1971 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1972 | if (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) != 0) | |||
1973 | (*fun) (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx), x, data); | |||
1974 | } | |||
1975 | else | |||
1976 | (*fun) (dest, x, data); | |||
1977 | } | |||
1978 | ||||
1979 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) | |||
1980 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
1981 | note_pattern_stores (XVECEXP (x, 0, i)(((((x)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); | |||
1982 | } | |||
1983 | ||||
1984 | /* Same, but for an instruction. If the instruction is a call, include | |||
1985 | any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */ | |||
1986 | ||||
1987 | void | |||
1988 | note_stores (const rtx_insn *insn, | |||
1989 | void (*fun) (rtx, const_rtx, void *), void *data) | |||
1990 | { | |||
1991 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | |||
1992 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); | |||
1993 | link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
1994 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == CLOBBER) | |||
1995 | note_pattern_stores (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), fun, data); | |||
1996 | note_pattern_stores (PATTERN (insn), fun, data); | |||
1997 | } | |||
1998 | ||||
1999 | /* Like notes_stores, but call FUN for each expression that is being | |||
2000 | referenced in PBODY, a pointer to the PATTERN of an insn. We only call | |||
2001 | FUN for each expression, not any interior subexpressions. FUN receives a | |||
2002 | pointer to the expression and the DATA passed to this function. | |||
2003 | ||||
2004 | Note that this is not quite the same test as that done in reg_referenced_p | |||
2005 | since that considers something as being referenced if it is being | |||
2006 | partially set, while we do not. */ | |||
2007 | ||||
2008 | void | |||
2009 | note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data) | |||
2010 | { | |||
2011 | rtx body = *pbody; | |||
2012 | int i; | |||
2013 | ||||
2014 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) | |||
2015 | { | |||
2016 | case COND_EXEC: | |||
2017 | (*fun) (&COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx), data); | |||
2018 | note_uses (&COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx), fun, data); | |||
2019 | return; | |||
2020 | ||||
2021 | case PARALLEL: | |||
2022 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2023 | note_uses (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); | |||
2024 | return; | |||
2025 | ||||
2026 | case SEQUENCE: | |||
2027 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2028 | note_uses (&PATTERN (XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i])), fun, data); | |||
2029 | return; | |||
2030 | ||||
2031 | case USE: | |||
2032 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); | |||
2033 | return; | |||
2034 | ||||
2035 | case ASM_OPERANDS: | |||
2036 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2037 | (*fun) (&ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]), data); | |||
2038 | return; | |||
2039 | ||||
2040 | case TRAP_IF: | |||
2041 | (*fun) (&TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx), data); | |||
2042 | return; | |||
2043 | ||||
2044 | case PREFETCH: | |||
2045 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); | |||
2046 | return; | |||
2047 | ||||
2048 | case UNSPEC: | |||
2049 | case UNSPEC_VOLATILE: | |||
2050 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2051 | (*fun) (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), data); | |||
2052 | return; | |||
2053 | ||||
2054 | case CLOBBER: | |||
2055 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) | |||
2056 | (*fun) (&XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), data); | |||
2057 | return; | |||
2058 | ||||
2059 | case SET: | |||
2060 | { | |||
2061 | rtx dest = SET_DEST (body)(((body)->u.fld[0]).rt_rtx); | |||
2062 | ||||
2063 | /* For sets we replace everything in source plus registers in memory | |||
2064 | expression in store and operands of a ZERO_EXTRACT. */ | |||
2065 | (*fun) (&SET_SRC (body)(((body)->u.fld[1]).rt_rtx), data); | |||
2066 | ||||
2067 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT) | |||
2068 | { | |||
2069 | (*fun) (&XEXP (dest, 1)(((dest)->u.fld[1]).rt_rtx), data); | |||
2070 | (*fun) (&XEXP (dest, 2)(((dest)->u.fld[2]).rt_rtx), data); | |||
2071 | } | |||
2072 | ||||
2073 | while (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) | |||
2074 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); | |||
2075 | ||||
2076 | if (MEM_P (dest)(((enum rtx_code) (dest)->code) == MEM)) | |||
2077 | (*fun) (&XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx), data); | |||
2078 | } | |||
2079 | return; | |||
2080 | ||||
2081 | default: | |||
2082 | /* All the other possibilities never store. */ | |||
2083 | (*fun) (pbody, data); | |||
2084 | return; | |||
2085 | } | |||
2086 | } | |||
2087 | ||||
2088 | /* Try to add a description of REG X to this object, stopping once | |||
2089 | the REF_END limit has been reached. FLAGS is a bitmask of | |||
2090 | rtx_obj_reference flags that describe the context. */ | |||
2091 | ||||
2092 | void | |||
2093 | rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags) | |||
2094 | { | |||
2095 | if (REG_NREGS (x)((&(x)->u.reg)->nregs) != 1) | |||
2096 | flags |= rtx_obj_flags::IS_MULTIREG; | |||
2097 | machine_mode mode = GET_MODE (x)((machine_mode) (x)->mode); | |||
2098 | unsigned int start_regno = REGNO (x)(rhs_regno(x)); | |||
2099 | unsigned int end_regno = END_REGNO (x); | |||
2100 | for (unsigned int regno = start_regno; regno < end_regno; ++regno) | |||
2101 | if (ref_iter != ref_end) | |||
2102 | *ref_iter++ = rtx_obj_reference (regno, flags, mode, | |||
2103 | regno - start_regno); | |||
2104 | } | |||
2105 | ||||
2106 | /* Add a description of destination X to this object. FLAGS is a bitmask | |||
2107 | of rtx_obj_reference flags that describe the context. | |||
2108 | ||||
2109 | This routine accepts all rtxes that can legitimately appear in a | |||
2110 | SET_DEST. */ | |||
2111 | ||||
2112 | void | |||
2113 | rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags) | |||
2114 | { | |||
2115 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, | |||
2116 | each of whose first operand is a register. */ | |||
2117 | if (UNLIKELY (GET_CODE (x) == PARALLEL)(__builtin_expect ((((enum rtx_code) (x)->code) == PARALLEL ), 0))) | |||
2118 | { | |||
2119 | for (int i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; --i) | |||
2120 | if (rtx dest = XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx)) | |||
2121 | try_to_add_dest (dest, flags); | |||
2122 | return; | |||
2123 | } | |||
2124 | ||||
2125 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; | |||
2126 | flags |= rtx_obj_flags::IS_WRITE; | |||
2127 | for (;;) | |||
2128 | if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTRACT) | |||
2129 | { | |||
2130 | try_to_add_src (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), base_flags); | |||
2131 | try_to_add_src (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), base_flags); | |||
2132 | flags |= rtx_obj_flags::IS_READ; | |||
2133 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
2134 | } | |||
2135 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == STRICT_LOW_PART) | |||
2136 | { | |||
2137 | flags |= rtx_obj_flags::IS_READ; | |||
2138 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
2139 | } | |||
2140 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) | |||
2141 | { | |||
2142 | flags |= rtx_obj_flags::IN_SUBREG; | |||
2143 | if (read_modify_subreg_p (x)) | |||
2144 | flags |= rtx_obj_flags::IS_READ; | |||
2145 | x = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | |||
2146 | } | |||
2147 | else | |||
2148 | break; | |||
2149 | ||||
2150 | if (MEM_P (x)(((enum rtx_code) (x)->code) == MEM)) | |||
2151 | { | |||
2152 | if (ref_iter != ref_end) | |||
2153 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x)((machine_mode) (x)->mode)); | |||
2154 | ||||
2155 | unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE; | |||
2156 | if (flags & rtx_obj_flags::IS_READ) | |||
2157 | addr_flags |= rtx_obj_flags::IN_MEM_LOAD; | |||
2158 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); | |||
2159 | return; | |||
2160 | } | |||
2161 | ||||
2162 | if (LIKELY (REG_P (x))(__builtin_expect (((((enum rtx_code) (x)->code) == REG)), 1))) | |||
2163 | { | |||
2164 | /* We want to keep sp alive everywhere - by making all | |||
2165 | writes to sp also use sp. */ | |||
2166 | if (REGNO (x)(rhs_regno(x)) == STACK_POINTER_REGNUM7) | |||
2167 | flags |= rtx_obj_flags::IS_READ; | |||
2168 | try_to_add_reg (x, flags); | |||
2169 | return; | |||
2170 | } | |||
2171 | } | |||
2172 | ||||
2173 | /* Try to add a description of source X to this object, stopping once | |||
2174 | the REF_END limit has been reached. FLAGS is a bitmask of | |||
2175 | rtx_obj_reference flags that describe the context. | |||
2176 | ||||
2177 | This routine accepts all rtxes that can legitimately appear in a SET_SRC. */ | |||
2178 | ||||
2179 | void | |||
2180 | rtx_properties::try_to_add_src (const_rtx x, unsigned int flags) | |||
2181 | { | |||
2182 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; | |||
2183 | subrtx_iterator::array_type array; | |||
2184 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
2185 | { | |||
2186 | const_rtx x = *iter; | |||
2187 | rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
2188 | if (code == REG) | |||
2189 | try_to_add_reg (x, flags | rtx_obj_flags::IS_READ); | |||
2190 | else if (code == MEM) | |||
2191 | { | |||
2192 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2192, __FUNCTION__); _rtx; })->volatil)) | |||
2193 | has_volatile_refs = true; | |||
2194 | ||||
2195 | if (!MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2195, __FUNCTION__); _rtx; })->unchanging) && ref_iter != ref_end) | |||
2196 | { | |||
2197 | auto mem_flags = flags | rtx_obj_flags::IS_READ; | |||
2198 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, | |||
2199 | GET_MODE (x)((machine_mode) (x)->mode)); | |||
2200 | } | |||
2201 | ||||
2202 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), | |||
2203 | base_flags | rtx_obj_flags::IN_MEM_LOAD); | |||
2204 | iter.skip_subrtxes (); | |||
2205 | } | |||
2206 | else if (code == SUBREG) | |||
2207 | { | |||
2208 | try_to_add_src (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), flags | rtx_obj_flags::IN_SUBREG); | |||
2209 | iter.skip_subrtxes (); | |||
2210 | } | |||
2211 | else if (code == UNSPEC_VOLATILE) | |||
2212 | has_volatile_refs = true; | |||
2213 | else if (code == ASM_INPUT || code == ASM_OPERANDS) | |||
2214 | { | |||
2215 | has_asm = true; | |||
2216 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2216, __FUNCTION__); _rtx; })->volatil)) | |||
2217 | has_volatile_refs = true; | |||
2218 | } | |||
2219 | else if (code == PRE_INC | |||
2220 | || code == PRE_DEC | |||
2221 | || code == POST_INC | |||
2222 | || code == POST_DEC | |||
2223 | || code == PRE_MODIFY | |||
2224 | || code == POST_MODIFY) | |||
2225 | { | |||
2226 | has_pre_post_modify = true; | |||
2227 | ||||
2228 | unsigned int addr_flags = (base_flags | |||
2229 | | rtx_obj_flags::IS_PRE_POST_MODIFY | |||
2230 | | rtx_obj_flags::IS_READ); | |||
2231 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); | |||
2232 | if (code == PRE_MODIFY || code == POST_MODIFY) | |||
2233 | iter.substitute (XEXP (XEXP (x, 1), 1)((((((x)->u.fld[1]).rt_rtx))->u.fld[1]).rt_rtx)); | |||
2234 | else | |||
2235 | iter.skip_subrtxes (); | |||
2236 | } | |||
2237 | else if (code == CALL) | |||
2238 | has_call = true; | |||
2239 | } | |||
2240 | } | |||
2241 | ||||
2242 | /* Try to add a description of instruction pattern PAT to this object, | |||
2243 | stopping once the REF_END limit has been reached. */ | |||
2244 | ||||
2245 | void | |||
2246 | rtx_properties::try_to_add_pattern (const_rtx pat) | |||
2247 | { | |||
2248 | switch (GET_CODE (pat)((enum rtx_code) (pat)->code)) | |||
2249 | { | |||
2250 | case COND_EXEC: | |||
2251 | try_to_add_src (COND_EXEC_TEST (pat)(((pat)->u.fld[0]).rt_rtx)); | |||
2252 | try_to_add_pattern (COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx)); | |||
2253 | break; | |||
2254 | ||||
2255 | case PARALLEL: | |||
2256 | { | |||
2257 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; | |||
2258 | for (int i = 0; i < last; ++i) | |||
2259 | try_to_add_pattern (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i])); | |||
2260 | try_to_add_pattern (XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last])); | |||
2261 | break; | |||
2262 | } | |||
2263 | ||||
2264 | case ASM_OPERANDS: | |||
2265 | for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat)(((((pat)->u.fld[3]).rt_rtvec))->num_elem); i < len; ++i) | |||
2266 | try_to_add_src (ASM_OPERANDS_INPUT (pat, i)(((((pat)->u.fld[3]).rt_rtvec))->elem[i])); | |||
2267 | break; | |||
2268 | ||||
2269 | case CLOBBER: | |||
2270 | try_to_add_dest (XEXP (pat, 0)(((pat)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); | |||
2271 | break; | |||
2272 | ||||
2273 | case SET: | |||
2274 | try_to_add_dest (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx)); | |||
2275 | try_to_add_src (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx)); | |||
2276 | break; | |||
2277 | ||||
2278 | default: | |||
2279 | /* All the other possibilities never store and can use a normal | |||
2280 | rtx walk. This includes: | |||
2281 | ||||
2282 | - USE | |||
2283 | - TRAP_IF | |||
2284 | - PREFETCH | |||
2285 | - UNSPEC | |||
2286 | - UNSPEC_VOLATILE. */ | |||
2287 | try_to_add_src (pat); | |||
2288 | break; | |||
2289 | } | |||
2290 | } | |||
2291 | ||||
2292 | /* Try to add a description of INSN to this object, stopping once | |||
2293 | the REF_END limit has been reached. INCLUDE_NOTES is true if the | |||
2294 | description should include REG_EQUAL and REG_EQUIV notes; all such | |||
2295 | references will then be marked with rtx_obj_flags::IN_NOTE. | |||
2296 | ||||
2297 | For calls, this description includes all accesses in | |||
2298 | CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses | |||
2299 | to global registers by the target function. However, it does not | |||
2300 | include clobbers performed by the target function; callers that want | |||
2301 | this information should instead use the function_abi interface. */ | |||
2302 | ||||
2303 | void | |||
2304 | rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes) | |||
2305 | { | |||
2306 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | |||
2307 | { | |||
2308 | /* Non-const functions can read from global registers. Impure | |||
2309 | functions can also set them. | |||
2310 | ||||
2311 | Adding the global registers first removes a situation in which | |||
2312 | a fixed-form clobber of register R could come before a real set | |||
2313 | of register R. */ | |||
2314 | if (!hard_reg_set_empty_p (global_reg_set) | |||
2315 | && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2315, __FUNCTION__); _rtx; })->unchanging)) | |||
2316 | { | |||
2317 | unsigned int flags = rtx_obj_flags::IS_READ; | |||
2318 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2318, __FUNCTION__); _rtx; })->return_val)) | |||
2319 | flags |= rtx_obj_flags::IS_WRITE; | |||
2320 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) | |||
2321 | /* As a special case, the stack pointer is invariant across calls | |||
2322 | even if it has been marked global; see the corresponding | |||
2323 | handling in df_get_call_refs. */ | |||
2324 | if (regno != STACK_POINTER_REGNUM7 | |||
2325 | && global_regs[regno] | |||
2326 | && ref_iter != ref_end) | |||
2327 | *ref_iter++ = rtx_obj_reference (regno, flags, | |||
2328 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); | |||
2329 | } | |||
2330 | /* Untyped calls implicitly set all function value registers. | |||
2331 | Again, we add them first in case the main pattern contains | |||
2332 | a fixed-form clobber. */ | |||
2333 | if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX(rtx) 0)) | |||
2334 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) | |||
2335 | if (targetm.calls.function_value_regno_p (regno) | |||
2336 | && ref_iter != ref_end) | |||
2337 | *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE, | |||
2338 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); | |||
2339 | if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2339, __FUNCTION__); _rtx; })->unchanging)) | |||
2340 | { | |||
2341 | auto mem_flags = rtx_obj_flags::IS_READ; | |||
2342 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2342, __FUNCTION__); _rtx; })->return_val)) | |||
2343 | mem_flags |= rtx_obj_flags::IS_WRITE; | |||
2344 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode((void) 0, E_BLKmode)); | |||
2345 | } | |||
2346 | try_to_add_pattern (PATTERN (insn)); | |||
2347 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; | |||
2348 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2349 | { | |||
2350 | rtx x = XEXP (link, 0)(((link)->u.fld[0]).rt_rtx); | |||
2351 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) | |||
2352 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); | |||
2353 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == USE) | |||
2354 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | |||
2355 | } | |||
2356 | } | |||
2357 | else | |||
2358 | try_to_add_pattern (PATTERN (insn)); | |||
2359 | ||||
2360 | if (include_notes) | |||
2361 | for (rtx note = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); note; note = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx)) | |||
2362 | if (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUAL | |||
2363 | || REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUIV) | |||
2364 | try_to_add_note (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); | |||
2365 | } | |||
2366 | ||||
2367 | /* Grow the storage by a bit while keeping the contents of the first | |||
2368 | START elements. */ | |||
2369 | ||||
2370 | void | |||
2371 | vec_rtx_properties_base::grow (ptrdiff_t start) | |||
2372 | { | |||
2373 | /* The same heuristic that vec uses. */ | |||
2374 | ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2; | |||
2375 | if (ref_begin == m_storage) | |||
2376 | { | |||
2377 | ref_begin = XNEWVEC (rtx_obj_reference, new_elems)((rtx_obj_reference *) xmalloc (sizeof (rtx_obj_reference) * ( new_elems))); | |||
2378 | if (start) | |||
2379 | memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference)); | |||
2380 | } | |||
2381 | else | |||
2382 | ref_begin = reinterpret_cast<rtx_obj_reference *> | |||
2383 | (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference))); | |||
2384 | ref_iter = ref_begin + start; | |||
2385 | ref_end = ref_begin + new_elems; | |||
2386 | } | |||
2387 | ||||
2388 | /* Return nonzero if X's old contents don't survive after INSN. | |||
2389 | This will be true if X is a register and X dies in INSN or because | |||
2390 | INSN entirely sets X. | |||
2391 | ||||
2392 | "Entirely set" means set directly and not through a SUBREG, or | |||
2393 | ZERO_EXTRACT, so no trace of the old contents remains. | |||
2394 | Likewise, REG_INC does not count. | |||
2395 | ||||
2396 | REG may be a hard or pseudo reg. Renumbering is not taken into account, | |||
2397 | but for this use that makes no difference, since regs don't overlap | |||
2398 | during their lifetimes. Therefore, this function may be used | |||
2399 | at any time after deaths have been computed. | |||
2400 | ||||
2401 | If REG is a hard reg that occupies multiple machine registers, this | |||
2402 | function will only return 1 if each of those registers will be replaced | |||
2403 | by INSN. */ | |||
2404 | ||||
2405 | int | |||
2406 | dead_or_set_p (const rtx_insn *insn, const_rtx x) | |||
2407 | { | |||
2408 | unsigned int regno, end_regno; | |||
2409 | unsigned int i; | |||
2410 | ||||
2411 | gcc_assert (REG_P (x))((void)(!((((enum rtx_code) (x)->code) == REG)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2411, __FUNCTION__), 0 : 0)); | |||
2412 | ||||
2413 | regno = REGNO (x)(rhs_regno(x)); | |||
2414 | end_regno = END_REGNO (x); | |||
