File: | build/gcc/rtlanal.cc |
Warning: | line 4194, column 7 Value stored to 'rknown' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Analyze RTL for GNU compiler. |
2 | Copyright (C) 1987-2023 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | |
21 | #include "config.h" |
22 | #include "system.h" |
23 | #include "coretypes.h" |
24 | #include "backend.h" |
25 | #include "target.h" |
26 | #include "rtl.h" |
27 | #include "rtlanal.h" |
28 | #include "tree.h" |
29 | #include "predict.h" |
30 | #include "df.h" |
31 | #include "memmodel.h" |
32 | #include "tm_p.h" |
33 | #include "insn-config.h" |
34 | #include "regs.h" |
35 | #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */ |
36 | #include "recog.h" |
37 | #include "addresses.h" |
38 | #include "rtl-iter.h" |
39 | #include "hard-reg-set.h" |
40 | #include "function-abi.h" |
41 | |
42 | /* Forward declarations */ |
43 | static void set_of_1 (rtx, const_rtx, void *); |
44 | static bool covers_regno_p (const_rtx, unsigned int); |
45 | static bool covers_regno_no_parallel_p (const_rtx, unsigned int); |
46 | static int computed_jump_p_1 (const_rtx); |
47 | static void parms_set (rtx, const_rtx, void *); |
48 | |
49 | static unsigned HOST_WIDE_INTlong cached_nonzero_bits (const_rtx, scalar_int_mode, |
50 | const_rtx, machine_mode, |
51 | unsigned HOST_WIDE_INTlong); |
52 | static unsigned HOST_WIDE_INTlong nonzero_bits1 (const_rtx, scalar_int_mode, |
53 | const_rtx, machine_mode, |
54 | unsigned HOST_WIDE_INTlong); |
55 | static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode, |
56 | const_rtx, machine_mode, |
57 | unsigned int); |
58 | static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode, |
59 | const_rtx, machine_mode, |
60 | unsigned int); |
61 | |
62 | rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; |
63 | rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; |
64 | |
65 | /* Truncation narrows the mode from SOURCE mode to DESTINATION mode. |
66 | If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is |
67 | SIGN_EXTEND then while narrowing we also have to enforce the |
68 | representation and sign-extend the value to mode DESTINATION_REP. |
69 | |
70 | If the value is already sign-extended to DESTINATION_REP mode we |
71 | can just switch to DESTINATION mode on it. For each pair of |
72 | integral modes SOURCE and DESTINATION, when truncating from SOURCE |
73 | to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION] |
74 | contains the number of high-order bits in SOURCE that have to be |
75 | copies of the sign-bit so that we can do this mode-switch to |
76 | DESTINATION. */ |
77 | |
78 | static unsigned int |
79 | num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1]; |
80 | |
81 | /* Store X into index I of ARRAY. ARRAY is known to have at least I |
82 | elements. Return the new base of ARRAY. */ |
83 | |
84 | template <typename T> |
85 | typename T::value_type * |
86 | generic_subrtx_iterator <T>::add_single_to_queue (array_type &array, |
87 | value_type *base, |
88 | size_t i, value_type x) |
89 | { |
90 | if (base == array.stack) |
91 | { |
92 | if (i < LOCAL_ELEMS) |
93 | { |
94 | base[i] = x; |
95 | return base; |
96 | } |
97 | gcc_checking_assert (i == LOCAL_ELEMS)((void)(!(i == LOCAL_ELEMS) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 97, __FUNCTION__), 0 : 0)); |
98 | /* A previous iteration might also have moved from the stack to the |
99 | heap, in which case the heap array will already be big enough. */ |
100 | if (vec_safe_length (array.heap) <= i) |
101 | vec_safe_grow (array.heap, i + 1, true); |
102 | base = array.heap->address (); |
103 | memcpy (base, array.stack, sizeof (array.stack)); |
104 | base[LOCAL_ELEMS] = x; |
105 | return base; |
106 | } |
107 | unsigned int length = array.heap->length (); |
108 | if (length > i) |
109 | { |
110 | gcc_checking_assert (base == array.heap->address ())((void)(!(base == array.heap->address ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 110, __FUNCTION__), 0 : 0)); |
111 | base[i] = x; |
112 | return base; |
113 | } |
114 | else |
115 | { |
116 | gcc_checking_assert (i == length)((void)(!(i == length) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 116, __FUNCTION__), 0 : 0)); |
117 | vec_safe_push (array.heap, x); |
118 | return array.heap->address (); |
119 | } |
120 | } |
121 | |
122 | /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the |
123 | number of elements added to the worklist. */ |
124 | |
125 | template <typename T> |
126 | size_t |
127 | generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array, |
128 | value_type *base, |
129 | size_t end, rtx_type x) |
130 | { |
131 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
132 | const char *format = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