2415 | for (i = regno; i < end_regno; i++) | |||
2416 | if (! dead_or_set_regno_p (insn, i)) | |||
2417 | return 0; | |||
2418 | ||||
2419 | return 1; | |||
2420 | } | |||
2421 | ||||
2422 | /* Return TRUE iff DEST is a register or subreg of a register, is a | |||
2423 | complete rather than read-modify-write destination, and contains | |||
2424 | register TEST_REGNO. */ | |||
2425 | ||||
2426 | static bool | |||
2427 | covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno) | |||
2428 | { | |||
2429 | unsigned int regno, endregno; | |||
2430 | ||||
2431 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG && !read_modify_subreg_p (dest)) | |||
2432 | dest = SUBREG_REG (dest)(((dest)->u.fld[0]).rt_rtx); | |||
2433 | ||||
2434 | if (!REG_P (dest)(((enum rtx_code) (dest)->code) == REG)) | |||
2435 | return false; | |||
2436 | ||||
2437 | regno = REGNO (dest)(rhs_regno(dest)); | |||
2438 | endregno = END_REGNO (dest); | |||
2439 | return (test_regno >= regno && test_regno < endregno); | |||
2440 | } | |||
2441 | ||||
2442 | /* Like covers_regno_no_parallel_p, but also handles PARALLELs where | |||
2443 | any member matches the covers_regno_no_parallel_p criteria. */ | |||
2444 | ||||
2445 | static bool | |||
2446 | covers_regno_p (const_rtx dest, unsigned int test_regno) | |||
2447 | { | |||
2448 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) | |||
2449 | { | |||
2450 | /* Some targets place small structures in registers for return | |||
2451 | values of functions, and those registers are wrapped in | |||
2452 | PARALLELs that we may see as the destination of a SET. */ | |||
2453 | int i; | |||
2454 | ||||
2455 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2456 | { | |||
2457 | rtx inner = XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx); | |||
2458 | if (inner != NULL_RTX(rtx) 0 | |||
2459 | && covers_regno_no_parallel_p (inner, test_regno)) | |||
2460 | return true; | |||
2461 | } | |||
2462 | ||||
2463 | return false; | |||
2464 | } | |||
2465 | else | |||
2466 | return covers_regno_no_parallel_p (dest, test_regno); | |||
2467 | } | |||
2468 | ||||
2469 | /* Utility function for dead_or_set_p to check an individual register. */ | |||
2470 | ||||
2471 | int | |||
2472 | dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno) | |||
2473 | { | |||
2474 | const_rtx pattern; | |||
2475 | ||||
2476 | /* See if there is a death note for something that includes TEST_REGNO. */ | |||
2477 | if (find_regno_note (insn, REG_DEAD, test_regno)) | |||
2478 | return 1; | |||
2479 | ||||
2480 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) | |||
2481 | && find_regno_fusage (insn, CLOBBER, test_regno)) | |||
2482 | return 1; | |||
2483 | ||||
2484 | pattern = PATTERN (insn); | |||
2485 | ||||
2486 | /* If a COND_EXEC is not executed, the value survives. */ | |||
2487 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == COND_EXEC) | |||
2488 | return 0; | |||
2489 | ||||
2490 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == SET || GET_CODE (pattern)((enum rtx_code) (pattern)->code) == CLOBBER) | |||
2491 | return covers_regno_p (SET_DEST (pattern)(((pattern)->u.fld[0]).rt_rtx), test_regno); | |||
2492 | else if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == PARALLEL) | |||
2493 | { | |||
2494 | int i; | |||
2495 | ||||
2496 | for (i = XVECLEN (pattern, 0)(((((pattern)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | |||
2497 | { | |||
2498 | rtx body = XVECEXP (pattern, 0, i)(((((pattern)->u.fld[0]).rt_rtvec))->elem[i]); | |||
2499 | ||||
2500 | if (GET_CODE (body)((enum rtx_code) (body)->code) == COND_EXEC) | |||
2501 | body = COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx); | |||
2502 | ||||
2503 | if ((GET_CODE (body)((enum rtx_code) (body)->code) == SET || GET_CODE (body)((enum rtx_code) (body)->code) == CLOBBER) | |||
2504 | && covers_regno_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx), test_regno)) | |||
2505 | return 1; | |||
2506 | } | |||
2507 | } | |||
2508 | ||||
2509 | return 0; | |||
2510 | } | |||
2511 | ||||
2512 | /* Return the reg-note of kind KIND in insn INSN, if there is one. | |||
2513 | If DATUM is nonzero, look for one whose datum is DATUM. */ | |||
2514 | ||||
2515 | rtx | |||
2516 | find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum) | |||
2517 | { | |||
2518 | rtx link; | |||
2519 | ||||
2520 | gcc_checking_assert (insn)((void)(!(insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2520, __FUNCTION__), 0 : 0)); | |||
2521 | ||||
2522 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ | |||
2523 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | |||
2524 | return 0; | |||
2525 | if (datum == 0) | |||
2526 | { | |||
2527 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2528 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind) | |||
2529 | return link; | |||
2530 | return 0; | |||
2531 | } | |||
2532 | ||||
2533 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2534 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind && datum == XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) | |||
2535 | return link; | |||
2536 | return 0; | |||
2537 | } | |||
2538 | ||||
2539 | /* Return the reg-note of kind KIND in insn INSN which applies to register | |||
2540 | number REGNO, if any. Return 0 if there is no such reg-note. Note that | |||
2541 | the REGNO of this NOTE need not be REGNO if REGNO is a hard register; | |||
2542 | it might be the case that the note overlaps REGNO. */ | |||
2543 | ||||
2544 | rtx | |||
2545 | find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno) | |||
2546 | { | |||
2547 | rtx link; | |||
2548 | ||||
2549 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ | |||
2550 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | |||
2551 | return 0; | |||
2552 | ||||
2553 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2554 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind | |||
2555 | /* Verify that it is a register, so that scratch and MEM won't cause a | |||
2556 | problem here. */ | |||
2557 | && REG_P (XEXP (link, 0))(((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == REG) | |||
2558 | && REGNO (XEXP (link, 0))(rhs_regno((((link)->u.fld[0]).rt_rtx))) <= regno | |||
2559 | && END_REGNO (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) > regno) | |||
2560 | return link; | |||
2561 | return 0; | |||
2562 | } | |||
2563 | ||||
2564 | /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and | |||
2565 | has such a note. */ | |||
2566 | ||||
2567 | rtx | |||
2568 | find_reg_equal_equiv_note (const_rtx insn) | |||
2569 | { | |||
2570 | rtx link; | |||
2571 | ||||
2572 | if (!INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | |||
2573 | return 0; | |||
2574 | ||||
2575 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2576 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUAL | |||
2577 | || REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUIV) | |||
2578 | { | |||
2579 | /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on | |||
2580 | insns that have multiple sets. Checking single_set to | |||
2581 | make sure of this is not the proper check, as explained | |||
2582 | in the comment in set_unique_reg_note. | |||
2583 | ||||
2584 | This should be changed into an assert. */ | |||
2585 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL && multiple_sets (insn)) | |||
2586 | return 0; | |||
2587 | return link; | |||
2588 | } | |||
2589 | return NULLnullptr; | |||
2590 | } | |||
2591 | ||||
2592 | /* Check whether INSN is a single_set whose source is known to be | |||
2593 | equivalent to a constant. Return that constant if so, otherwise | |||
2594 | return null. */ | |||
2595 | ||||
2596 | rtx | |||
2597 | find_constant_src (const rtx_insn *insn) | |||
2598 | { | |||
2599 | rtx note, set, x; | |||
2600 | ||||
2601 | set = single_set (insn); | |||
2602 | if (set) | |||
2603 | { | |||
2604 | x = avoid_constant_pool_reference (SET_SRC (set)(((set)->u.fld[1]).rt_rtx)); | |||
2605 | if (CONSTANT_P (x)((rtx_class[(int) (((enum rtx_code) (x)->code))]) == RTX_CONST_OBJ )) | |||
2606 | return x; | |||
2607 | } | |||
2608 | ||||
2609 | note = find_reg_equal_equiv_note (insn); | |||
2610 | if (note && CONSTANT_P (XEXP (note, 0))((rtx_class[(int) (((enum rtx_code) ((((note)->u.fld[0]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) | |||
2611 | return XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); | |||
2612 | ||||
2613 | return NULL_RTX(rtx) 0; | |||
2614 | } | |||
2615 | ||||
2616 | /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found | |||
2617 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ | |||
2618 | ||||
2619 | int | |||
2620 | find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum) | |||
2621 | { | |||
2622 | /* If it's not a CALL_INSN, it can't possibly have a | |||
2623 | CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */ | |||
2624 | if (!CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | |||
2625 | return 0; | |||
2626 | ||||
2627 | gcc_assert (datum)((void)(!(datum) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2627, __FUNCTION__), 0 : 0)); | |||
2628 | ||||
2629 | if (!REG_P (datum)(((enum rtx_code) (datum)->code) == REG)) | |||
2630 | { | |||
2631 | rtx link; | |||
2632 | ||||
2633 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); | |||
2634 | link; | |||
2635 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2636 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == code | |||
2637 | && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)((((((link)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) | |||
2638 | return 1; | |||
2639 | } | |||
2640 | else | |||
2641 | { | |||
2642 | unsigned int regno = REGNO (datum)(rhs_regno(datum)); | |||
2643 | ||||
2644 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references | |||
2645 | to pseudo registers, so don't bother checking. */ | |||
2646 | ||||
2647 | if (regno < FIRST_PSEUDO_REGISTER76) | |||
2648 | { | |||
2649 | unsigned int end_regno = END_REGNO (datum); | |||
2650 | unsigned int i; | |||
2651 | ||||
2652 | for (i = regno; i < end_regno; i++) | |||
2653 | if (find_regno_fusage (insn, code, i)) | |||
2654 | return 1; | |||
2655 | } | |||
2656 | } | |||
2657 | ||||
2658 | return 0; | |||
2659 | } | |||
2660 | ||||
2661 | /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found | |||
2662 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ | |||
2663 | ||||
2664 | int | |||
2665 | find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno) | |||
2666 | { | |||
2667 | rtx link; | |||
2668 | ||||
2669 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references | |||
2670 | to pseudo registers, so don't bother checking. */ | |||
2671 | ||||
2672 | if (regno >= FIRST_PSEUDO_REGISTER76 | |||
2673 | || !CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) ) | |||
2674 | return 0; | |||
2675 | ||||
2676 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2677 | { | |||
2678 | rtx op, reg; | |||
2679 | ||||
2680 | if (GET_CODE (op = XEXP (link, 0))((enum rtx_code) (op = (((link)->u.fld[0]).rt_rtx))->code ) == code | |||
2681 | && REG_P (reg = XEXP (op, 0))(((enum rtx_code) (reg = (((op)->u.fld[0]).rt_rtx))->code ) == REG) | |||
2682 | && REGNO (reg)(rhs_regno(reg)) <= regno | |||
2683 | && END_REGNO (reg) > regno) | |||
2684 | return 1; | |||
2685 | } | |||
2686 | ||||
2687 | return 0; | |||
2688 | } | |||
2689 | ||||
2690 | ||||
2691 | /* Return true if KIND is an integer REG_NOTE. */ | |||
2692 | ||||
2693 | static bool | |||
2694 | int_reg_note_p (enum reg_note kind) | |||
2695 | { | |||
2696 | return kind == REG_BR_PROB; | |||
2697 | } | |||
2698 | ||||
2699 | /* Allocate a register note with kind KIND and datum DATUM. LIST is | |||
2700 | stored as the pointer to the next register note. */ | |||
2701 | ||||
2702 | rtx | |||
2703 | alloc_reg_note (enum reg_note kind, rtx datum, rtx list) | |||
2704 | { | |||
2705 | rtx note; | |||
2706 | ||||
2707 | gcc_checking_assert (!int_reg_note_p (kind))((void)(!(!int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2707, __FUNCTION__), 0 : 0)); | |||
2708 | switch (kind) | |||
2709 | { | |||
2710 | case REG_LABEL_TARGET: | |||
2711 | case REG_LABEL_OPERAND: | |||
2712 | case REG_TM: | |||
2713 | /* These types of register notes use an INSN_LIST rather than an | |||
2714 | EXPR_LIST, so that copying is done right and dumps look | |||
2715 | better. */ | |||
2716 | note = alloc_INSN_LIST (datum, list); | |||
2717 | PUT_REG_NOTE_KIND (note, kind)((note)->mode = ((machine_mode) (kind))); | |||
2718 | break; | |||
2719 | ||||
2720 | default: | |||
2721 | note = alloc_EXPR_LIST (kind, datum, list); | |||
2722 | break; | |||
2723 | } | |||
2724 | ||||
2725 | return note; | |||
2726 | } | |||
2727 | ||||
2728 | /* Add register note with kind KIND and datum DATUM to INSN. */ | |||
2729 | ||||
2730 | void | |||
2731 | add_reg_note (rtx insn, enum reg_note kind, rtx datum) | |||
2732 | { | |||
2733 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = alloc_reg_note (kind, datum, REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx)); | |||
2734 | } | |||
2735 | ||||
2736 | /* Add an integer register note with kind KIND and datum DATUM to INSN. */ | |||
2737 | ||||
2738 | void | |||
2739 | add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum) | |||
2740 | { | |||
2741 | gcc_checking_assert (int_reg_note_p (kind))((void)(!(int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2741, __FUNCTION__), 0 : 0)); | |||
2742 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = gen_rtx_INT_LIST ((machine_mode) kind,gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ) | |||
2743 | datum, REG_NOTES (insn))gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ); | |||
2744 | } | |||
2745 | ||||
2746 | /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */ | |||
2747 | ||||
2748 | void | |||
2749 | add_args_size_note (rtx_insn *insn, poly_int64 value) | |||
2750 | { | |||
2751 | gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX))((void)(!(!find_reg_note (insn, REG_ARGS_SIZE, (rtx) 0)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2751, __FUNCTION__), 0 : 0)); | |||
2752 | add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))))); | |||
2753 | } | |||
2754 | ||||
2755 | /* Add a register note like NOTE to INSN. */ | |||
2756 | ||||
2757 | void | |||
2758 | add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note) | |||
2759 | { | |||
2760 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) | |||
2761 | add_int_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XINT (note, 0)(((note)->u.fld[0]).rt_int)); | |||
2762 | else | |||
2763 | add_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); | |||
2764 | } | |||
2765 | ||||
2766 | /* Duplicate NOTE and return the copy. */ | |||
2767 | rtx | |||
2768 | duplicate_reg_note (rtx note) | |||
2769 | { | |||
2770 | reg_note kind = REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)); | |||
2771 | ||||
2772 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) | |||
2773 | return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX)gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((( ((note)->u.fld[0]).rt_int))), (((rtx) 0)) ); | |||
2774 | else if (GET_CODE (note)((enum rtx_code) (note)->code) == EXPR_LIST) | |||
2775 | return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)), NULL_RTX(rtx) 0); | |||
2776 | else | |||
2777 | return alloc_reg_note (kind, XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), NULL_RTX(rtx) 0); | |||
2778 | } | |||
2779 | ||||
2780 | /* Remove register note NOTE from the REG_NOTES of INSN. */ | |||
2781 | ||||
2782 | void | |||
2783 | remove_note (rtx_insn *insn, const_rtx note) | |||
2784 | { | |||
2785 | rtx link; | |||
2786 | ||||
2787 | if (note == NULL_RTX(rtx) 0) | |||
2788 | return; | |||
2789 | ||||
2790 | if (REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) == note) | |||
2791 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); | |||
2792 | else | |||
2793 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | |||
2794 | if (XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) == note) | |||
2795 | { | |||
2796 | XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); | |||
2797 | break; | |||
2798 | } | |||
2799 | ||||
2800 | switch (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode))) | |||
2801 | { | |||
2802 | case REG_EQUAL: | |||
2803 | case REG_EQUIV: | |||
2804 | df_notes_rescan (insn); | |||
2805 | break; | |||
2806 | default: | |||
2807 | break; | |||
2808 | } | |||
2809 | } | |||
2810 | ||||
2811 | /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. | |||
2812 | If NO_RESCAN is false and any notes were removed, call | |||
2813 | df_notes_rescan. Return true if any note has been removed. */ | |||
2814 | ||||
2815 | bool | |||
2816 | remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan) | |||
2817 | { | |||
2818 | rtx *loc; | |||
2819 | bool ret = false; | |||
2820 | ||||
2821 | loc = ®_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); | |||
2822 | while (*loc) | |||
2823 | { | |||
2824 | enum reg_note kind = REG_NOTE_KIND (*loc)((enum reg_note) ((machine_mode) (*loc)->mode)); | |||
2825 | if (kind == REG_EQUAL || kind == REG_EQUIV) | |||
2826 | { | |||
2827 | *loc = XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); | |||
2828 | ret = true; | |||
2829 | } | |||
2830 | else | |||
2831 | loc = &XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); | |||
2832 | } | |||
2833 | if (ret && !no_rescan) | |||
2834 | df_notes_rescan (insn); | |||
2835 | return ret; | |||
2836 | } | |||
2837 | ||||
2838 | /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */ | |||
2839 | ||||
2840 | void | |||
2841 | remove_reg_equal_equiv_notes_for_regno (unsigned int regno) | |||
2842 | { | |||
2843 | df_ref eq_use; | |||
2844 | ||||
2845 | if (!df) | |||
2846 | return; | |||
2847 | ||||
2848 | /* This loop is a little tricky. We cannot just go down the chain because | |||
2849 | it is being modified by some actions in the loop. So we just iterate | |||
2850 | over the head. We plan to drain the list anyway. */ | |||
2851 | while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)(df->eq_use_regs[(regno)]->reg_chain)) != NULLnullptr) | |||
2852 | { | |||
2853 | rtx_insn *insn = DF_REF_INSN (eq_use)((eq_use)->base.insn_info->insn); | |||
2854 | rtx note = find_reg_equal_equiv_note (insn); | |||
2855 | ||||
2856 | /* This assert is generally triggered when someone deletes a REG_EQUAL | |||
2857 | or REG_EQUIV note by hacking the list manually rather than calling | |||
2858 | remove_note. */ | |||
2859 | gcc_assert (note)((void)(!(note) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2859, __FUNCTION__), 0 : 0)); | |||
2860 | ||||
2861 | remove_note (insn, note); | |||
2862 | } | |||
2863 | } | |||
2864 | ||||
2865 | /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and | |||
2866 | return 1 if it is found. A simple equality test is used to determine if | |||
2867 | NODE matches. */ | |||
2868 | ||||
2869 | bool | |||
2870 | in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node) | |||
2871 | { | |||
2872 | const_rtx x; | |||
2873 | ||||
2874 | for (x = listp; x; x = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | |||
2875 | if (node == XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | |||
2876 | return true; | |||
2877 | ||||
2878 | return false; | |||
2879 | } | |||
2880 | ||||
2881 | /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and | |||
2882 | remove that entry from the list if it is found. | |||
2883 | ||||
2884 | A simple equality test is used to determine if NODE matches. */ | |||
2885 | ||||
2886 | void | |||
2887 | remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp) | |||
2888 | { | |||
2889 | rtx_insn_list *temp = *listp; | |||
2890 | rtx_insn_list *prev = NULLnullptr; | |||
2891 | ||||
2892 | while (temp) | |||
2893 | { | |||
2894 | if (node == temp->insn ()) | |||
2895 | { | |||
2896 | /* Splice the node out of the list. */ | |||
2897 | if (prev) | |||
2898 | XEXP (prev, 1)(((prev)->u.fld[1]).rt_rtx) = temp->next (); | |||
2899 | else | |||
2900 | *listp = temp->next (); | |||
2901 | ||||
2902 | gcc_checking_assert (!in_insn_list_p (temp->next (), node))((void)(!(!in_insn_list_p (temp->next (), node)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2902, __FUNCTION__), 0 : 0)); | |||
2903 | return; | |||
2904 | } | |||
2905 | ||||
2906 | prev = temp; | |||
2907 | temp = temp->next (); | |||
2908 | } | |||
2909 | } | |||
2910 | ||||
2911 | /* Nonzero if X contains any volatile instructions. These are instructions | |||
2912 | which may cause unpredictable machine state instructions, and thus no | |||
2913 | instructions or register uses should be moved or combined across them. | |||
2914 | This includes only volatile asms and UNSPEC_VOLATILE instructions. */ | |||
2915 | ||||
2916 | int | |||
2917 | volatile_insn_p (const_rtx x) | |||
2918 | { | |||
2919 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
2920 | switch (code) | |||
2921 | { | |||
2922 | case LABEL_REF: | |||
2923 | case SYMBOL_REF: | |||
2924 | case CONST: | |||
2925 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
2926 | case PC: | |||
2927 | case REG: | |||
2928 | case SCRATCH: | |||
2929 | case CLOBBER: | |||
2930 | case ADDR_VEC: | |||
2931 | case ADDR_DIFF_VEC: | |||
2932 | case CALL: | |||
2933 | case MEM: | |||
2934 | return 0; | |||
2935 | ||||
2936 | case UNSPEC_VOLATILE: | |||
2937 | return 1; | |||
2938 | ||||
2939 | case ASM_INPUT: | |||
2940 | case ASM_OPERANDS: | |||
2941 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2941, __FUNCTION__); _rtx; })->volatil)) | |||
2942 | return 1; | |||
2943 | ||||
2944 | default: | |||
2945 | break; | |||
2946 | } | |||
2947 | ||||
2948 | /* Recursively scan the operands of this expression. */ | |||
2949 | ||||
2950 | { | |||
2951 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
2952 | int i; | |||
2953 | ||||
2954 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
2955 | { | |||
2956 | if (fmt[i] == 'e') | |||
2957 | { | |||
2958 | if (volatile_insn_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | |||
2959 | return 1; | |||
2960 | } | |||
2961 | else if (fmt[i] == 'E') | |||
2962 | { | |||
2963 | int j; | |||
2964 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
2965 | if (volatile_insn_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
2966 | return 1; | |||
2967 | } | |||
2968 | } | |||
2969 | } | |||
2970 | return 0; | |||
2971 | } | |||
2972 | ||||
2973 | /* Nonzero if X contains any volatile memory references | |||
2974 | UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */ | |||
2975 | ||||
2976 | int | |||
2977 | volatile_refs_p (const_rtx x) | |||
2978 | { | |||
2979 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
2980 | switch (code) | |||
2981 | { | |||
2982 | case LABEL_REF: | |||
2983 | case SYMBOL_REF: | |||
2984 | case CONST: | |||
2985 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
2986 | case PC: | |||
2987 | case REG: | |||
2988 | case SCRATCH: | |||
2989 | case CLOBBER: | |||
2990 | case ADDR_VEC: | |||
2991 | case ADDR_DIFF_VEC: | |||
2992 | return 0; | |||
2993 | ||||
2994 | case UNSPEC_VOLATILE: | |||
2995 | return 1; | |||
2996 | ||||
2997 | case MEM: | |||
2998 | case ASM_INPUT: | |||
2999 | case ASM_OPERANDS: | |||
3000 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3000, __FUNCTION__); _rtx; })->volatil)) | |||
3001 | return 1; | |||
3002 | ||||
3003 | default: | |||
3004 | break; | |||
3005 | } | |||
3006 | ||||
3007 | /* Recursively scan the operands of this expression. */ | |||
3008 | ||||
3009 | { | |||
3010 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
3011 | int i; | |||
3012 | ||||
3013 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
3014 | { | |||
3015 | if (fmt[i] == 'e') | |||
3016 | { | |||
3017 | if (volatile_refs_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | |||
3018 | return 1; | |||
3019 | } | |||
3020 | else if (fmt[i] == 'E') | |||
3021 | { | |||
3022 | int j; | |||
3023 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
3024 | if (volatile_refs_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
3025 | return 1; | |||
3026 | } | |||
3027 | } | |||
3028 | } | |||
3029 | return 0; | |||
3030 | } | |||
3031 | ||||
3032 | /* Similar to above, except that it also rejects register pre- and post- | |||
3033 | incrementing. */ | |||
3034 | ||||
3035 | int | |||
3036 | side_effects_p (const_rtx x) | |||
3037 | { | |||
3038 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
3039 | switch (code) | |||
3040 | { | |||
3041 | case LABEL_REF: | |||
3042 | case SYMBOL_REF: | |||
3043 | case CONST: | |||
3044 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
3045 | case PC: | |||
3046 | case REG: | |||
3047 | case SCRATCH: | |||
3048 | case ADDR_VEC: | |||
3049 | case ADDR_DIFF_VEC: | |||
3050 | case VAR_LOCATION: | |||
3051 | return 0; | |||
3052 | ||||
3053 | case CLOBBER: | |||
3054 | /* Reject CLOBBER with a non-VOID mode. These are made by combine.cc | |||
3055 | when some combination can't be done. If we see one, don't think | |||
3056 | that we can simplify the expression. */ | |||
3057 | return (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)); | |||
3058 | ||||
3059 | case PRE_INC: | |||
3060 | case PRE_DEC: | |||
3061 | case POST_INC: | |||
3062 | case POST_DEC: | |||
3063 | case PRE_MODIFY: | |||
3064 | case POST_MODIFY: | |||
3065 | case CALL: | |||
3066 | case UNSPEC_VOLATILE: | |||
3067 | return 1; | |||
3068 | ||||
3069 | case MEM: | |||
3070 | case ASM_INPUT: | |||
3071 | case ASM_OPERANDS: | |||
3072 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3072, __FUNCTION__); _rtx; })->volatil)) | |||
3073 | return 1; | |||
3074 | ||||
3075 | default: | |||
3076 | break; | |||
3077 | } | |||
3078 | ||||
3079 | /* Recursively scan the operands of this expression. */ | |||
3080 | ||||
3081 | { | |||
3082 | const char *fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
3083 | int i; | |||
3084 | ||||
3085 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
3086 | { | |||
3087 | if (fmt[i] == 'e') | |||
3088 | { | |||
3089 | if (side_effects_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | |||
3090 | return 1; | |||
3091 | } | |||
3092 | else if (fmt[i] == 'E') | |||
3093 | { | |||
3094 | int j; | |||
3095 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
3096 | if (side_effects_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
3097 | return 1; | |||
3098 | } | |||
3099 | } | |||
3100 | } | |||
3101 | return 0; | |||
3102 | } | |||
3103 | ||||
3104 | /* Return nonzero if evaluating rtx X might cause a trap. | |||
3105 | FLAGS controls how to consider MEMs. A nonzero means the context | |||
3106 | of the access may have changed from the original, such that the | |||
3107 | address may have become invalid. */ | |||
3108 | ||||
3109 | int | |||
3110 | may_trap_p_1 (const_rtx x, unsigned flags) | |||
3111 | { | |||
3112 | int i; | |||
3113 | enum rtx_code code; | |||
3114 | const char *fmt; | |||
3115 | ||||
3116 | /* We make no distinction currently, but this function is part of | |||
3117 | the internal target-hooks ABI so we keep the parameter as | |||
3118 | "unsigned flags". */ | |||
3119 | bool code_changed = flags != 0; | |||
3120 | ||||
3121 | if (x == 0) | |||
3122 | return 0; | |||
3123 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
3124 | switch (code) | |||
3125 | { | |||
3126 | /* Handle these cases quickly. */ | |||
3127 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
3128 | case SYMBOL_REF: | |||
3129 | case LABEL_REF: | |||
3130 | case CONST: | |||
3131 | case PC: | |||
3132 | case REG: | |||
3133 | case SCRATCH: | |||
3134 | return 0; | |||
3135 | ||||
3136 | case UNSPEC: | |||
3137 | return targetm.unspec_may_trap_p (x, flags); | |||
3138 | ||||
3139 | case UNSPEC_VOLATILE: | |||
3140 | case ASM_INPUT: | |||
3141 | case TRAP_IF: | |||
3142 | return 1; | |||
3143 | ||||
3144 | case ASM_OPERANDS: | |||
3145 | return MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3145, __FUNCTION__); _rtx; })->volatil); | |||
3146 | ||||
3147 | /* Memory ref can trap unless it's a static var or a stack slot. */ | |||
3148 | case MEM: | |||
3149 | /* Recognize specific pattern of stack checking probes. */ | |||
3150 | if (flag_stack_checkglobal_options.x_flag_stack_check | |||
3151 | && MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3151, __FUNCTION__); _rtx; })->volatil) | |||
3152 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | |||
3153 | return 1; | |||
3154 | if (/* MEM_NOTRAP_P only relates to the actual position of the memory | |||
3155 | reference; moving it out of context such as when moving code | |||
3156 | when optimizing, might cause its address to become invalid. */ | |||
3157 | code_changed | |||
3158 | || !MEM_NOTRAP_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_NOTRAP_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3158, __FUNCTION__); _rtx; })->call)) | |||
3159 | { | |||
3160 | poly_int64 size = MEM_SIZE_KNOWN_P (x)(get_mem_attrs (x)->size_known_p) ? MEM_SIZE (x)(get_mem_attrs (x)->size) : -1; | |||
3161 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), 0, size, | |||
3162 | GET_MODE (x)((machine_mode) (x)->mode), code_changed); | |||
3163 | } | |||
3164 | ||||
3165 | return 0; | |||
3166 | ||||
3167 | /* Division by a non-constant might trap. */ | |||
3168 | case DIV: | |||
3169 | case MOD: | |||
3170 | case UDIV: | |||
3171 | case UMOD: | |||
3172 | if (HONOR_SNANS (x)) | |||
3173 | return 1; | |||
3174 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT)) | |||
3175 | return flag_trapping_mathglobal_options.x_flag_trapping_math; | |||
3176 | if (!CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ) || (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == const0_rtx(const_int_rtx[64]))) | |||
3177 | return 1; | |||
3178 | if (GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_VECTOR) | |||
3179 | { | |||
3180 | /* For CONST_VECTOR, return 1 if any element is or might be zero. */ | |||
3181 | unsigned int n_elts; | |||
3182 | rtx op = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | |||
3183 | if (!GET_MODE_NUNITS (GET_MODE (op)((machine_mode) (op)->mode)).is_constant (&n_elts)) | |||
3184 | { | |||
3185 | if (!CONST_VECTOR_DUPLICATE_P (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != CONST_VECTOR) rtl_check_failed_flag ("CONST_VECTOR_NELTS_PER_PATTERN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3185, __FUNCTION__); _rtx; }) ->u2.const_vector.nelts_per_pattern ) == 1)) | |||
3186 | return 1; | |||
3187 | for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0)(((((op)->u.fld[0]).rt_rtvec))->num_elem); i++) | |||
3188 | if (CONST_VECTOR_ENCODED_ELT (op, i)(((((op)->u.fld[0]).rt_rtvec))->elem[i]) == const0_rtx(const_int_rtx[64])) | |||
3189 | return 1; | |||
3190 | } | |||
3191 | else | |||
3192 | for (unsigned i = 0; i < n_elts; i++) | |||
3193 | if (CONST_VECTOR_ELT (op, i)const_vector_elt (op, i) == const0_rtx(const_int_rtx[64])) | |||
3194 | return 1; | |||
3195 | } | |||
3196 | break; | |||
3197 | ||||
3198 | case EXPR_LIST: | |||
3199 | /* An EXPR_LIST is used to represent a function call. This | |||
3200 | certainly may trap. */ | |||
3201 | return 1; | |||
3202 | ||||
3203 | case GE: | |||
3204 | case GT: | |||
3205 | case LE: | |||
3206 | case LT: | |||
3207 | case LTGT: | |||
3208 | case COMPARE: | |||
3209 | /* Some floating point comparisons may trap. */ | |||
3210 | if (!flag_trapping_mathglobal_options.x_flag_trapping_math) | |||
3211 | break; | |||
3212 | /* ??? There is no machine independent way to check for tests that trap | |||
3213 | when COMPARE is used, though many targets do make this distinction. | |||
3214 | For instance, sparc uses CCFPE for compares which generate exceptions | |||
3215 | and CCFP for compares which do not generate exceptions. */ | |||
3216 | if (HONOR_NANS (x)) | |||
3217 | return 1; | |||
3218 | /* But often the compare has some CC mode, so check operand | |||
3219 | modes as well. */ | |||
3220 | if (HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | |||
3221 | || HONOR_NANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) | |||
3222 | return 1; | |||
3223 | break; | |||
3224 | ||||
3225 | case EQ: | |||
3226 | case NE: | |||
3227 | if (HONOR_SNANS (x)) | |||
3228 | return 1; | |||
3229 | /* Often comparison is CC mode, so check operand modes. */ | |||
3230 | if (HONOR_SNANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | |||
3231 | || HONOR_SNANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) | |||
3232 | return 1; | |||
3233 | break; | |||
3234 | ||||
3235 | case FIX: | |||
3236 | case UNSIGNED_FIX: | |||
3237 | /* Conversion of floating point might trap. */ | |||
3238 | if (flag_trapping_mathglobal_options.x_flag_trapping_math && HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx))) | |||
3239 | return 1; | |||
3240 | break; | |||
3241 | ||||
3242 | case NEG: | |||
3243 | case ABS: | |||
3244 | case SUBREG: | |||
3245 | case VEC_MERGE: | |||
3246 | case VEC_SELECT: | |||
3247 | case VEC_CONCAT: | |||
3248 | case VEC_DUPLICATE: | |||
3249 | /* These operations don't trap even with floating point. */ | |||
3250 | break; | |||
3251 | ||||
3252 | default: | |||
3253 | /* Any floating arithmetic may trap. */ | |||
3254 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT) && flag_trapping_mathglobal_options.x_flag_trapping_math) | |||
3255 | return 1; | |||
3256 | } | |||
3257 | ||||
3258 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
3259 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
3260 | { | |||
3261 | if (fmt[i] == 'e') | |||
3262 | { | |||
3263 | if (may_trap_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), flags)) | |||
3264 | return 1; | |||
3265 | } | |||
3266 | else if (fmt[i] == 'E') | |||
3267 | { | |||
3268 | int j; | |||
3269 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
3270 | if (may_trap_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), flags)) | |||
3271 | return 1; | |||
3272 | } | |||
3273 | } | |||
3274 | return 0; | |||
3275 | } | |||
3276 | ||||
3277 | /* Return nonzero if evaluating rtx X might cause a trap. */ | |||
3278 | ||||
3279 | int | |||
3280 | may_trap_p (const_rtx x) | |||
3281 | { | |||
3282 | return may_trap_p_1 (x, 0); | |||
3283 | } | |||
3284 | ||||
3285 | /* Same as above, but additionally return nonzero if evaluating rtx X might | |||
3286 | cause a fault. We define a fault for the purpose of this function as a | |||
3287 | erroneous execution condition that cannot be encountered during the normal | |||
3288 | execution of a valid program; the typical example is an unaligned memory | |||
3289 | access on a strict alignment machine. The compiler guarantees that it | |||
3290 | doesn't generate code that will fault from a valid program, but this | |||
3291 | guarantee doesn't mean anything for individual instructions. Consider | |||
3292 | the following example: | |||
3293 | ||||
3294 | struct S { int d; union { char *cp; int *ip; }; }; | |||
3295 | ||||
3296 | int foo(struct S *s) | |||
3297 | { | |||
3298 | if (s->d == 1) | |||
3299 | return *s->ip; | |||
3300 | else | |||
3301 | return *s->cp; | |||
3302 | } | |||
3303 | ||||
3304 | on a strict alignment machine. In a valid program, foo will never be | |||
3305 | invoked on a structure for which d is equal to 1 and the underlying | |||
3306 | unique field of the union not aligned on a 4-byte boundary, but the | |||
3307 | expression *s->ip might cause a fault if considered individually. | |||
3308 | ||||
3309 | At the RTL level, potentially problematic expressions will almost always | |||
3310 | verify may_trap_p; for example, the above dereference can be emitted as | |||
3311 | (mem:SI (reg:P)) and this expression is may_trap_p for a generic register. | |||
3312 | However, suppose that foo is inlined in a caller that causes s->cp to | |||
3313 | point to a local character variable and guarantees that s->d is not set | |||
3314 | to 1; foo may have been effectively translated into pseudo-RTL as: | |||
3315 | ||||
3316 | if ((reg:SI) == 1) | |||
3317 | (set (reg:SI) (mem:SI (%fp - 7))) | |||
3318 | else | |||
3319 | (set (reg:QI) (mem:QI (%fp - 7))) | |||
3320 | ||||
3321 | Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a | |||
3322 | memory reference to a stack slot, but it will certainly cause a fault | |||
3323 | on a strict alignment machine. */ | |||
3324 | ||||
3325 | int | |||
3326 | may_trap_or_fault_p (const_rtx x) | |||
3327 | { | |||
3328 | return may_trap_p_1 (x, 1); | |||
3329 | } | |||
3330 | ||||
3331 | /* Replace any occurrence of FROM in X with TO. The function does | |||
3332 | not enter into CONST_DOUBLE for the replace. | |||
3333 | ||||
3334 | Note that copying is not done so X must not be shared unless all copies | |||
3335 | are to be modified. | |||
3336 | ||||
3337 | ALL_REGS is true if we want to replace all REGs equal to FROM, not just | |||
3338 | those pointer-equal ones. */ | |||
3339 | ||||
3340 | rtx | |||
3341 | replace_rtx (rtx x, rtx from, rtx to, bool all_regs) | |||
3342 | { | |||
3343 | int i, j; | |||
3344 | const char *fmt; | |||
3345 | ||||
3346 | if (x == from) | |||
3347 | return to; | |||
3348 | ||||
3349 | /* Allow this function to make replacements in EXPR_LISTs. */ | |||
3350 | if (x == 0) | |||
3351 | return 0; | |||
3352 | ||||
3353 | if (all_regs | |||
3354 | && REG_P (x)(((enum rtx_code) (x)->code) == REG) | |||
3355 | && REG_P (from)(((enum rtx_code) (from)->code) == REG) | |||
3356 | && REGNO (x)(rhs_regno(x)) == REGNO (from)(rhs_regno(from))) | |||
3357 | { | |||
3358 | gcc_assert (GET_MODE (x) == GET_MODE (from))((void)(!(((machine_mode) (x)->mode) == ((machine_mode) (from )->mode)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3358, __FUNCTION__), 0 : 0)); | |||
3359 | return to; | |||
3360 | } | |||
3361 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) | |||
3362 | { | |||
3363 | rtx new_rtx = replace_rtx (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); | |||
3364 | ||||
3365 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) | |||
3366 | { | |||
3367 | x = simplify_subreg (GET_MODE (x)((machine_mode) (x)->mode), new_rtx, | |||
3368 | GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), | |||
3369 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); | |||
3370 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3370, __FUNCTION__), 0 : 0)); | |||
3371 | } | |||
3372 | else | |||
3373 | SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx) = new_rtx; | |||
3374 | ||||
3375 | return x; | |||
3376 | } | |||
3377 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTEND) | |||
3378 | { | |||
3379 | rtx new_rtx = replace_rtx (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); | |||
3380 | ||||
3381 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) | |||
3382 | { | |||
3383 | x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x)((machine_mode) (x)->mode), | |||
3384 | new_rtx, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | |||
3385 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3385, __FUNCTION__), 0 : 0)); | |||
3386 | } | |||
3387 | else | |||
3388 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_rtx; | |||
3389 | ||||
3390 | return x; | |||
3391 | } | |||
3392 | ||||
3393 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); | |||
3394 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) | |||
3395 | { | |||
3396 | if (fmt[i] == 'e') | |||
3397 | XEXP (x, i)(((x)->u.fld[i]).rt_rtx) = replace_rtx (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), from, to, all_regs); | |||
3398 | else if (fmt[i] == 'E') | |||
3399 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
3400 | XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) = replace_rtx (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), | |||
3401 | from, to, all_regs); | |||
3402 | } | |||
3403 | ||||
3404 | return x; | |||
3405 | } | |||
3406 | ||||
3407 | /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track | |||
3408 | the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */ | |||
3409 | ||||
3410 | void | |||
3411 | replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses) | |||
3412 | { | |||
3413 | /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */ | |||
3414 | rtx x = *loc; | |||
3415 | if (JUMP_TABLE_DATA_P (x)(((enum rtx_code) (x)->code) == JUMP_TABLE_DATA)) | |||
3416 | { | |||
3417 | x = PATTERN (x); | |||
3418 | rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC)(((x)->u.fld[((enum rtx_code) (x)->code) == ADDR_DIFF_VEC ]).rt_rtvec); | |||