133 | size_t orig_end = end; |
134 | if (UNLIKELY (INSN_P (x))(__builtin_expect (((((((enum rtx_code) (x)->code) == INSN ) || (((enum rtx_code) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code) == CALL_INSN)) || (((enum rtx_code) ( x)->code) == DEBUG_INSN))), 0))) |
135 | { |
136 | /* Put the pattern at the top of the queue, since that's what |
137 | we're likely to want most. It also allows for the SEQUENCE |
138 | code below. */ |
139 | for (int i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; --i) |
140 | if (format[i] == 'e') |
141 | { |
142 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); |
143 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) |
144 | base[end++] = subx; |
145 | else |
146 | base = add_single_to_queue (array, base, end++, subx); |
147 | } |
148 | } |
149 | else |
150 | for (int i = 0; format[i]; ++i) |
151 | if (format[i] == 'e') |
152 | { |
153 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); |
154 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) |
155 | base[end++] = subx; |
156 | else |
157 | base = add_single_to_queue (array, base, end++, subx); |
158 | } |
159 | else if (format[i] == 'E') |
160 | { |
161 | unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec)((x->u.fld[i].rt_rtvec)->num_elem); |
162 | rtx *vec = x->u.fld[i].rt_rtvec->elem; |
163 | if (LIKELY (end + length <= LOCAL_ELEMS)(__builtin_expect ((end + length <= LOCAL_ELEMS), 1))) |
164 | for (unsigned int j = 0; j < length; j++) |
165 | base[end++] = T::get_value (vec[j]); |
166 | else |
167 | for (unsigned int j = 0; j < length; j++) |
168 | base = add_single_to_queue (array, base, end++, |
169 | T::get_value (vec[j])); |
170 | if (code == SEQUENCE && end == length) |
171 | /* If the subrtxes of the sequence fill the entire array then |
172 | we know that no other parts of a containing insn are queued. |
173 | The caller is therefore iterating over the sequence as a |
174 | PATTERN (...), so we also want the patterns of the |
175 | subinstructions. */ |
176 | for (unsigned int j = 0; j < length; j++) |
177 | { |
178 | typename T::rtx_type x = T::get_rtx (base[j]); |
179 | if (INSN_P (x)(((((enum rtx_code) (x)->code) == INSN) || (((enum rtx_code ) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code ) == CALL_INSN)) || (((enum rtx_code) (x)->code) == DEBUG_INSN ))) |
180 | base[j] = T::get_value (PATTERN (x)); |
181 | } |
182 | } |
183 | return end - orig_end; |
184 | } |
185 | |
186 | template <typename T> |
187 | void |
188 | generic_subrtx_iterator <T>::free_array (array_type &array) |
189 | { |
190 | vec_free (array.heap); |
191 | } |
192 | |
193 | template <typename T> |
194 | const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS; |
195 | |
196 | template class generic_subrtx_iterator <const_rtx_accessor>; |
197 | template class generic_subrtx_iterator <rtx_var_accessor>; |
198 | template class generic_subrtx_iterator <rtx_ptr_accessor>; |
199 | |
200 | /* Return 1 if the value of X is unstable |
201 | (would be different at a different point in the program). |
202 | The frame pointer, arg pointer, etc. are considered stable |
203 | (within one function) and so is anything marked `unchanging'. */ |
204 | |
205 | int |
206 | rtx_unstable_p (const_rtx x) |
207 | { |
208 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
209 | int i; |
210 | const char *fmt; |
211 | |
212 | switch (code) |
213 | { |
214 | case MEM: |
215 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 215, __FUNCTION__); _rtx; })->unchanging) || rtx_unstable_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
216 | |
217 | case CONST: |
218 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
219 | case SYMBOL_REF: |
220 | case LABEL_REF: |
221 | return 0; |
222 | |
223 | case REG: |
224 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ |
225 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) |
226 | /* The arg pointer varies if it is not a fixed register. */ |
227 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) |
228 | return 0; |
229 | /* ??? When call-clobbered, the value is stable modulo the restore |
230 | that must happen after a call. This currently screws up local-alloc |
231 | into believing that the restore is not needed. */ |
232 | if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 && x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx)) |
233 | return 0; |
234 | return 1; |
235 | |
236 | case ASM_OPERANDS: |
237 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 237, __FUNCTION__); _rtx; })->volatil)) |
238 | return 1; |
239 | |
240 | /* Fall through. */ |
241 | |
242 | default: |
243 | break; |
244 | } |
245 | |
246 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
247 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