3419 | int len = GET_NUM_ELEM (vec)((vec)->num_elem); | |||
3420 | for (int i = 0; i < len; ++i) | |||
3421 | { | |||
3422 | rtx ref = RTVEC_ELT (vec, i)((vec)->elem[i]); | |||
3423 | if (XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) == old_label) | |||
3424 | { | |||
3425 | XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) = new_label; | |||
3426 | if (update_label_nuses) | |||
3427 | { | |||
3428 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); | |||
3429 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); | |||
3430 | } | |||
3431 | } | |||
3432 | } | |||
3433 | return; | |||
3434 | } | |||
3435 | ||||
3436 | /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL | |||
3437 | field. This is not handled by the iterator because it doesn't | |||
3438 | handle unprinted ('0') fields. */ | |||
3439 | if (JUMP_P (x)(((enum rtx_code) (x)->code) == JUMP_INSN) && JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) == old_label) | |||
3440 | JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) = new_label; | |||
3441 | ||||
3442 | subrtx_ptr_iterator::array_type array; | |||
3443 | FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)for (subrtx_ptr_iterator iter (array, loc, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
3444 | { | |||
3445 | rtx *loc = *iter; | |||
3446 | if (rtx x = *loc) | |||
3447 | { | |||
3448 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SYMBOL_REF | |||
3449 | && CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3449, __FUNCTION__); _rtx; })->unchanging)) | |||
3450 | { | |||
3451 | rtx c = get_pool_constant (x); | |||
3452 | if (rtx_referenced_p (old_label, c)) | |||
3453 | { | |||
3454 | /* Create a copy of constant C; replace the label inside | |||
3455 | but do not update LABEL_NUSES because uses in constant pool | |||
3456 | are not counted. */ | |||
3457 | rtx new_c = copy_rtx (c); | |||
3458 | replace_label (&new_c, old_label, new_label, false); | |||
3459 | ||||
3460 | /* Add the new constant NEW_C to constant pool and replace | |||
3461 | the old reference to constant by new reference. */ | |||
3462 | rtx new_mem = force_const_mem (get_pool_mode (x), new_c); | |||
3463 | *loc = replace_rtx (x, x, XEXP (new_mem, 0)(((new_mem)->u.fld[0]).rt_rtx)); | |||
3464 | } | |||
3465 | } | |||
3466 | ||||
3467 | if ((GET_CODE (x)((enum rtx_code) (x)->code) == LABEL_REF | |||
3468 | || GET_CODE (x)((enum rtx_code) (x)->code) == INSN_LIST) | |||
3469 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == old_label) | |||
3470 | { | |||
3471 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_label; | |||
3472 | if (update_label_nuses) | |||
3473 | { | |||
3474 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); | |||
3475 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); | |||
3476 | } | |||
3477 | } | |||
3478 | } | |||
3479 | } | |||
3480 | } | |||
3481 | ||||
3482 | void | |||
3483 | replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label, | |||
3484 | rtx_insn *new_label, bool update_label_nuses) | |||
3485 | { | |||
3486 | rtx insn_as_rtx = insn; | |||
3487 | replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses); | |||
3488 | gcc_checking_assert (insn_as_rtx == insn)((void)(!(insn_as_rtx == insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3488, __FUNCTION__), 0 : 0)); | |||
3489 | } | |||
3490 | ||||
3491 | /* Return true if X is referenced in BODY. */ | |||
3492 | ||||
3493 | bool | |||
3494 | rtx_referenced_p (const_rtx x, const_rtx body) | |||
3495 | { | |||
3496 | subrtx_iterator::array_type array; | |||
3497 | FOR_EACH_SUBRTX (iter, array, body, ALL)for (subrtx_iterator iter (array, body, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
3498 | if (const_rtx y = *iter) | |||
3499 | { | |||
3500 | /* Check if a label_ref Y refers to label X. */ | |||
3501 | if (GET_CODE (y)((enum rtx_code) (y)->code) == LABEL_REF | |||
3502 | && LABEL_P (x)(((enum rtx_code) (x)->code) == CODE_LABEL) | |||
3503 | && label_ref_label (y) == x) | |||
3504 | return true; | |||
3505 | ||||
3506 | if (rtx_equal_p (x, y)) | |||
3507 | return true; | |||
3508 | ||||
3509 | /* If Y is a reference to pool constant traverse the constant. */ | |||
3510 | if (GET_CODE (y)((enum rtx_code) (y)->code) == SYMBOL_REF | |||
3511 | && CONSTANT_POOL_ADDRESS_P (y)(__extension__ ({ __typeof ((y)) const _rtx = ((y)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3511, __FUNCTION__); _rtx; })->unchanging)) | |||
3512 | iter.substitute (get_pool_constant (y)); | |||
3513 | } | |||
3514 | return false; | |||
3515 | } | |||
3516 | ||||
3517 | /* If INSN is a tablejump return true and store the label (before jump table) to | |||
3518 | *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */ | |||
3519 | ||||
3520 | bool | |||
3521 | tablejump_p (const rtx_insn *insn, rtx_insn **labelp, | |||
3522 | rtx_jump_table_data **tablep) | |||
3523 | { | |||
3524 | if (!JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) | |||
3525 | return false; | |||
3526 | ||||
3527 | rtx target = JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx); | |||
3528 | if (target == NULL_RTX(rtx) 0 || ANY_RETURN_P (target)(((enum rtx_code) (target)->code) == RETURN || ((enum rtx_code ) (target)->code) == SIMPLE_RETURN)) | |||
3529 | return false; | |||
3530 | ||||
3531 | rtx_insn *label = as_a<rtx_insn *> (target); | |||
3532 | rtx_insn *table = next_insn (label); | |||
3533 | if (table == NULL_RTX(rtx) 0 || !JUMP_TABLE_DATA_P (table)(((enum rtx_code) (table)->code) == JUMP_TABLE_DATA)) | |||
3534 | return false; | |||
3535 | ||||
3536 | if (labelp) | |||
3537 | *labelp = label; | |||
3538 | if (tablep) | |||
3539 | *tablep = as_a <rtx_jump_table_data *> (table); | |||
3540 | return true; | |||
3541 | } | |||
3542 | ||||
3543 | /* For INSN known to satisfy tablejump_p, determine if it actually is a | |||
3544 | CASESI. Return the insn pattern if so, NULL_RTX otherwise. */ | |||
3545 | ||||
3546 | rtx | |||
3547 | tablejump_casesi_pattern (const rtx_insn *insn) | |||
3548 | { | |||
3549 | rtx tmp; | |||
3550 | ||||
3551 | if ((tmp = single_set (insn)) != NULLnullptr | |||
3552 | && SET_DEST (tmp)(((tmp)->u.fld[0]).rt_rtx) == pc_rtx | |||
3553 | && GET_CODE (SET_SRC (tmp))((enum rtx_code) ((((tmp)->u.fld[1]).rt_rtx))->code) == IF_THEN_ELSE | |||
3554 | && GET_CODE (XEXP (SET_SRC (tmp), 2))((enum rtx_code) (((((((tmp)->u.fld[1]).rt_rtx))->u.fld [2]).rt_rtx))->code) == LABEL_REF) | |||
3555 | return tmp; | |||
3556 | ||||
3557 | return NULL_RTX(rtx) 0; | |||
3558 | } | |||
3559 | ||||
3560 | /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or | |||
3561 | constant that is not in the constant pool and not in the condition | |||
3562 | of an IF_THEN_ELSE. */ | |||
3563 | ||||
3564 | static int | |||
3565 | computed_jump_p_1 (const_rtx x) | |||
3566 | { | |||
3567 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
3568 | int i, j; | |||
3569 | const char *fmt; | |||
3570 | ||||
3571 | switch (code) | |||
3572 | { | |||
3573 | case LABEL_REF: | |||
3574 | case PC: | |||
3575 | return 0; | |||
3576 | ||||
3577 | case CONST: | |||
3578 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | |||
3579 | case SYMBOL_REF: | |||
3580 | case REG: | |||
3581 | return 1; | |||
3582 | ||||
3583 | case MEM: | |||
3584 | return ! (GET_CODE (XEXP (x, 0))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SYMBOL_REF | |||
3585 | && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))(__extension__ ({ __typeof (((((x)->u.fld[0]).rt_rtx))) const _rtx = (((((x)->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3585, __FUNCTION__); _rtx; })->unchanging)); | |||
3586 | ||||
3587 | case IF_THEN_ELSE: | |||
3588 | return (computed_jump_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | |||
3589 | || computed_jump_p_1 (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx))); | |||
3590 | ||||
3591 | default: | |||
3592 | break; | |||
3593 | } | |||
3594 | ||||
3595 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
3596 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
3597 | { | |||
3598 | if (fmt[i] == 'e' | |||
3599 | && computed_jump_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | |||
3600 | return 1; | |||
3601 | ||||
3602 | else if (fmt[i] == 'E') | |||
3603 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
3604 | if (computed_jump_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
3605 | return 1; | |||
3606 | } | |||
3607 | ||||
3608 | return 0; | |||
3609 | } | |||
3610 | ||||
3611 | /* Return nonzero if INSN is an indirect jump (aka computed jump). | |||
3612 | ||||
3613 | Tablejumps and casesi insns are not considered indirect jumps; | |||
3614 | we can recognize them by a (use (label_ref)). */ | |||
3615 | ||||
3616 | int | |||
3617 | computed_jump_p (const rtx_insn *insn) | |||
3618 | { | |||
3619 | int i; | |||
3620 | if (JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) | |||
3621 | { | |||
3622 | rtx pat = PATTERN (insn); | |||
3623 | ||||
3624 | /* If we have a JUMP_LABEL set, we're not a computed jump. */ | |||
3625 | if (JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx) != NULLnullptr) | |||
3626 | return 0; | |||
3627 | ||||
3628 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | |||
3629 | { | |||
3630 | int len = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); | |||
3631 | int has_use_labelref = 0; | |||
3632 | ||||
3633 | for (i = len - 1; i >= 0; i--) | |||
3634 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == USE | |||
3635 | && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))((enum rtx_code) (((((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->u.fld[0]).rt_rtx))->code) | |||
3636 | == LABEL_REF)) | |||
3637 | { | |||
3638 | has_use_labelref = 1; | |||
3639 | break; | |||
3640 | } | |||
3641 | ||||
3642 | if (! has_use_labelref) | |||
3643 | for (i = len - 1; i >= 0; i--) | |||
3644 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == SET | |||
3645 | && SET_DEST (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) == pc_rtx | |||
3646 | && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [1]).rt_rtx))) | |||
3647 | return 1; | |||
3648 | } | |||
3649 | else if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET | |||
3650 | && SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx) == pc_rtx | |||
3651 | && computed_jump_p_1 (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx))) | |||
3652 | return 1; | |||
3653 | } | |||
3654 | return 0; | |||
3655 | } | |||
3656 | ||||
3657 | ||||
3658 | ||||
3659 | /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of | |||
3660 | the equivalent add insn and pass the result to FN, using DATA as the | |||
3661 | final argument. */ | |||
3662 | ||||
3663 | static int | |||
3664 | for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data) | |||
3665 | { | |||
3666 | rtx x = XEXP (mem, 0)(((mem)->u.fld[0]).rt_rtx); | |||
3667 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | |||
3668 | { | |||
3669 | case PRE_INC: | |||
3670 | case POST_INC: | |||
3671 | { | |||
3672 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); | |||
3673 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
3674 | rtx c = gen_int_mode (size, GET_MODE (r1)((machine_mode) (r1)->mode)); | |||
3675 | return fn (mem, x, r1, r1, c, data); | |||
3676 | } | |||
3677 | ||||
3678 | case PRE_DEC: | |||
3679 | case POST_DEC: | |||
3680 | { | |||
3681 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); | |||
3682 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
3683 | rtx c = gen_int_mode (-size, GET_MODE (r1)((machine_mode) (r1)->mode)); | |||
3684 | return fn (mem, x, r1, r1, c, data); | |||
3685 | } | |||
3686 | ||||
3687 | case PRE_MODIFY: | |||
3688 | case POST_MODIFY: | |||
3689 | { | |||
3690 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
3691 | rtx add = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | |||
3692 | return fn (mem, x, r1, add, NULLnullptr, data); | |||
3693 | } | |||
3694 | ||||
3695 | default: | |||
3696 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3696, __FUNCTION__)); | |||
3697 | } | |||
3698 | } | |||
3699 | ||||
3700 | /* Traverse *LOC looking for MEMs that have autoinc addresses. | |||
3701 | For each such autoinc operation found, call FN, passing it | |||
3702 | the innermost enclosing MEM, the operation itself, the RTX modified | |||
3703 | by the operation, two RTXs (the second may be NULL) that, once | |||
3704 | added, represent the value to be held by the modified RTX | |||
3705 | afterwards, and DATA. FN is to return 0 to continue the | |||
3706 | traversal or any other value to have it returned to the caller of | |||
3707 | for_each_inc_dec. */ | |||
3708 | ||||
3709 | int | |||
3710 | for_each_inc_dec (rtx x, | |||
3711 | for_each_inc_dec_fn fn, | |||
3712 | void *data) | |||
3713 | { | |||
3714 | subrtx_var_iterator::array_type array; | |||
3715 | FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)for (subrtx_var_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | |||
3716 | { | |||
3717 | rtx mem = *iter; | |||
3718 | if (mem | |||
3719 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) | |||
3720 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) | |||
3721 | { | |||
3722 | int res = for_each_inc_dec_find_inc_dec (mem, fn, data); | |||
3723 | if (res != 0) | |||
3724 | return res; | |||
3725 | iter.skip_subrtxes (); | |||
3726 | } | |||
3727 | } | |||
3728 | return 0; | |||
3729 | } | |||
3730 | ||||
3731 | ||||
3732 | /* Searches X for any reference to REGNO, returning the rtx of the | |||
3733 | reference found if any. Otherwise, returns NULL_RTX. */ | |||
3734 | ||||
3735 | rtx | |||
3736 | regno_use_in (unsigned int regno, rtx x) | |||
3737 | { | |||
3738 | const char *fmt; | |||
3739 | int i, j; | |||
3740 | rtx tem; | |||
3741 | ||||
3742 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) == regno) | |||
3743 | return x; | |||
3744 | ||||
3745 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); | |||
3746 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) | |||
3747 | { | |||
3748 | if (fmt[i] == 'e') | |||
3749 | { | |||
3750 | if ((tem = regno_use_in (regno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx)))) | |||
3751 | return tem; | |||
3752 | } | |||
3753 | else if (fmt[i] == 'E') | |||
3754 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
3755 | if ((tem = regno_use_in (regno , XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j])))) | |||
3756 | return tem; | |||
3757 | } | |||
3758 | ||||
3759 | return NULL_RTX(rtx) 0; | |||
3760 | } | |||
3761 | ||||
3762 | /* Return a value indicating whether OP, an operand of a commutative | |||
3763 | operation, is preferred as the first or second operand. The more | |||
3764 | positive the value, the stronger the preference for being the first | |||
3765 | operand. */ | |||
3766 | ||||
3767 | int | |||
3768 | commutative_operand_precedence (rtx op) | |||
3769 | { | |||
3770 | enum rtx_code code = GET_CODE (op)((enum rtx_code) (op)->code); | |||
3771 | ||||
3772 | /* Constants always become the second operand. Prefer "nice" constants. */ | |||
3773 | if (code == CONST_INT) | |||
3774 | return -10; | |||
3775 | if (code == CONST_WIDE_INT) | |||
3776 | return -9; | |||
3777 | if (code == CONST_POLY_INT) | |||
3778 | return -8; | |||
3779 | if (code == CONST_DOUBLE) | |||
3780 | return -8; | |||
3781 | if (code == CONST_FIXED) | |||
3782 | return -8; | |||
3783 | op = avoid_constant_pool_reference (op); | |||
3784 | code = GET_CODE (op)((enum rtx_code) (op)->code); | |||
3785 | ||||
3786 | switch (GET_RTX_CLASS (code)(rtx_class[(int) (code)])) | |||
3787 | { | |||
3788 | case RTX_CONST_OBJ: | |||
3789 | if (code == CONST_INT) | |||
3790 | return -7; | |||
3791 | if (code == CONST_WIDE_INT) | |||
3792 | return -6; | |||
3793 | if (code == CONST_POLY_INT) | |||
3794 | return -5; | |||
3795 | if (code == CONST_DOUBLE) | |||
3796 | return -5; | |||
3797 | if (code == CONST_FIXED) | |||
3798 | return -5; | |||
3799 | return -4; | |||
3800 | ||||
3801 | case RTX_EXTRA: | |||
3802 | /* SUBREGs of objects should come second. */ | |||
3803 | if (code == SUBREG && OBJECT_P (SUBREG_REG (op))(((rtx_class[(int) (((enum rtx_code) ((((op)->u.fld[0]).rt_rtx ))->code))]) & (~1)) == (RTX_OBJ & (~1)))) | |||
3804 | return -3; | |||
3805 | return 0; | |||
3806 | ||||
3807 | case RTX_OBJ: | |||
3808 | /* Complex expressions should be the first, so decrease priority | |||
3809 | of objects. Prefer pointer objects over non pointer objects. */ | |||
3810 | if ((REG_P (op)(((enum rtx_code) (op)->code) == REG) && REG_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3810, __FUNCTION__); _rtx; })->frame_related)) | |||
3811 | || (MEM_P (op)(((enum rtx_code) (op)->code) == MEM) && MEM_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3811, __FUNCTION__); _rtx; })->frame_related))) | |||
3812 | return -1; | |||
3813 | return -2; | |||
3814 | ||||
3815 | case RTX_COMM_ARITH: | |||
3816 | /* Prefer operands that are themselves commutative to be first. | |||
3817 | This helps to make things linear. In particular, | |||
3818 | (and (and (reg) (reg)) (not (reg))) is canonical. */ | |||
3819 | return 4; | |||
3820 | ||||
3821 | case RTX_BIN_ARITH: | |||
3822 | /* If only one operand is a binary expression, it will be the first | |||
3823 | operand. In particular, (plus (minus (reg) (reg)) (neg (reg))) | |||
3824 | is canonical, although it will usually be further simplified. */ | |||
3825 | return 2; | |||
3826 | ||||
3827 | case RTX_UNARY: | |||
3828 | /* Then prefer NEG and NOT. */ | |||
3829 | if (code == NEG || code == NOT) | |||
3830 | return 1; | |||
3831 | /* FALLTHRU */ | |||
3832 | ||||
3833 | default: | |||
3834 | return 0; | |||
3835 | } | |||
3836 | } | |||
3837 | ||||
3838 | /* Return 1 iff it is necessary to swap operands of commutative operation | |||
3839 | in order to canonicalize expression. */ | |||
3840 | ||||
3841 | bool | |||
3842 | swap_commutative_operands_p (rtx x, rtx y) | |||
3843 | { | |||
3844 | return (commutative_operand_precedence (x) | |||
3845 | < commutative_operand_precedence (y)); | |||
3846 | } | |||
3847 | ||||
3848 | /* Return 1 if X is an autoincrement side effect and the register is | |||
3849 | not the stack pointer. */ | |||
3850 | int | |||
3851 | auto_inc_p (const_rtx x) | |||
3852 | { | |||
3853 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | |||
3854 | { | |||
3855 | case PRE_INC: | |||
3856 | case POST_INC: | |||
3857 | case PRE_DEC: | |||
3858 | case POST_DEC: | |||
3859 | case PRE_MODIFY: | |||
3860 | case POST_MODIFY: | |||
3861 | /* There are no REG_INC notes for SP. */ | |||
3862 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) != stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | |||
3863 | return 1; | |||
3864 | default: | |||
3865 | break; | |||
3866 | } | |||
3867 | return 0; | |||
3868 | } | |||
3869 | ||||
3870 | /* Return nonzero if IN contains a piece of rtl that has the address LOC. */ | |||
3871 | int | |||
3872 | loc_mentioned_in_p (rtx *loc, const_rtx in) | |||
3873 | { | |||
3874 | enum rtx_code code; | |||
3875 | const char *fmt; | |||
3876 | int i, j; | |||
3877 | ||||
3878 | if (!in) | |||
3879 | return 0; | |||
3880 | ||||
3881 | code = GET_CODE (in)((enum rtx_code) (in)->code); | |||
3882 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
3883 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
3884 | { | |||
3885 | if (fmt[i] == 'e') | |||
3886 | { | |||
3887 | if (loc == &XEXP (in, i)(((in)->u.fld[i]).rt_rtx) || loc_mentioned_in_p (loc, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | |||
3888 | return 1; | |||
3889 | } | |||
3890 | else if (fmt[i] == 'E') | |||
3891 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | |||
3892 | if (loc == &XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]) | |||
3893 | || loc_mentioned_in_p (loc, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | |||
3894 | return 1; | |||
3895 | } | |||
3896 | return 0; | |||
3897 | } | |||
3898 | ||||
3899 | /* Reinterpret a subreg as a bit extraction from an integer and return | |||
3900 | the position of the least significant bit of the extracted value. | |||
3901 | In other words, if the extraction were performed as a shift right | |||
3902 | and mask, return the number of bits to shift right. | |||
3903 | ||||
3904 | The outer value of the subreg has OUTER_BYTES bytes and starts at | |||
3905 | byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */ | |||
3906 | ||||
3907 | poly_uint64 | |||
3908 | subreg_size_lsb (poly_uint64 outer_bytes, | |||
3909 | poly_uint64 inner_bytes, | |||
3910 | poly_uint64 subreg_byte) | |||
3911 | { | |||
3912 | poly_uint64 subreg_end, trailing_bytes, byte_pos; | |||
3913 | ||||
3914 | /* A paradoxical subreg begins at bit position 0. */ | |||
3915 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3915, __FUNCTION__), 0 : 0)); | |||
3916 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) | |||
3917 | { | |||
3918 | gcc_checking_assert (known_eq (subreg_byte, 0U))((void)(!((!maybe_ne (subreg_byte, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3918, __FUNCTION__), 0 : 0)); | |||
3919 | return 0; | |||
3920 | } | |||
3921 | ||||
3922 | subreg_end = subreg_byte + outer_bytes; | |||
3923 | trailing_bytes = inner_bytes - subreg_end; | |||
3924 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) | |||
3925 | byte_pos = trailing_bytes; | |||
3926 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) | |||
3927 | byte_pos = subreg_byte; | |||
3928 | else | |||
3929 | { | |||
3930 | /* When bytes and words have opposite endianness, we must be able | |||
3931 | to split offsets into words and bytes at compile time. */ | |||
3932 | poly_uint64 leading_word_part | |||
3933 | = force_align_down (subreg_byte, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | |||
3934 | poly_uint64 trailing_word_part | |||
3935 | = force_align_down (trailing_bytes, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | |||
3936 | /* If the subreg crosses a word boundary ensure that | |||
3937 | it also begins and ends on a word boundary. */ | |||
3938 | gcc_assert (known_le (subreg_end - leading_word_part,((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | |||
3939 | (unsigned int) UNITS_PER_WORD)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | |||
3940 | || (known_eq (leading_word_part, subreg_byte)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | |||
3941 | && known_eq (trailing_word_part, trailing_bytes)))((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)); | |||
3942 | if (WORDS_BIG_ENDIAN0) | |||
3943 | byte_pos = trailing_word_part + (subreg_byte - leading_word_part); | |||
3944 | else | |||
3945 | byte_pos = leading_word_part + (trailing_bytes - trailing_word_part); | |||
3946 | } | |||
3947 | ||||
3948 | return byte_pos * BITS_PER_UNIT(8); | |||
3949 | } | |||
3950 | ||||
3951 | /* Given a subreg X, return the bit offset where the subreg begins | |||
3952 | (counting from the least significant bit of the reg). */ | |||
3953 | ||||
3954 | poly_uint64 | |||
3955 | subreg_lsb (const_rtx x) | |||
3956 | { | |||
3957 | return subreg_lsb_1 (GET_MODE (x)((machine_mode) (x)->mode), GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), | |||
3958 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); | |||
3959 | } | |||
3960 | ||||
3961 | /* Return the subreg byte offset for a subreg whose outer value has | |||
3962 | OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where | |||
3963 | there are LSB_SHIFT *bits* between the lsb of the outer value and the | |||
3964 | lsb of the inner value. This is the inverse of the calculation | |||
3965 | performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */ | |||
3966 | ||||
3967 | poly_uint64 | |||
3968 | subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes, | |||
3969 | poly_uint64 lsb_shift) | |||
3970 | { | |||
3971 | /* A paradoxical subreg begins at bit position 0. */ | |||
3972 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3972, __FUNCTION__), 0 : 0)); | |||
3973 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) | |||
3974 | { | |||
3975 | gcc_checking_assert (known_eq (lsb_shift, 0U))((void)(!((!maybe_ne (lsb_shift, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3975, __FUNCTION__), 0 : 0)); | |||
3976 | return 0; | |||
3977 | } | |||
3978 | ||||
3979 | poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT(8)); | |||
3980 | poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes); | |||
3981 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) | |||
3982 | return upper_bytes; | |||
3983 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) | |||
3984 | return lower_bytes; | |||
3985 | else | |||
3986 | { | |||
3987 | /* When bytes and words have opposite endianness, we must be able | |||
3988 | to split offsets into words and bytes at compile time. */ | |||
3989 | poly_uint64 lower_word_part = force_align_down (lower_bytes, | |||
3990 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | |||
3991 | poly_uint64 upper_word_part = force_align_down (upper_bytes, | |||
3992 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | |||
3993 | if (WORDS_BIG_ENDIAN0) | |||
3994 | return upper_word_part + (lower_bytes - lower_word_part); | |||
3995 | else | |||
3996 | return lower_word_part + (upper_bytes - upper_word_part); | |||
3997 | } | |||
3998 | } | |||
3999 | ||||
4000 | /* Fill in information about a subreg of a hard register. | |||
4001 | xregno - A regno of an inner hard subreg_reg (or what will become one). | |||
4002 | xmode - The mode of xregno. | |||
4003 | offset - The byte offset. | |||
4004 | ymode - The mode of a top level SUBREG (or what may become one). | |||
4005 | info - Pointer to structure to fill in. | |||
4006 | ||||
4007 | Rather than considering one particular inner register (and thus one | |||
4008 | particular "outer" register) in isolation, this function really uses | |||
4009 | XREGNO as a model for a sequence of isomorphic hard registers. Thus the | |||
4010 | function does not check whether adding INFO->offset to XREGNO gives | |||
4011 | a valid hard register; even if INFO->offset + XREGNO is out of range, | |||
4012 | there might be another register of the same type that is in range. | |||
4013 | Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts | |||
4014 | the new register, since that can depend on things like whether the final | |||
4015 | register number is even or odd. Callers that want to check whether | |||
4016 | this particular subreg can be replaced by a simple (reg ...) should | |||
4017 | use simplify_subreg_regno. */ | |||
4018 | ||||
4019 | void | |||
4020 | subreg_get_info (unsigned int xregno, machine_mode xmode, | |||
4021 | poly_uint64 offset, machine_mode ymode, | |||
4022 | struct subreg_info *info) | |||
4023 | { | |||
4024 | unsigned int nregs_xmode, nregs_ymode; | |||
4025 | ||||
4026 | gcc_assert (xregno < FIRST_PSEUDO_REGISTER)((void)(!(xregno < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4026, __FUNCTION__), 0 : 0)); | |||
4027 | ||||
4028 | poly_uint64 xsize = GET_MODE_SIZE (xmode); | |||
4029 | poly_uint64 ysize = GET_MODE_SIZE (ymode); | |||
4030 | ||||
4031 | bool rknown = false; | |||
4032 | ||||
4033 | /* If the register representation of a non-scalar mode has holes in it, | |||
4034 | we expect the scalar units to be concatenated together, with the holes | |||
4035 | distributed evenly among the scalar units. Each scalar unit must occupy | |||
4036 | at least one register. */ | |||
4037 | if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) )))) | |||
4038 | { | |||
4039 | /* As a consequence, we must be dealing with a constant number of | |||
4040 | scalars, and thus a constant offset and number of units. */ | |||
4041 | HOST_WIDE_INTlong coffset = offset.to_constant (); | |||
4042 | HOST_WIDE_INTlong cysize = ysize.to_constant (); | |||
4043 | nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode)((xmode) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8); | |||
4044 | unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant (); | |||
4045 | scalar_mode xmode_unit = GET_MODE_INNER (xmode)(mode_to_inner (xmode)); | |||
4046 | gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit))((void)(!((((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno )) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int ) E_XFmode)) || (xmode_unit) == (complex_mode ((complex_mode:: from_int) E_XCmode))))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4046, __FUNCTION__), 0 : 0)); | |||
4047 | gcc_assert (nregs_xmode((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) | |||
4048 | == (nunits((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) | |||
4049 | * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)))((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)); | |||
4050 | gcc_assert (hard_regno_nregs (xregno, xmode)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)) | |||
4051 | == hard_regno_nregs (xregno, xmode_unit) * nunits)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)); | |||
4052 | ||||
4053 | /* You can only ask for a SUBREG of a value with holes in the middle | |||
4054 | if you don't cross the holes. (Such a SUBREG should be done by | |||
4055 | picking a different register class, or doing it in memory if | |||
4056 | necessary.) An example of a value with holes is XCmode on 32-bit | |||
4057 | x86 with -m128bit-long-double; it's represented in 6 32-bit registers, | |||
4058 | 3 for each part, but in memory it's two 128-bit parts. | |||
4059 | Padding is assumed to be at the end (not necessarily the 'high part') | |||
4060 | of each unit. */ | |||
4061 | if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits) | |||
4062 | && (coffset / GET_MODE_SIZE (xmode_unit) | |||
4063 | != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit)))) | |||
4064 | { | |||
4065 | info->representable_p = false; | |||
4066 | rknown = true; | |||
4067 | } | |||
4068 | } | |||
4069 | else | |||
4070 | nregs_xmode = hard_regno_nregs (xregno, xmode); | |||
4071 | ||||
4072 | nregs_ymode = hard_regno_nregs (xregno, ymode); | |||
4073 | ||||
4074 | /* Subreg sizes must be ordered, so that we can tell whether they are | |||
4075 | partial, paradoxical or complete. */ | |||
4076 | gcc_checking_assert (ordered_p (xsize, ysize))((void)(!(ordered_p (xsize, ysize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4076, __FUNCTION__), 0 : 0)); | |||
4077 | ||||
4078 | /* Paradoxical subregs are otherwise valid. */ | |||
4079 | if (!rknown && known_eq (offset, 0U)(!maybe_ne (offset, 0U)) && maybe_gt (ysize, xsize)maybe_lt (xsize, ysize)) | |||
4080 | { | |||
4081 | info->representable_p = true; | |||
4082 | /* If this is a big endian paradoxical subreg, which uses more | |||
4083 | actual hard registers than the original register, we must | |||
4084 | return a negative offset so that we find the proper highpart | |||
4085 | of the register. | |||
4086 | ||||
4087 | We assume that the ordering of registers within a multi-register | |||
4088 | value has a consistent endianness: if bytes and register words | |||
4089 | have different endianness, the hard registers that make up a | |||
4090 | multi-register value must be at least word-sized. */ | |||
4091 | if (REG_WORDS_BIG_ENDIAN0) | |||
4092 | info->offset = (int) nregs_xmode - (int) nregs_ymode; | |||
4093 | else | |||
4094 | info->offset = 0; | |||
4095 | info->nregs = nregs_ymode; | |||
4096 | return; | |||
4097 | } | |||
4098 | ||||
4099 | /* If registers store different numbers of bits in the different | |||
4100 | modes, we cannot generally form this subreg. */ | |||
4101 | poly_uint64 regsize_xmode, regsize_ymode; | |||
4102 | if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) | |||
4103 | && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((ymode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (ymode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) | |||
4104 | && multiple_p (xsize, nregs_xmode, ®size_xmode) | |||
4105 | && multiple_p (ysize, nregs_ymode, ®size_ymode)) | |||
4106 | { | |||
4107 | if (!rknown | |||
4108 | && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode)maybe_lt (regsize_ymode, regsize_xmode)) | |||
4109 | || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode)maybe_lt (regsize_xmode, regsize_ymode)))) | |||
4110 | { | |||
4111 | info->representable_p = false; | |||
4112 | if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs) | |||
4113 | || !can_div_trunc_p (offset, regsize_xmode, &info->offset)) | |||
4114 | /* Checked by validate_subreg. We must know at compile time | |||
4115 | which inner registers are being accessed. */ | |||
4116 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4116, __FUNCTION__)); | |||
4117 | return; | |||
4118 | } | |||
4119 | /* It's not valid to extract a subreg of mode YMODE at OFFSET that | |||
4120 | would go outside of XMODE. */ | |||
4121 | if (!rknown && maybe_gt (ysize + offset, xsize)maybe_lt (xsize, ysize + offset)) | |||
4122 | { | |||
4123 | info->representable_p = false; | |||
4124 | info->nregs = nregs_ymode; | |||
4125 | if (!can_div_trunc_p (offset, regsize_xmode, &info->offset)) | |||
4126 | /* Checked by validate_subreg. We must know at compile time | |||
4127 | which inner registers are being accessed. */ | |||
4128 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4128, __FUNCTION__)); | |||
4129 | return; | |||
4130 | } | |||
4131 | /* Quick exit for the simple and common case of extracting whole | |||
4132 | subregisters from a multiregister value. */ | |||
4133 | /* ??? It would be better to integrate this into the code below, | |||
4134 | if we can generalize the concept enough and figure out how | |||
4135 | odd-sized modes can coexist with the other weird cases we support. */ | |||
4136 | HOST_WIDE_INTlong count; | |||
4137 | if (!rknown | |||
4138 | && WORDS_BIG_ENDIAN0 == REG_WORDS_BIG_ENDIAN0 | |||
4139 | && known_eq (regsize_xmode, regsize_ymode)(!maybe_ne (regsize_xmode, regsize_ymode)) | |||
4140 | && constant_multiple_p (offset, regsize_ymode, &count)) | |||
4141 | { | |||
4142 | info->representable_p = true; | |||
4143 | info->nregs = nregs_ymode; | |||
4144 | info->offset = count; | |||
4145 | gcc_assert (info->offset + info->nregs <= (int) nregs_xmode)((void)(!(info->offset + info->nregs <= (int) nregs_xmode ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4145, __FUNCTION__), 0 : 0)); | |||
4146 | return; | |||
4147 | } | |||
4148 | } | |||
4149 | ||||
4150 | /* Lowpart subregs are otherwise valid. */ | |||
4151 | if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode))(!maybe_ne (offset, subreg_lowpart_offset (ymode, xmode)))) | |||
4152 | { | |||
4153 | info->representable_p = true; | |||
4154 | rknown = true; | |||
4155 | ||||
4156 | if (known_eq (offset, 0U)(!maybe_ne (offset, 0U)) || nregs_xmode == nregs_ymode) | |||
4157 | { | |||
4158 | info->offset = 0; | |||
4159 | info->nregs = nregs_ymode; | |||
4160 | return; | |||
4161 | } | |||
4162 | } | |||
4163 | ||||
4164 | /* Set NUM_BLOCKS to the number of independently-representable YMODE | |||
4165 | values there are in (reg:XMODE XREGNO). We can view the register | |||
4166 | as consisting of this number of independent "blocks", where each | |||
4167 | block occupies NREGS_YMODE registers and contains exactly one | |||
4168 | representable YMODE value. */ | |||
4169 | gcc_assert ((nregs_xmode % nregs_ymode) == 0)((void)(!((nregs_xmode % nregs_ymode) == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4169, __FUNCTION__), 0 : 0)); | |||
4170 | unsigned int num_blocks = nregs_xmode / nregs_ymode; | |||
4171 | ||||
4172 | /* Calculate the number of bytes in each block. This must always | |||
4173 | be exact, otherwise we don't know how to verify the constraint. | |||
4174 | These conditions may be relaxed but subreg_regno_offset would | |||
4175 | need to be redesigned. */ | |||
4176 | poly_uint64 bytes_per_block = exact_div (xsize, num_blocks); | |||
4177 | ||||
4178 | /* Get the number of the first block that contains the subreg and the byte | |||
4179 | offset of the subreg from the start of that block. */ | |||
4180 | unsigned int block_number; | |||
4181 | poly_uint64 subblock_offset; | |||
4182 | if (!can_div_trunc_p (offset, bytes_per_block, &block_number, | |||
4183 | &subblock_offset)) | |||
4184 | /* Checked by validate_subreg. We must know at compile time which | |||
4185 | inner registers are being accessed. */ | |||
4186 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4186, __FUNCTION__)); | |||
4187 | ||||
4188 | if (!rknown) | |||
4189 | { | |||
4190 | /* Only the lowpart of each block is representable. */ | |||
4191 | info->representable_p | |||
4192 | = known_eq (subblock_offset,(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))) | |||
4193 | subreg_size_lowpart_offset (ysize, bytes_per_block))(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))); | |||
4194 | rknown = true; | |||
4195 | } | |||
4196 | ||||
4197 | /* We assume that the ordering of registers within a multi-register | |||
4198 | value has a consistent endianness: if bytes and register words | |||
4199 | have different endianness, the hard registers that make up a | |||
4200 | multi-register value must be at least word-sized. */ | |||
4201 | if (WORDS_BIG_ENDIAN0 != REG_WORDS_BIG_ENDIAN0) | |||
4202 | /* The block number we calculated above followed memory endianness. | |||
4203 | Convert it to register endianness by counting back from the end. | |||
4204 | (Note that, because of the assumption above, each block must be | |||
4205 | at least word-sized.) */ | |||
4206 | info->offset = (num_blocks - block_number - 1) * nregs_ymode; | |||
4207 | else | |||
4208 | info->offset = block_number * nregs_ymode; | |||
4209 | info->nregs = nregs_ymode; | |||
4210 | } | |||
4211 | ||||
4212 | /* This function returns the regno offset of a subreg expression. | |||
4213 | xregno - A regno of an inner hard subreg_reg (or what will become one). | |||
4214 | xmode - The mode of xregno. | |||
4215 | offset - The byte offset. | |||
4216 | ymode - The mode of a top level SUBREG (or what may become one). | |||
4217 | RETURN - The regno offset which would be used. */ | |||
4218 | unsigned int | |||
4219 | subreg_regno_offset (unsigned int xregno, machine_mode xmode, | |||
4220 | poly_uint64 offset, machine_mode ymode) | |||
4221 | { | |||
4222 | struct subreg_info info; | |||
4223 | subreg_get_info (xregno, xmode, offset, ymode, &info); | |||
4224 | return info.offset; | |||
4225 | } | |||
4226 | ||||
4227 | /* This function returns true when the offset is representable via | |||
4228 | subreg_offset in the given regno. | |||
4229 | xregno - A regno of an inner hard subreg_reg (or what will become one). | |||
4230 | xmode - The mode of xregno. | |||
4231 | offset - The byte offset. | |||
4232 | ymode - The mode of a top level SUBREG (or what may become one). | |||
4233 | RETURN - Whether the offset is representable. */ | |||
4234 | bool | |||
4235 | subreg_offset_representable_p (unsigned int xregno, machine_mode xmode, | |||
4236 | poly_uint64 offset, machine_mode ymode) | |||
4237 | { | |||
4238 | struct subreg_info info; | |||
4239 | subreg_get_info (xregno, xmode, offset, ymode, &info); | |||
4240 | return info.representable_p; | |||
4241 | } | |||
4242 | ||||
4243 | /* Return the number of a YMODE register to which | |||
4244 | ||||
4245 | (subreg:YMODE (reg:XMODE XREGNO) OFFSET) | |||
4246 | ||||
4247 | can be simplified. Return -1 if the subreg can't be simplified. | |||
4248 | ||||
4249 | XREGNO is a hard register number. */ | |||
4250 | ||||
4251 | int | |||
4252 | simplify_subreg_regno (unsigned int xregno, machine_mode xmode, | |||
4253 | poly_uint64 offset, machine_mode ymode) | |||
4254 | { | |||
4255 | struct subreg_info info; | |||
4256 | unsigned int yregno; | |||
4257 | ||||
4258 | /* Give the backend a chance to disallow the mode change. */ | |||
4259 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_INT | |||
4260 | && GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_FLOAT | |||
4261 | && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)(targetm.can_change_mode_class (xmode, ymode, (regclass_map[( xregno)])))) | |||
4262 | return -1; | |||
4263 | ||||
4264 | /* We shouldn't simplify stack-related registers. */ | |||
4265 | if ((!reload_completed || frame_pointer_needed((&x_rtl)->frame_pointer_needed)) | |||
4266 | && xregno == FRAME_POINTER_REGNUM19) | |||
4267 | return -1; | |||
4268 | ||||
4269 | if (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 | |||
4270 | && xregno == ARG_POINTER_REGNUM16) | |||
4271 | return -1; | |||
4272 | ||||
4273 | if (xregno == STACK_POINTER_REGNUM7 | |||
4274 | /* We should convert hard stack register in LRA if it is | |||
4275 | possible. */ | |||
4276 | && ! lra_in_progress) | |||
4277 | return -1; | |||
4278 | ||||
4279 | /* Try to get the register offset. */ | |||
4280 | subreg_get_info (xregno, xmode, offset, ymode, &info); | |||
4281 | if (!info.representable_p) | |||
4282 | return -1; | |||
4283 | ||||
4284 | /* Make sure that the offsetted register value is in range. */ | |||
4285 | yregno = xregno + info.offset; | |||
4286 | if (!HARD_REGISTER_NUM_P (yregno)((yregno) < 76)) | |||
4287 | return -1; | |||
4288 | ||||
4289 | /* See whether (reg:YMODE YREGNO) is valid. | |||
4290 | ||||
4291 | ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid. | |||
4292 | This is a kludge to work around how complex FP arguments are passed | |||
4293 | on IA-64 and should be fixed. See PR target/49226. */ | |||
4294 | if (!targetm.hard_regno_mode_ok (yregno, ymode) | |||
4295 | && targetm.hard_regno_mode_ok (xregno, xmode)) | |||
4296 | return -1; | |||
4297 | ||||
4298 | return (int) yregno; | |||
4299 | } | |||
4300 | ||||
4301 | /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset | |||
4302 | (xmode, ymode) as the offset. */ | |||
4303 | ||||
4304 | int | |||
4305 | lowpart_subreg_regno (unsigned int regno, machine_mode xmode, | |||
4306 | machine_mode ymode) | |||
4307 | { | |||
4308 | poly_uint64 offset = subreg_lowpart_offset (xmode, ymode); | |||
4309 | return simplify_subreg_regno (regno, xmode, offset, ymode); | |||
4310 | } | |||
4311 | ||||
4312 | /* Return the final regno that a subreg expression refers to. */ | |||
4313 | unsigned int | |||
4314 | subreg_regno (const_rtx x) | |||
4315 | { | |||
4316 | unsigned int ret; | |||
4317 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | |||
4318 | int regno = REGNO (subreg)(rhs_regno(subreg)); | |||
4319 | ||||
4320 | ret = regno + subreg_regno_offset (regno, | |||
4321 | GET_MODE (subreg)((machine_mode) (subreg)->mode), | |||
4322 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), | |||
4323 | GET_MODE (x)((machine_mode) (x)->mode)); | |||
4324 | return ret; | |||
4325 | ||||
4326 | } | |||
4327 | ||||
4328 | /* Return the number of registers that a subreg expression refers | |||
4329 | to. */ | |||
4330 | unsigned int | |||
4331 | subreg_nregs (const_rtx x) | |||
4332 | { | |||
4333 | return subreg_nregs_with_regno (REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))), x); | |||
4334 | } | |||
4335 | ||||
4336 | /* Return the number of registers that a subreg REG with REGNO | |||
4337 | expression refers to. This is a copy of the rtlanal.cc:subreg_nregs | |||
4338 | changed so that the regno can be passed in. */ | |||
4339 | ||||
4340 | unsigned int | |||
4341 | subreg_nregs_with_regno (unsigned int regno, const_rtx x) | |||
4342 | { | |||
4343 | struct subreg_info info; | |||
4344 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | |||
4345 | ||||
4346 | subreg_get_info (regno, GET_MODE (subreg)((machine_mode) (subreg)->mode), SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), GET_MODE (x)((machine_mode) (x)->mode), | |||
4347 | &info); | |||
4348 | return info.nregs; | |||
4349 | } | |||
4350 | ||||
4351 | struct parms_set_data | |||
4352 | { | |||
4353 | int nregs; | |||
4354 | HARD_REG_SET regs; | |||
4355 | }; | |||
4356 | ||||
4357 | /* Helper function for noticing stores to parameter registers. */ | |||
4358 | static void | |||
4359 | parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) | |||
4360 | { | |||
4361 | struct parms_set_data *const d = (struct parms_set_data *) data; | |||
4362 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76 | |||
4363 | && TEST_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x)))) | |||
4364 | { | |||
4365 | CLEAR_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x))); | |||
4366 | d->nregs--; | |||
4367 | } | |||
4368 | } | |||
4369 | ||||
4370 | /* Look backward for first parameter to be loaded. | |||
4371 | Note that loads of all parameters will not necessarily be | |||
4372 | found if CSE has eliminated some of them (e.g., an argument | |||
4373 | to the outer function is passed down as a parameter). | |||
4374 | Do not skip BOUNDARY. */ | |||
4375 | rtx_insn * | |||
4376 | find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary) | |||
4377 | { | |||
4378 | struct parms_set_data parm; | |||
4379 | rtx p; | |||
4380 | rtx_insn *before, *first_set; | |||
4381 | ||||
4382 | /* Since different machines initialize their parameter registers | |||
4383 | in different orders, assume nothing. Collect the set of all | |||
4384 | parameter registers. */ | |||
4385 | CLEAR_HARD_REG_SET (parm.regs); | |||
4386 | parm.nregs = 0; | |||
4387 | for (p = CALL_INSN_FUNCTION_USAGE (call_insn)(((call_insn)->u.fld[7]).rt_rtx); p; p = XEXP (p, 1)(((p)->u.fld[1]).rt_rtx)) | |||
4388 | if (GET_CODE (XEXP (p, 0))((enum rtx_code) ((((p)->u.fld[0]).rt_rtx))->code) == USE | |||
4389 | && REG_P (XEXP (XEXP (p, 0), 0))(((enum rtx_code) (((((((p)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) | |||
4390 | && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0))(__extension__ ({ __typeof ((((((((p)->u.fld[0]).rt_rtx))-> u.fld[0]).rt_rtx))) const _rtx = ((((((((p)->u.fld[0]).rt_rtx ))->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code ) != REG) rtl_check_failed_flag ("STATIC_CHAIN_REG_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4390, __FUNCTION__); _rtx; })->jump)) | |||
4391 | { | |||
4392 | gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER)((void)(!((rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))) < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4392, __FUNCTION__), 0 : 0)); | |||
4393 | ||||
4394 | /* We only care about registers which can hold function | |||
4395 | arguments. */ | |||
4396 | if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0)))ix86_function_arg_regno_p ((rhs_regno(((((((p)->u.fld[0]). rt_rtx))->u.fld[0]).rt_rtx))))) | |||
4397 | continue; | |||
4398 | ||||
4399 | SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0))(rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx )))); | |||
4400 | parm.nregs++; | |||
4401 | } | |||
4402 | before = call_insn; | |||
4403 | first_set = call_insn; | |||
4404 | ||||
4405 | /* Search backward for the first set of a register in this set. */ | |||
4406 | while (parm.nregs && before != boundary) | |||
4407 | { | |||
4408 | before = PREV_INSN (before); | |||
4409 | ||||
4410 | /* It is possible that some loads got CSEed from one call to | |||
4411 | another. Stop in that case. */ | |||
4412 | if (CALL_P (before)(((enum rtx_code) (before)->code) == CALL_INSN)) | |||
4413 | break; | |||
4414 | ||||
4415 | /* Our caller needs either ensure that we will find all sets | |||
4416 | (in case code has not been optimized yet), or take care | |||
4417 | for possible labels in a way by setting boundary to preceding | |||
4418 | CODE_LABEL. */ | |||
4419 | if (LABEL_P (before)(((enum rtx_code) (before)->code) == CODE_LABEL)) | |||
4420 | { | |||
4421 | gcc_assert (before == boundary)((void)(!(before == boundary) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4421, __FUNCTION__), 0 : 0)); | |||
4422 | break; | |||
4423 | } | |||
4424 | ||||
4425 | if (INSN_P (before)(((((enum rtx_code) (before)->code) == INSN) || (((enum rtx_code ) (before)->code) == JUMP_INSN) || (((enum rtx_code) (before )->code) == CALL_INSN)) || (((enum rtx_code) (before)-> code) == DEBUG_INSN))) | |||
4426 | { | |||
4427 | int nregs_old = parm.nregs; | |||
4428 | note_stores (before, parms_set, &parm); | |||
4429 | /* If we found something that did not set a parameter reg, | |||
4430 | we're done. Do not keep going, as that might result | |||
4431 | in hoisting an insn before the setting of a pseudo | |||
4432 | that is used by the hoisted insn. */ | |||
4433 | if (nregs_old != parm.nregs) | |||
4434 | first_set = before; | |||
4435 | else | |||
4436 | break; | |||
4437 | } | |||
4438 | } | |||
4439 | return first_set; | |||
4440 | } | |||
4441 | ||||
4442 | /* Return true if we should avoid inserting code between INSN and preceding | |||
4443 | call instruction. */ | |||
4444 | ||||
4445 | bool | |||
4446 | keep_with_call_p (const rtx_insn *insn) | |||
4447 | { | |||
4448 | rtx set; | |||
4449 | ||||
4450 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && (set = single_set (insn)) != NULLnullptr) | |||
4451 | { | |||
4452 | if (REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) | |||
4453 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76 | |||
4454 | && fixed_regs(this_target_hard_regs->x_fixed_regs)[REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx)))] | |||
4455 | && general_operand (SET_SRC (set)(((set)->u.fld[1]).rt_rtx), VOIDmode((void) 0, E_VOIDmode))) | |||
4456 | return true; | |||
4457 | if (REG_P (SET_SRC (set))(((enum rtx_code) ((((set)->u.fld[1]).rt_rtx))->code) == REG) | |||
4458 | && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set))(rhs_regno((((set)->u.fld[1]).rt_rtx)))) | |||
4459 | && REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) | |||
4460 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76) | |||
4461 | return true; | |||
4462 | /* There may be a stack pop just after the call and before the store | |||
4463 | of the return register. Search for the actual store when deciding | |||
4464 | if we can break or not. */ | |||
4465 | if (SET_DEST (set)(((set)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | |||
4466 | { | |||
4467 | /* This CONST_CAST is okay because next_nonnote_insn just | |||
4468 | returns its argument and we assign it to a const_rtx | |||
4469 | variable. */ | |||
4470 | const rtx_insn *i2 | |||
4471 | = next_nonnote_insn (const_cast<rtx_insn *> (insn)); | |||
4472 | if (i2 && keep_with_call_p (i2)) | |||
4473 | return true; | |||
4474 | } | |||
4475 | } | |||
4476 | return false; | |||
4477 | } | |||
4478 | ||||
4479 | /* Return true if LABEL is a target of JUMP_INSN. This applies only | |||
4480 | to non-complex jumps. That is, direct unconditional, conditional, | |||
4481 | and tablejumps, but not computed jumps or returns. It also does | |||
4482 | not apply to the fallthru case of a conditional jump. */ | |||
4483 | ||||
4484 | bool | |||
4485 | label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn) | |||
4486 | { | |||
4487 | rtx tmp = JUMP_LABEL (jump_insn)(((jump_insn)->u.fld[7]).rt_rtx); | |||
4488 | rtx_jump_table_data *table; | |||
4489 | ||||
4490 | if (label == tmp) | |||
4491 | return true; | |||
4492 | ||||
4493 | if (tablejump_p (jump_insn, NULLnullptr, &table)) | |||
4494 | { | |||
4495 | rtvec vec = table->get_labels (); | |||
4496 | int i, veclen = GET_NUM_ELEM (vec)((vec)->num_elem); | |||
4497 | ||||
4498 | for (i = 0; i < veclen; ++i) | |||
4499 | if (XEXP (RTVEC_ELT (vec, i), 0)(((((vec)->elem[i]))->u.fld[0]).rt_rtx) == label) | |||
4500 | return true; | |||
4501 | } | |||
4502 | ||||
4503 | if (find_reg_note (jump_insn, REG_LABEL_TARGET, label)) | |||
4504 | return true; | |||
4505 | ||||
4506 | return false; | |||
4507 | } | |||
4508 | ||||
4509 | ||||
4510 | /* Return an estimate of the cost of computing rtx X. | |||
4511 | One use is in cse, to decide which expression to keep in the hash table. | |||
4512 | Another is in rtl generation, to pick the cheapest way to multiply. | |||
4513 | Other uses like the latter are expected in the future. | |||
4514 | ||||
4515 | X appears as operand OPNO in an expression with code OUTER_CODE. | |||
4516 | SPEED specifies whether costs optimized for speed or size should | |||
4517 | be returned. */ | |||
4518 | ||||
4519 | int | |||
4520 | rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code, | |||
4521 | int opno, bool speed) | |||
4522 | { | |||
4523 | int i, j; | |||
4524 | enum rtx_code code; | |||
4525 | const char *fmt; | |||
4526 | int total; | |||
4527 | int factor; | |||
4528 | unsigned mode_size; | |||
4529 | ||||
4530 | if (x == 0) | |||
4531 | return 0; | |||
4532 | ||||
4533 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) | |||
4534 | /* A SET doesn't have a mode, so let's look at the SET_DEST to get | |||
4535 | the mode for the factor. */ | |||
4536 | mode = GET_MODE (SET_DEST (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); | |||
4537 | else if (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)) | |||
4538 | mode = GET_MODE (x)((machine_mode) (x)->mode); | |||
4539 | ||||
4540 | mode_size = estimated_poly_value (GET_MODE_SIZE (mode)); | |||
4541 | ||||
4542 | /* A size N times larger than UNITS_PER_WORD likely needs N times as | |||
4543 | many insns, taking N times as long. */ | |||
4544 | factor = mode_size > UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) ? mode_size / UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) : 1; | |||
4545 | ||||
4546 | /* Compute the default costs of certain things. | |||
4547 | Note that targetm.rtx_costs can override the defaults. */ | |||
4548 | ||||
4549 | code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
4550 | switch (code) | |||
4551 | { | |||
4552 | case MULT: | |||
4553 | case FMA: | |||
4554 | case SS_MULT: | |||
4555 | case US_MULT: | |||
4556 | case SMUL_HIGHPART: | |||
4557 | case UMUL_HIGHPART: | |||
4558 | /* Multiplication has time-complexity O(N*N), where N is the | |||
4559 | number of units (translated from digits) when using | |||
4560 | schoolbook long multiplication. */ | |||
4561 | total = factor * factor * COSTS_N_INSNS (5)((5) * 4); | |||
4562 | break; | |||
4563 | case DIV: | |||
4564 | case UDIV: | |||
4565 | case MOD: | |||
4566 | case UMOD: | |||
4567 | case SS_DIV: | |||
4568 | case US_DIV: | |||
4569 | /* Similarly, complexity for schoolbook long division. */ | |||
4570 | total = factor * factor * COSTS_N_INSNS (7)((7) * 4); | |||
4571 | break; | |||
4572 | case USE: | |||
4573 | /* Used in combine.cc as a marker. */ | |||
4574 | total = 0; | |||
4575 | break; | |||
4576 | default: | |||
4577 | total = factor * COSTS_N_INSNS (1)((1) * 4); | |||
4578 | } | |||
4579 | ||||
4580 | switch (code) | |||
4581 | { | |||
4582 | case REG: | |||
4583 | return 0; | |||
4584 | ||||
4585 | case SUBREG: | |||
4586 | total = 0; | |||
4587 | /* If we can't tie these modes, make this expensive. The larger | |||
4588 | the mode, the more expensive it is. */ | |||
4589 | if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) | |||
4590 | return COSTS_N_INSNS (2 + factor)((2 + factor) * 4); | |||
4591 | break; | |||
4592 | ||||
4593 | case TRUNCATE: | |||
4594 | if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) | |||
4595 | { | |||
4596 | total = 0; | |||
4597 | break; | |||
4598 | } | |||
4599 | /* FALLTHRU */ | |||
4600 | default: | |||
4601 | if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed)) | |||
4602 | return total; | |||
4603 | break; | |||
4604 | } | |||
4605 | ||||
4606 | /* Sum the costs of the sub-rtx's, plus cost of this operation, | |||
4607 | which is already in total. */ | |||
4608 | ||||
4609 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | |||
4610 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | |||
4611 | if (fmt[i] == 'e') | |||
4612 | total += rtx_cost (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), mode, code, i, speed); | |||
4613 | else if (fmt[i] == 'E') | |||
4614 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | |||
4615 | total += rtx_cost (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), mode, code, i, speed); | |||
4616 | ||||
4617 | return total; | |||
4618 | } | |||
4619 | ||||
4620 | /* Fill in the structure C with information about both speed and size rtx | |||
4621 | costs for X, which is operand OPNO in an expression with code OUTER. */ | |||
4622 | ||||
4623 | void | |||
4624 | get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno, | |||
4625 | struct full_rtx_costs *c) | |||
4626 | { | |||
4627 | c->speed = rtx_cost (x, mode, outer, opno, true); | |||
4628 | c->size = rtx_cost (x, mode, outer, opno, false); | |||
4629 | } | |||
4630 | ||||
4631 | ||||
4632 | /* Return cost of address expression X. | |||
4633 | Expect that X is properly formed address reference. | |||
4634 | ||||
4635 | SPEED parameter specify whether costs optimized for speed or size should | |||
4636 | be returned. */ | |||
4637 | ||||
4638 | int | |||
4639 | address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed) | |||
4640 | { | |||
4641 | /* We may be asked for cost of various unusual addresses, such as operands | |||
4642 | of push instruction. It is not worthwhile to complicate writing | |||
4643 | of the target hook by such cases. */ | |||
4644 | ||||
4645 | if (!memory_address_addr_space_p (mode, x, as)) | |||
4646 | return 1000; | |||
4647 | ||||
4648 | return targetm.address_cost (x, mode, as, speed); | |||
4649 | } | |||
4650 | ||||
4651 | /* If the target doesn't override, compute the cost as with arithmetic. */ | |||
4652 | ||||
4653 | int | |||
4654 | default_address_cost (rtx x, machine_mode, addr_space_t, bool speed) | |||
4655 | { | |||
4656 | return rtx_cost (x, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))), MEM, 0, speed); | |||
4657 | } | |||
4658 | ||||
4659 | ||||
4660 | unsigned HOST_WIDE_INTlong | |||
4661 | nonzero_bits (const_rtx x, machine_mode mode) | |||
4662 | { | |||
4663 | if (mode == VOIDmode((void) 0, E_VOIDmode)) | |||
4664 | mode = GET_MODE (x)((machine_mode) (x)->mode); | |||
4665 | scalar_int_mode int_mode; | |||
4666 | if (!is_a <scalar_int_mode> (mode, &int_mode)) | |||
4667 | return GET_MODE_MASK (mode)mode_mask_array[mode]; | |||
4668 | return cached_nonzero_bits (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); | |||
4669 | } | |||
4670 | ||||
4671 | unsigned int | |||
4672 | num_sign_bit_copies (const_rtx x, machine_mode mode) | |||
4673 | { | |||
4674 | if (mode == VOIDmode((void) 0, E_VOIDmode)) | |||
4675 | mode = GET_MODE (x)((machine_mode) (x)->mode); | |||
4676 | scalar_int_mode int_mode; | |||
4677 | if (!is_a <scalar_int_mode> (mode, &int_mode)) | |||
4678 | return 1; | |||
4679 | return cached_num_sign_bit_copies (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); | |||
4680 | } | |||
4681 | ||||
4682 | /* Return true if nonzero_bits1 might recurse into both operands | |||
4683 | of X. */ | |||
4684 | ||||
4685 | static inline bool | |||
4686 | nonzero_bits_binary_arith_p (const_rtx x) | |||
4687 | { | |||
4688 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) | |||
4689 | return false; | |||
4690 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | |||
4691 | { | |||
4692 | case AND: | |||
4693 | case XOR: | |||
4694 | case IOR: | |||
4695 | case UMIN: | |||
4696 | case UMAX: | |||
4697 | case SMIN: | |||
4698 | case SMAX: | |||
4699 | case PLUS: | |||
4700 | case MINUS: | |||
4701 | case MULT: | |||
4702 | case DIV: | |||
4703 | case UDIV: | |||
4704 | case MOD: | |||
4705 | case UMOD: | |||
4706 | return true; | |||
4707 | default: | |||
4708 | return false; | |||
4709 | } | |||
4710 | } | |||
4711 | ||||
4712 | /* The function cached_nonzero_bits is a wrapper around nonzero_bits1. | |||
4713 | It avoids exponential behavior in nonzero_bits1 when X has | |||
4714 | identical subexpressions on the first or the second level. */ | |||
4715 | ||||
4716 | static unsigned HOST_WIDE_INTlong | |||
4717 | cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x, | |||
4718 | machine_mode known_mode, | |||
4719 | unsigned HOST_WIDE_INTlong known_ret) | |||
4720 | { | |||
4721 | if (x == known_x && mode == known_mode) | |||
4722 | return known_ret; | |||
4723 | ||||
4724 | /* Try to find identical subexpressions. If found call | |||
4725 | nonzero_bits1 on X with the subexpressions as KNOWN_X and the | |||
4726 | precomputed value for the subexpression as KNOWN_RET. */ | |||
4727 | ||||
4728 | if (nonzero_bits_binary_arith_p (x)) | |||
4729 | { | |||
4730 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
4731 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | |||
4732 | ||||
4733 | /* Check the first level. */ | |||
4734 | if (x0 == x1) | |||
4735 | return nonzero_bits1 (x, mode, x0, mode, | |||
4736 | cached_nonzero_bits (x0, mode, known_x, | |||
4737 | known_mode, known_ret)); | |||
4738 | ||||
4739 | /* Check the second level. */ | |||
4740 | if (nonzero_bits_binary_arith_p (x0) | |||
4741 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) | |||
4742 | return nonzero_bits1 (x, mode, x1, mode, | |||
4743 | cached_nonzero_bits (x1, mode, known_x, | |||
4744 | known_mode, known_ret)); | |||
4745 | ||||
4746 | if (nonzero_bits_binary_arith_p (x1) | |||
4747 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) | |||
4748 | return nonzero_bits1 (x, mode, x0, mode, | |||
4749 | cached_nonzero_bits (x0, mode, known_x, | |||
4750 | known_mode, known_ret)); | |||
4751 | } | |||
4752 | ||||
4753 | return nonzero_bits1 (x, mode, known_x, known_mode, known_ret); | |||
4754 | } | |||
4755 | ||||
4756 | /* We let num_sign_bit_copies recur into nonzero_bits as that is useful. | |||
4757 | We don't let nonzero_bits recur into num_sign_bit_copies, because that | |||
4758 | is less useful. We can't allow both, because that results in exponential | |||
4759 | run time recursion. There is a nullstone testcase that triggered | |||
4760 | this. This macro avoids accidental uses of num_sign_bit_copies. */ | |||
4761 | #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior | |||
4762 | ||||
4763 | /* Given an expression, X, compute which bits in X can be nonzero. | |||
4764 | We don't care about bits outside of those defined in MODE. | |||
4765 | ||||
4766 | For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is | |||
4767 | an arithmetic operation, we can do better. */ | |||
4768 | ||||
4769 | static unsigned HOST_WIDE_INTlong | |||
4770 | nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, | |||
4771 | machine_mode known_mode, | |||
4772 | unsigned HOST_WIDE_INTlong known_ret) | |||
4773 | { | |||
4774 | unsigned HOST_WIDE_INTlong nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; | |||
4775 | unsigned HOST_WIDE_INTlong inner_nz; | |||
4776 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
4777 | machine_mode inner_mode; | |||
4778 | unsigned int inner_width; | |||
4779 | scalar_int_mode xmode; | |||
4780 | ||||
4781 | unsigned int mode_width = GET_MODE_PRECISION (mode); | |||
4782 | ||||
4783 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) | |||
| ||||
4784 | { | |||
4785 | if (SHORT_IMMEDIATES_SIGN_EXTEND0 | |||
4786 | && INTVAL (x)((x)->u.hwint[0]) > 0 | |||
4787 | && mode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | |||
4788 | && (UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & (HOST_WIDE_INT_1U1UL << (mode_width - 1))) != 0) | |||
4789 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) | (HOST_WIDE_INT_M1U-1UL << mode_width); | |||
4790 | ||||
4791 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])); | |||
4792 | } | |||
4793 | ||||
4794 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) | |||
4795 | return nonzero; | |||
4796 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); | |||
4797 | ||||
4798 | /* If X is wider than MODE, use its mode instead. */ | |||
4799 | if (xmode_width > mode_width) | |||
4800 | { | |||
4801 | mode = xmode; | |||
4802 | nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; | |||
4803 | mode_width = xmode_width; | |||
4804 | } | |||
4805 | ||||
4806 | if (mode_width > HOST_BITS_PER_WIDE_INT64) | |||
4807 | /* Our only callers in this case look for single bit values. So | |||
4808 | just return the mode mask. Those tests will then be false. */ | |||
4809 | return nonzero; | |||
4810 | ||||
4811 | /* If MODE is wider than X, but both are a single word for both the host | |||
4812 | and target machines, we can compute this from which bits of the object | |||
4813 | might be nonzero in its own mode, taking into account the fact that, on | |||
4814 | CISC machines, accessing an object in a wider mode generally causes the | |||
4815 | high-order bits to become undefined, so they are not known to be zero. | |||
4816 | We extend this reasoning to RISC machines for operations that might not | |||
4817 | operate on the full registers. */ | |||
4818 | if (mode_width > xmode_width | |||
4819 | && xmode_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | |||
4820 | && xmode_width <= HOST_BITS_PER_WIDE_INT64 | |||
4821 | && !(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) | |||
4822 | { | |||
4823 | nonzero &= cached_nonzero_bits (x, xmode, | |||
4824 | known_x, known_mode, known_ret); | |||
4825 | nonzero |= GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]; | |||
4826 | return nonzero; | |||
4827 | } | |||
4828 | ||||
4829 | /* Please keep nonzero_bits_binary_arith_p above in sync with | |||
4830 | the code in the switch below. */ | |||
4831 | switch (code) | |||
4832 | { | |||
4833 | case REG: | |||
4834 | #if defined(POINTERS_EXTEND_UNSIGNED1) | |||
4835 | /* If pointers extend unsigned and this is a pointer in Pmode, say that | |||
4836 | all the bits above ptr_mode are known to be zero. */ | |||
4837 | /* As we do not know which address space the pointer is referring to, | |||
4838 | we can do this only if the target does not support different pointer | |||
4839 | or address modes depending on the address space. */ | |||
4840 | if (target_default_pointer_address_modes_p () | |||
4841 | && POINTERS_EXTEND_UNSIGNED1 | |||
4842 | && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) | |||
4843 | && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4843, __FUNCTION__); _rtx; })->frame_related) | |||
4844 | && !targetm.have_ptr_extend ()) | |||
4845 | nonzero &= GET_MODE_MASK (ptr_mode)mode_mask_array[ptr_mode]; | |||
4846 | #endif | |||
4847 | ||||
4848 | /* Include declared information about alignment of pointers. */ | |||
4849 | /* ??? We don't properly preserve REG_POINTER changes across | |||
4850 | pointer-to-integer casts, so we can't trust it except for | |||
4851 | things that we know must be pointers. See execute/960116-1.c. */ | |||
4852 | if ((x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | |||
4853 | || x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) | |||
4854 | || x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER])) | |||
4855 | && REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))])) | |||
4856 | { | |||
4857 | unsigned HOST_WIDE_INTlong alignment | |||
4858 | = REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))]) / BITS_PER_UNIT(8); | |||
4859 | ||||
4860 | #ifdef PUSH_ROUNDING | |||
4861 | /* If PUSH_ROUNDING is defined, it is possible for the | |||
4862 | stack to be momentarily aligned only to that amount, | |||
4863 | so we pick the least alignment. */ | |||
4864 | if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && targetm.calls.push_argument (0)) | |||
4865 | { | |||
4866 | poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1))ix86_push_rounding (poly_int64 (1)); | |||
4867 | alignment = MIN (known_alignment (rounded_1), alignment)((known_alignment (rounded_1)) < (alignment) ? (known_alignment (rounded_1)) : (alignment)); | |||
4868 | } | |||
4869 | #endif | |||
4870 | ||||
4871 | nonzero &= ~(alignment - 1); | |||
4872 | } | |||
4873 | ||||
4874 | { | |||
4875 | unsigned HOST_WIDE_INTlong nonzero_for_hook = nonzero; | |||
4876 | rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode, | |||
4877 | &nonzero_for_hook); | |||
4878 | ||||
4879 | if (new_rtx) | |||
4880 | nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x, | |||
4881 | known_mode, known_ret); | |||
4882 | ||||
4883 | return nonzero_for_hook; | |||
4884 | } | |||
4885 | ||||
4886 | case MEM: | |||
4887 | /* In many, if not most, RISC machines, reading a byte from memory | |||
4888 | zeros the rest of the register. Noticing that fact saves a lot | |||
4889 | of extra zero-extends. */ | |||
4890 | if (load_extend_op (xmode) == ZERO_EXTEND) | |||
4891 | nonzero &= GET_MODE_MASK (xmode)mode_mask_array[xmode]; | |||
4892 | break; | |||
4893 | ||||
4894 | case EQ: case NE: | |||
4895 | case UNEQ: case LTGT: | |||
4896 | case GT: case GTU: case UNGT: | |||
4897 | case LT: case LTU: case UNLT: | |||
4898 | case GE: case GEU: case UNGE: | |||
4899 | case LE: case LEU: case UNLE: | |||
4900 | case UNORDERED: case ORDERED: | |||
4901 | /* If this produces an integer result, we know which bits are set. | |||
4902 | Code here used to clear bits outside the mode of X, but that is | |||
4903 | now done above. */ | |||
4904 | /* Mind that MODE is the mode the caller wants to look at this | |||
4905 | operation in, and not the actual operation mode. We can wind | |||
4906 | up with (subreg:DI (gt:V4HI x y)), and we don't have anything | |||
4907 | that describes the results of a vector compare. */ | |||
4908 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) == MODE_INT | |||
4909 | && mode_width <= HOST_BITS_PER_WIDE_INT64) | |||
4910 | nonzero = STORE_FLAG_VALUE1; | |||
4911 | break; | |||
4912 | ||||
4913 | case NEG: | |||
4914 | #if 0 | |||
4915 | /* Disabled to avoid exponential mutual recursion between nonzero_bits | |||
4916 | and num_sign_bit_copies. */ | |||
4917 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) | |||
4918 | nonzero = 1; | |||
4919 | #endif | |||
4920 | ||||
4921 | if (xmode_width < mode_width) | |||
4922 | nonzero |= (GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]); | |||
4923 | break; | |||
4924 | ||||
4925 | case ABS: | |||
4926 | #if 0 | |||
4927 | /* Disabled to avoid exponential mutual recursion between nonzero_bits | |||
4928 | and num_sign_bit_copies. */ | |||
4929 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) | |||
4930 | nonzero = 1; | |||
4931 | #endif | |||
4932 | break; | |||
4933 | ||||
4934 | case TRUNCATE: | |||
4935 | nonzero &= (cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4936 | known_x, known_mode, known_ret) | |||
4937 | & GET_MODE_MASK (mode)mode_mask_array[mode]); | |||
4938 | break; | |||
4939 | ||||
4940 | case ZERO_EXTEND: | |||
4941 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4942 | known_x, known_mode, known_ret); | |||
4943 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) | |||
4944 | nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; | |||
4945 | break; | |||
4946 | ||||
4947 | case SIGN_EXTEND: | |||
4948 | /* If the sign bit is known clear, this is the same as ZERO_EXTEND. | |||
4949 | Otherwise, show all the bits in the outer mode but not the inner | |||
4950 | may be nonzero. */ | |||
4951 | inner_nz = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4952 | known_x, known_mode, known_ret); | |||
4953 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) | |||
4954 | { | |||
4955 | inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; | |||
4956 | if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), inner_nz)) | |||
4957 | inner_nz |= (GET_MODE_MASK (mode)mode_mask_array[mode] | |||
4958 | & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]); | |||
4959 | } | |||
4960 | ||||
4961 | nonzero &= inner_nz; | |||
4962 | break; | |||
4963 | ||||
4964 | case AND: | |||
4965 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4966 | known_x, known_mode, known_ret) | |||
4967 | & cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
4968 | known_x, known_mode, known_ret); | |||
4969 | break; | |||
4970 | ||||
4971 | case XOR: case IOR: | |||
4972 | case UMIN: case UMAX: case SMIN: case SMAX: | |||
4973 | { | |||
4974 | unsigned HOST_WIDE_INTlong nonzero0 | |||
4975 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4976 | known_x, known_mode, known_ret); | |||
4977 | ||||
4978 | /* Don't call nonzero_bits for the second time if it cannot change | |||
4979 | anything. */ | |||
4980 | if ((nonzero & nonzero0) != nonzero) | |||
4981 | nonzero &= nonzero0 | |||
4982 | | cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
4983 | known_x, known_mode, known_ret); | |||
4984 | } | |||
4985 | break; | |||
4986 | ||||
4987 | case PLUS: case MINUS: | |||
4988 | case MULT: | |||
4989 | case DIV: case UDIV: | |||
4990 | case MOD: case UMOD: | |||
4991 | /* We can apply the rules of arithmetic to compute the number of | |||
4992 | high- and low-order zero bits of these operations. We start by | |||
4993 | computing the width (position of the highest-order nonzero bit) | |||
4994 | and the number of low-order zero bits for each value. */ | |||
4995 | { | |||
4996 | unsigned HOST_WIDE_INTlong nz0 | |||
4997 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
4998 | known_x, known_mode, known_ret); | |||
4999 | unsigned HOST_WIDE_INTlong nz1 | |||
5000 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5001 | known_x, known_mode, known_ret); | |||
5002 | int sign_index = xmode_width - 1; | |||
5003 | int width0 = floor_log2 (nz0) + 1; | |||
5004 | int width1 = floor_log2 (nz1) + 1; | |||
5005 | int low0 = ctz_or_zero (nz0); | |||
5006 | int low1 = ctz_or_zero (nz1); | |||
5007 | unsigned HOST_WIDE_INTlong op0_maybe_minusp | |||
5008 | = nz0 & (HOST_WIDE_INT_1U1UL << sign_index); | |||
5009 | unsigned HOST_WIDE_INTlong op1_maybe_minusp | |||
5010 | = nz1 & (HOST_WIDE_INT_1U1UL << sign_index); | |||
5011 | unsigned int result_width = mode_width; | |||
5012 | int result_low = 0; | |||
5013 | ||||
5014 | switch (code) | |||
5015 | { | |||
5016 | case PLUS: | |||
5017 | result_width = MAX (width0, width1)((width0) > (width1) ? (width0) : (width1)) + 1; | |||
5018 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | |||
5019 | break; | |||
5020 | case MINUS: | |||
5021 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | |||
5022 | break; | |||
5023 | case MULT: | |||
5024 | result_width = width0 + width1; | |||
5025 | result_low = low0 + low1; | |||
5026 | break; | |||
5027 | case DIV: | |||
5028 | if (width1 == 0) | |||
5029 | break; | |||
5030 | if (!op0_maybe_minusp && !op1_maybe_minusp) | |||
5031 | result_width = width0; | |||
5032 | break; | |||
5033 | case UDIV: | |||
5034 | if (width1 == 0) | |||
5035 | break; | |||
5036 | result_width = width0; | |||
5037 | break; | |||
5038 | case MOD: | |||
5039 | if (width1 == 0) | |||
5040 | break; | |||
5041 | if (!op0_maybe_minusp && !op1_maybe_minusp) | |||
5042 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); | |||
5043 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | |||
5044 | break; | |||
5045 | case UMOD: | |||
5046 | if (width1 == 0) | |||
5047 | break; | |||
5048 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); | |||
5049 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | |||
5050 | break; | |||
5051 | default: | |||
5052 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5052, __FUNCTION__)); | |||
5053 | } | |||
5054 | ||||
5055 | /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */ | |||
5056 | if (result_width < mode_width) | |||
5057 | nonzero &= (HOST_WIDE_INT_1U1UL << result_width) - 1; | |||
5058 | ||||
5059 | if (result_low > 0) | |||
5060 | { | |||
5061 | if (result_low < HOST_BITS_PER_WIDE_INT64) | |||
5062 | nonzero &= ~((HOST_WIDE_INT_1U1UL << result_low) - 1); | |||
5063 | else | |||
5064 | nonzero = 0; | |||
5065 | } | |||
5066 | } | |||
5067 | break; | |||
5068 | ||||
5069 | case ZERO_EXTRACT: | |||
5070 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
5071 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64) | |||
5072 | nonzero &= (HOST_WIDE_INT_1U1UL << INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0])) - 1; | |||
5073 | break; | |||
5074 | ||||
5075 | case SUBREG: | |||
5076 | /* If this is a SUBREG formed for a promoted variable that has | |||
5077 | been zero-extended, we know that at least the high-order bits | |||
5078 | are zero, though others might be too. */ | |||
5079 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_UNSIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_UNSIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->volatil)) | |||
5080 | nonzero = GET_MODE_MASK (xmode)mode_mask_array[xmode] | |||
5081 | & cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), xmode, | |||
5082 | known_x, known_mode, known_ret); | |||
5083 | ||||
5084 | /* If the inner mode is a single word for both the host and target | |||
5085 | machines, we can compute this from which bits of the inner | |||
5086 | object might be nonzero. */ | |||
5087 | inner_mode = GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); | |||
5088 | if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width) | |||
5089 | && inner_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | |||
5090 | && inner_width <= HOST_BITS_PER_WIDE_INT64) | |||
5091 | { | |||
5092 | nonzero &= cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | |||
5093 | known_x, known_mode, known_ret); | |||
5094 | ||||
5095 | /* On a typical CISC machine, accessing an object in a wider mode | |||
5096 | causes the high-order bits to become undefined. So they are | |||
5097 | not known to be zero. | |||
5098 | ||||
5099 | On a typical RISC machine, we only have to worry about the way | |||
5100 | loads are extended. Otherwise, if we get a reload for the inner | |||
5101 | part, it may be loaded from the stack, and then we may lose all | |||
5102 | the zero bits that existed before the store to the stack. */ | |||
5103 | rtx_code extend_op; | |||
5104 | if ((!WORD_REGISTER_OPERATIONS0 | |||
5105 | || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND | |||
5106 | ? val_signbit_known_set_p (inner_mode, nonzero) | |||
5107 | : extend_op != ZERO_EXTEND) | |||
5108 | || !MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | |||
5109 | && xmode_width > inner_width) | |||
5110 | nonzero | |||
5111 | |= (GET_MODE_MASK (GET_MODE (x))mode_mask_array[((machine_mode) (x)->mode)] & ~GET_MODE_MASK (inner_mode)mode_mask_array[inner_mode]); | |||
5112 | } | |||
5113 | break; | |||
5114 | ||||
5115 | case ASHIFT: | |||
5116 | case ASHIFTRT: | |||
5117 | case LSHIFTRT: | |||
5118 | case ROTATE: | |||
5119 | case ROTATERT: | |||
5120 | /* The nonzero bits are in two classes: any bits within MODE | |||
5121 | that aren't in xmode are always significant. The rest of the | |||
5122 | nonzero bits are those that are significant in the operand of | |||
5123 | the shift when shifted the appropriate number of bits. This | |||
5124 | shows that high-order bits are cleared by the right shift and | |||
5125 | low-order bits by left shifts. */ | |||
5126 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
5127 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 | |||
5128 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64 | |||
5129 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < xmode_width) | |||
5130 | { | |||
5131 | int count = INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | |||
5132 | unsigned HOST_WIDE_INTlong mode_mask = GET_MODE_MASK (xmode)mode_mask_array[xmode]; | |||
5133 | unsigned HOST_WIDE_INTlong op_nonzero | |||
5134 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5135 | known_x, known_mode, known_ret); | |||
5136 | unsigned HOST_WIDE_INTlong inner = op_nonzero & mode_mask; | |||
5137 | unsigned HOST_WIDE_INTlong outer = 0; | |||
5138 | ||||
5139 | if (mode_width > xmode_width) | |||
5140 | outer = (op_nonzero & nonzero & ~mode_mask); | |||
5141 | ||||
5142 | switch (code) | |||
5143 | { | |||
5144 | case ASHIFT: | |||
5145 | inner <<= count; | |||
5146 | break; | |||
5147 | ||||
5148 | case LSHIFTRT: | |||
5149 | inner >>= count; | |||
5150 | break; | |||
5151 | ||||
5152 | case ASHIFTRT: | |||
5153 | inner >>= count; | |||
5154 | ||||
5155 | /* If the sign bit may have been nonzero before the shift, we | |||
5156 | need to mark all the places it could have been copied to | |||
5157 | by the shift as possibly nonzero. */ | |||
5158 | if (inner & (HOST_WIDE_INT_1U1UL << (xmode_width - 1 - count))) | |||
5159 | inner |= (((HOST_WIDE_INT_1U1UL << count) - 1) | |||
5160 | << (xmode_width - count)); | |||
5161 | break; | |||
5162 | ||||
5163 | case ROTATE: | |||
5164 | inner = (inner << (count % xmode_width) | |||
5165 | | (inner >> (xmode_width - (count % xmode_width)))) | |||
5166 | & mode_mask; | |||
5167 | break; | |||
5168 | ||||
5169 | case ROTATERT: | |||
5170 | inner = (inner >> (count % xmode_width) | |||
5171 | | (inner << (xmode_width - (count % xmode_width)))) | |||
5172 | & mode_mask; | |||
5173 | break; | |||
5174 | ||||
5175 | default: | |||
5176 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5176, __FUNCTION__)); | |||
5177 | } | |||
5178 | ||||
5179 | nonzero &= (outer | inner); | |||
5180 | } | |||
5181 | break; | |||
5182 | ||||
5183 | case FFS: | |||
5184 | case POPCOUNT: | |||
5185 | /* This is at most the number of bits in the mode. */ | |||
5186 | nonzero = ((unsigned HOST_WIDE_INTlong) 2 << (floor_log2 (mode_width))) - 1; | |||
5187 | break; | |||
5188 | ||||
5189 | case CLZ: | |||
5190 | /* If CLZ has a known value at zero, then the nonzero bits are | |||
5191 | that value, plus the number of bits in the mode minus one. */ | |||
5192 | if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 35)) != 0) ? 2 : 0)) | |||
5193 | nonzero | |||
5194 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | |||
| ||||
5195 | else | |||
5196 | nonzero = -1; | |||
5197 | break; | |||
5198 | ||||
5199 | case CTZ: | |||
5200 | /* If CTZ has a known value at zero, then the nonzero bits are | |||
5201 | that value, plus the number of bits in the mode minus one. */ | |||
5202 | if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 23)) != 0) ? 2 : 0)) | |||
5203 | nonzero | |||
5204 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | |||
5205 | else | |||
5206 | nonzero = -1; | |||
5207 | break; | |||
5208 | ||||
5209 | case CLRSB: | |||
5210 | /* This is at most the number of bits in the mode minus 1. */ | |||
5211 | nonzero = (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | |||
5212 | break; | |||
5213 | ||||
5214 | case PARITY: | |||
5215 | nonzero = 1; | |||
5216 | break; | |||
5217 | ||||
5218 | case IF_THEN_ELSE: | |||
5219 | { | |||
5220 | unsigned HOST_WIDE_INTlong nonzero_true | |||
5221 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5222 | known_x, known_mode, known_ret); | |||
5223 | ||||
5224 | /* Don't call nonzero_bits for the second time if it cannot change | |||
5225 | anything. */ | |||
5226 | if ((nonzero & nonzero_true) != nonzero) | |||
5227 | nonzero &= nonzero_true | |||
5228 | | cached_nonzero_bits (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), mode, | |||
5229 | known_x, known_mode, known_ret); | |||
5230 | } | |||
5231 | break; | |||
5232 | ||||
5233 | default: | |||
5234 | break; | |||
5235 | } | |||
5236 | ||||
5237 | return nonzero; | |||
5238 | } | |||
5239 | ||||
5240 | /* See the macro definition above. */ | |||
5241 | #undef cached_num_sign_bit_copies | |||
5242 | ||||
5243 | ||||
5244 | /* Return true if num_sign_bit_copies1 might recurse into both operands | |||
5245 | of X. */ | |||
5246 | ||||
5247 | static inline bool | |||
5248 | num_sign_bit_copies_binary_arith_p (const_rtx x) | |||
5249 | { | |||
5250 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) | |||
5251 | return false; | |||
5252 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | |||
5253 | { | |||
5254 | case IOR: | |||
5255 | case AND: | |||
5256 | case XOR: | |||
5257 | case SMIN: | |||
5258 | case SMAX: | |||
5259 | case UMIN: | |||
5260 | case UMAX: | |||
5261 | case PLUS: | |||
5262 | case MINUS: | |||
5263 | case MULT: | |||
5264 | return true; | |||
5265 | default: | |||
5266 | return false; | |||
5267 | } | |||
5268 | } | |||
5269 | ||||
5270 | /* The function cached_num_sign_bit_copies is a wrapper around | |||
5271 | num_sign_bit_copies1. It avoids exponential behavior in | |||
5272 | num_sign_bit_copies1 when X has identical subexpressions on the | |||
5273 | first or the second level. */ | |||
5274 | ||||
5275 | static unsigned int | |||
5276 | cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode, | |||
5277 | const_rtx known_x, machine_mode known_mode, | |||
5278 | unsigned int known_ret) | |||
5279 | { | |||
5280 | if (x == known_x && mode == known_mode) | |||
5281 | return known_ret; | |||
5282 | ||||
5283 | /* Try to find identical subexpressions. If found call | |||
5284 | num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and | |||
5285 | the precomputed value for the subexpression as KNOWN_RET. */ | |||
5286 | ||||
5287 | if (num_sign_bit_copies_binary_arith_p (x)) | |||
5288 | { | |||
5289 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | |||
5290 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | |||
5291 | ||||
5292 | /* Check the first level. */ | |||
5293 | if (x0 == x1) | |||
5294 | return | |||
5295 | num_sign_bit_copies1 (x, mode, x0, mode, | |||
5296 | cached_num_sign_bit_copies (x0, mode, known_x, | |||
5297 | known_mode, | |||
5298 | known_ret)); | |||
5299 | ||||
5300 | /* Check the second level. */ | |||
5301 | if (num_sign_bit_copies_binary_arith_p (x0) | |||
5302 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) | |||
5303 | return | |||
5304 | num_sign_bit_copies1 (x, mode, x1, mode, | |||
5305 | cached_num_sign_bit_copies (x1, mode, known_x, | |||
5306 | known_mode, | |||
5307 | known_ret)); | |||
5308 | ||||
5309 | if (num_sign_bit_copies_binary_arith_p (x1) | |||
5310 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) | |||
5311 | return | |||
5312 | num_sign_bit_copies1 (x, mode, x0, mode, | |||
5313 | cached_num_sign_bit_copies (x0, mode, known_x, | |||
5314 | known_mode, | |||
5315 | known_ret)); | |||
5316 | } | |||
5317 | ||||
5318 | return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret); | |||
5319 | } | |||
5320 | ||||
5321 | /* Return the number of bits at the high-order end of X that are known to | |||
5322 | be equal to the sign bit. X will be used in mode MODE. The returned | |||
5323 | value will always be between 1 and the number of bits in MODE. */ | |||
5324 | ||||
5325 | static unsigned int | |||
5326 | num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, | |||
5327 | machine_mode known_mode, | |||
5328 | unsigned int known_ret) | |||
5329 | { | |||
5330 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | |||
5331 | unsigned int bitwidth = GET_MODE_PRECISION (mode); | |||
5332 | int num0, num1, result; | |||
5333 | unsigned HOST_WIDE_INTlong nonzero; | |||
5334 | ||||
5335 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) | |||
5336 | { | |||
5337 | /* If the constant is negative, take its 1's complement and remask. | |||
5338 | Then see how many zero bits we have. */ | |||
5339 | nonzero = UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & GET_MODE_MASK (mode)mode_mask_array[mode]; | |||
5340 | if (bitwidth <= HOST_BITS_PER_WIDE_INT64 | |||
5341 | && (nonzero & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | |||
5342 | nonzero = (~nonzero) & GET_MODE_MASK (mode)mode_mask_array[mode]; | |||
5343 | ||||
5344 | return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); | |||
5345 | } | |||
5346 | ||||
5347 | scalar_int_mode xmode, inner_mode; | |||
5348 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) | |||
5349 | return 1; | |||
5350 | ||||
5351 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); | |||
5352 | ||||
5353 | /* For a smaller mode, just ignore the high bits. */ | |||
5354 | if (bitwidth < xmode_width) | |||
5355 | { | |||
5356 | num0 = cached_num_sign_bit_copies (x, xmode, | |||
5357 | known_x, known_mode, known_ret); | |||
5358 | return MAX (1, num0 - (int) (xmode_width - bitwidth))((1) > (num0 - (int) (xmode_width - bitwidth)) ? (1) : (num0 - (int) (xmode_width - bitwidth))); | |||
5359 | } | |||
5360 | ||||
5361 | if (bitwidth > xmode_width) | |||
5362 | { | |||
5363 | /* If this machine does not do all register operations on the entire | |||
5364 | register and MODE is wider than the mode of X, we can say nothing | |||
5365 | at all about the high-order bits. We extend this reasoning to RISC | |||
5366 | machines for operations that might not operate on full registers. */ | |||
5367 | if (!(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) | |||
5368 | return 1; | |||
5369 | ||||
5370 | /* Likewise on machines that do, if the mode of the object is smaller | |||
5371 | than a word and loads of that size don't sign extend, we can say | |||
5372 | nothing about the high order bits. */ | |||
5373 | if (xmode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | |||
5374 | && load_extend_op (xmode) != SIGN_EXTEND) | |||
5375 | return 1; | |||
5376 | } | |||
5377 | ||||
5378 | /* Please keep num_sign_bit_copies_binary_arith_p above in sync with | |||
5379 | the code in the switch below. */ | |||
5380 | switch (code) | |||
5381 | { | |||
5382 | case REG: | |||
5383 | ||||
5384 | #if defined(POINTERS_EXTEND_UNSIGNED1) | |||
5385 | /* If pointers extend signed and this is a pointer in Pmode, say that | |||
5386 | all the bits above ptr_mode are known to be sign bit copies. */ | |||
5387 | /* As we do not know which address space the pointer is referring to, | |||
5388 | we can do this only if the target does not support different pointer | |||
5389 | or address modes depending on the address space. */ | |||
5390 | if (target_default_pointer_address_modes_p () | |||
5391 | && ! POINTERS_EXTEND_UNSIGNED1 && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) | |||
5392 | && mode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5392, __FUNCTION__); _rtx; })->frame_related) | |||
5393 | && !targetm.have_ptr_extend ()) | |||
5394 | return GET_MODE_PRECISION (Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode)))) - GET_MODE_PRECISION (ptr_mode) + 1; | |||
5395 | #endif | |||
5396 | ||||
5397 | { | |||
5398 | unsigned int copies_for_hook = 1, copies = 1; | |||
5399 | rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode, | |||
5400 | &copies_for_hook); | |||
5401 | ||||
5402 | if (new_rtx) | |||
5403 | copies = cached_num_sign_bit_copies (new_rtx, mode, known_x, | |||
5404 | known_mode, known_ret); | |||
5405 | ||||
5406 | if (copies > 1 || copies_for_hook > 1) | |||
5407 | return MAX (copies, copies_for_hook)((copies) > (copies_for_hook) ? (copies) : (copies_for_hook )); | |||
5408 | ||||
5409 | /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */ | |||
5410 | } | |||
5411 | break; | |||
5412 | ||||
5413 | case MEM: | |||
5414 | /* Some RISC machines sign-extend all loads of smaller than a word. */ | |||
5415 | if (load_extend_op (xmode) == SIGN_EXTEND) | |||
5416 | return MAX (1, ((int) bitwidth - (int) xmode_width + 1))((1) > (((int) bitwidth - (int) xmode_width + 1)) ? (1) : ( ((int) bitwidth - (int) xmode_width + 1))); | |||
5417 | break; | |||
5418 | ||||
5419 | case SUBREG: | |||
5420 | /* If this is a SUBREG for a promoted object that is sign-extended | |||
5421 | and we are looking at it in a wider mode, we know that at least the | |||
5422 | high-order bits are known to be sign bit copies. */ | |||
5423 | ||||
5424 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_SIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_SIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->unchanging)) | |||
5425 | { | |||
5426 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | |||
5427 | known_x, known_mode, known_ret); | |||
5428 | return MAX ((int) bitwidth - (int) xmode_width + 1, num0)(((int) bitwidth - (int) xmode_width + 1) > (num0) ? ((int ) bitwidth - (int) xmode_width + 1) : (num0)); | |||
5429 | } | |||
5430 | ||||
5431 | if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) | |||
5432 | { | |||
5433 | /* For a smaller object, just ignore the high bits. */ | |||
5434 | if (bitwidth <= GET_MODE_PRECISION (inner_mode)) | |||
5435 | { | |||
5436 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), inner_mode, | |||
5437 | known_x, known_mode, | |||
5438 | known_ret); | |||
5439 | return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) | |||
5440 | - bitwidth))((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))); | |||
5441 | } | |||
5442 | ||||
5443 | /* For paradoxical SUBREGs on machines where all register operations | |||
5444 | affect the entire register, just look inside. Note that we are | |||
5445 | passing MODE to the recursive call, so the number of sign bit | |||
5446 | copies will remain relative to that mode, not the inner mode. | |||
5447 | ||||
5448 | This works only if loads sign extend. Otherwise, if we get a | |||
5449 | reload for the inner part, it may be loaded from the stack, and | |||
5450 | then we lose all sign bit copies that existed before the store | |||
5451 | to the stack. */ | |||
5452 | if (WORD_REGISTER_OPERATIONS0 | |||
5453 | && load_extend_op (inner_mode) == SIGN_EXTEND | |||
5454 | && paradoxical_subreg_p (x) | |||
5455 | && MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | |||
5456 | return cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | |||
5457 | known_x, known_mode, known_ret); | |||
5458 | } | |||
5459 | break; | |||
5460 | ||||
5461 | case SIGN_EXTRACT: | |||
5462 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | |||
5463 | return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)))((1) > ((int) bitwidth - (((((x)->u.fld[1]).rt_rtx))-> u.hwint[0])) ? (1) : ((int) bitwidth - (((((x)->u.fld[1]). rt_rtx))->u.hwint[0]))); | |||
5464 | break; | |||
5465 | ||||
5466 | case SIGN_EXTEND: | |||
5467 | if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) | |||
5468 | return (bitwidth - GET_MODE_PRECISION (inner_mode) | |||
5469 | + cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, | |||
5470 | known_x, known_mode, known_ret)); | |||
5471 | break; | |||
5472 | ||||
5473 | case TRUNCATE: | |||
5474 | /* For a smaller object, just ignore the high bits. */ | |||
5475 | inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | |||
5476 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, | |||
5477 | known_x, known_mode, known_ret); | |||
5478 | return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))) | |||
5479 | - bitwidth)))((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))); | |||
5480 | ||||
5481 | case NOT: | |||
5482 | return cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5483 | known_x, known_mode, known_ret); | |||
5484 | ||||
5485 | case ROTATE: case ROTATERT: | |||
5486 | /* If we are rotating left by a number of bits less than the number | |||
5487 | of sign bit copies, we can just subtract that amount from the | |||
5488 | number. */ | |||
5489 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
5490 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 | |||
5491 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < (int) bitwidth) | |||
5492 | { | |||
5493 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5494 | known_x, known_mode, known_ret); | |||
5495 | return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))) | |||
5496 | : (int) bitwidth - INTVAL (XEXP (x, 1))))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))); | |||
5497 | } | |||
5498 | break; | |||
5499 | ||||
5500 | case NEG: | |||
5501 | /* In general, this subtracts one sign bit copy. But if the value | |||
5502 | is known to be positive, the number of sign bit copies is the | |||
5503 | same as that of the input. Finally, if the input has just one bit | |||
5504 | that might be nonzero, all the bits are copies of the sign bit. */ | |||
5505 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5506 | known_x, known_mode, known_ret); | |||
5507 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) | |||
5508 | return num0 > 1 ? num0 - 1 : 1; | |||
5509 | ||||
5510 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); | |||
5511 | if (nonzero == 1) | |||
5512 | return bitwidth; | |||
5513 | ||||
5514 | if (num0 > 1 | |||
5515 | && ((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero)) | |||
5516 | num0--; | |||
5517 | ||||
5518 | return num0; | |||
5519 | ||||
5520 | case IOR: case AND: case XOR: | |||
5521 | case SMIN: case SMAX: case UMIN: case UMAX: | |||
5522 | /* Logical operations will preserve the number of sign-bit copies. | |||
5523 | MIN and MAX operations always return one of the operands. */ | |||
5524 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5525 | known_x, known_mode, known_ret); | |||
5526 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5527 | known_x, known_mode, known_ret); | |||
5528 | ||||
5529 | /* If num1 is clearing some of the top bits then regardless of | |||
5530 | the other term, we are guaranteed to have at least that many | |||
5531 | high-order zero bits. */ | |||
5532 | if (code == AND | |||
5533 | && num1 > 1 | |||
5534 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 | |||
5535 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
5536 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) | |||
5537 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) == 0) | |||
5538 | return num1; | |||
5539 | ||||
5540 | /* Similarly for IOR when setting high-order bits. */ | |||
5541 | if (code == IOR | |||
5542 | && num1 > 1 | |||
5543 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 | |||
5544 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | |||
5545 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) | |||
5546 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | |||
5547 | return num1; | |||
5548 | ||||
5549 | return MIN (num0, num1)((num0) < (num1) ? (num0) : (num1)); | |||
5550 | ||||
5551 | case PLUS: case MINUS: | |||
5552 | /* For addition and subtraction, we can have a 1-bit carry. However, | |||
5553 | if we are subtracting 1 from a positive number, there will not | |||
5554 | be such a carry. Furthermore, if the positive number is known to | |||
5555 | be 0 or 1, we know the result is either -1 or 0. */ | |||
5556 | ||||
5557 | if (code == PLUS && XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == constm1_rtx(const_int_rtx[64 -1]) | |||
5558 | && bitwidth <= HOST_BITS_PER_WIDE_INT64) | |||
5559 | { | |||
5560 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); | |||
5561 | if (((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero) == 0) | |||
5562 | return (nonzero == 1 || nonzero == 0 ? bitwidth | |||
5563 | : bitwidth - floor_log2 (nonzero) - 1); | |||
5564 | } | |||
5565 | ||||
5566 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5567 | known_x, known_mode, known_ret); | |||
5568 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5569 | known_x, known_mode, known_ret); | |||
5570 | result = MAX (1, MIN (num0, num1) - 1)((1) > (((num0) < (num1) ? (num0) : (num1)) - 1) ? (1) : (((num0) < (num1) ? (num0) : (num1)) - 1)); | |||
5571 | ||||
5572 | return result; | |||
5573 | ||||
5574 | case MULT: | |||
5575 | /* The number of bits of the product is the sum of the number of | |||
5576 | bits of both terms. However, unless one of the terms if known | |||
5577 | to be positive, we must allow for an additional bit since negating | |||
5578 | a negative number can remove one sign bit copy. */ | |||
5579 | ||||
5580 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5581 | known_x, known_mode, known_ret); | |||
5582 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5583 | known_x, known_mode, known_ret); | |||
5584 | ||||
5585 | result = bitwidth - (bitwidth - num0) - (bitwidth - num1); | |||
5586 | if (result > 0 | |||
5587 | && (bitwidth > HOST_BITS_PER_WIDE_INT64 | |||
5588 | || (((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) | |||
5589 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | |||
5590 | && ((nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) | |||
5591 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) | |||
5592 | != 0)))) | |||
5593 | result--; | |||
5594 | ||||
5595 | return MAX (1, result)((1) > (result) ? (1) : (result)); | |||
5596 | ||||
5597 | case UDIV: | |||
5598 | /* The result must be <= the first operand. If the first operand | |||
5599 | has the high bit set, we know nothing about the number of sign | |||
5600 | bit copies. */ | |||
5601 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) | |||
5602 | return 1; | |||
5603 | else if ((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) | |||
5604 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | |||
5605 | return 1; | |||
5606 | else | |||
5607 | return cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | |||
5608 | known_x, known_mode, known_ret); | |||
5609 | ||||
5610 | case UMOD: | |||
5611 | /* The result must be <= the second operand. If the second operand | |||
5612 | has (or just might have) the high bit set, we know nothing about | |||
5613 | the number of sign bit copies. */ | |||
5614 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) | |||
5615 | return 1; | |||
5616 | else if ((nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) | |||
5617 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | |||
5618 | return 1; | |||
5619 | else | |||
5620 | return cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | |||
5621 | known_x, known_mode, known_ret); | |||
5622 | ||||
5623 | case DIV: | |||
5624 | /* Similar to unsigned division, except that we have to worry about | |||
5625 | the case w |