248 | if (fmt[i] == 'e') |
249 | { |
250 | if (rtx_unstable_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) |
251 | return 1; |
252 | } |
253 | else if (fmt[i] == 'E') |
254 | { |
255 | int j; |
256 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
257 | if (rtx_unstable_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) |
258 | return 1; |
259 | } |
260 | |
261 | return 0; |
262 | } |
263 | |
264 | /* Return 1 if X has a value that can vary even between two |
265 | executions of the program. 0 means X can be compared reliably |
266 | against certain constants or near-constants. |
267 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is |
268 | zero, we are slightly more conservative. |
269 | The frame pointer and the arg pointer are considered constant. */ |
270 | |
271 | bool |
272 | rtx_varies_p (const_rtx x, bool for_alias) |
273 | { |
274 | RTX_CODEenum rtx_code code; |
275 | int i; |
276 | const char *fmt; |
277 | |
278 | if (!x) |
279 | return 0; |
280 | |
281 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
282 | switch (code) |
283 | { |
284 | case MEM: |
285 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 285, __FUNCTION__); _rtx; })->unchanging) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); |
286 | |
287 | case CONST: |
288 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
289 | case SYMBOL_REF: |
290 | case LABEL_REF: |
291 | return 0; |
292 | |
293 | case REG: |
294 | /* Note that we have to test for the actual rtx used for the frame |
295 | and arg pointers and not just the register number in case we have |
296 | eliminated the frame and/or arg pointer and are using it |
297 | for pseudos. */ |
298 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) |
299 | /* The arg pointer varies if it is not a fixed register. */ |
300 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) |
301 | return 0; |
302 | if (x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) |
303 | /* ??? When call-clobbered, the value is stable modulo the restore |
304 | that must happen after a call. This currently screws up |
305 | local-alloc into believing that the restore is not needed, so we |
306 | must return 0 only if we are called from alias analysis. */ |
307 | && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 || for_alias)) |
308 | return 0; |
309 | return 1; |
310 | |
311 | case LO_SUM: |
312 | /* The operand 0 of a LO_SUM is considered constant |
313 | (in fact it is related specifically to operand 1) |
314 | during alias analysis. */ |
315 | return (! for_alias && rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias)) |
316 | || rtx_varies_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), for_alias); |
317 | |
318 | case ASM_OPERANDS: |
319 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 319, __FUNCTION__); _rtx; })->volatil)) |
320 | return 1; |
321 | |
322 | /* Fall through. */ |
323 | |
324 | default: |
325 | break; |
326 | } |
327 | |
328 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
329 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
330 | if (fmt[i] == 'e') |
331 | { |
332 | if (rtx_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) |
333 | return 1; |
334 | } |
335 | else if (fmt[i] == 'E') |
336 | { |
337 | int j; |
338 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
339 | if (rtx_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) |
340 | return 1; |
341 | } |
342 | |
343 | return 0; |
344 | } |
345 | |
346 | /* Compute an approximation for the offset between the register |
347 | FROM and TO for the current function, as it was at the start |
348 | of the routine. */ |
349 | |
350 | static poly_int64 |
351 | get_initial_register_offset (int from, int to) |
352 | { |
353 | static const struct elim_table_t |
354 | { |
355 | const int from; |
356 | const int to; |
357 | } table[] = ELIMINABLE_REGS{{ 16, 7}, { 16, 6}, { 19, 7}, { 19, 6}}; |
358 | poly_int64 offset1, offset2; |
359 | unsigned int i, j; |
360 | |
361 | if (to == from) |
362 | return 0; |
363 | |
364 | /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue |
365 | is completed, but we need to give at least an estimate for the stack |
366 | pointer based on the frame size. */ |
367 | if (!epilogue_completed) |
368 | { |
369 | offset1 = crtl(&x_rtl)->outgoing_args_size + get_frame_size (); |
370 | #if !STACK_GROWS_DOWNWARD1 |
371 | offset1 = - offset1; |
372 | #endif |
373 | if (to == STACK_POINTER_REGNUM7) |
374 | return offset1; |
375 | else if (from == STACK_POINTER_REGNUM7) |
376 | return - offset1; |
377 | else |
378 | return 0; |
379 | } |
380 | |
381 | for (i = 0; i < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); i++) |
382 | if (table[i].from == from) |
383 | { |
384 | if (table[i].to == to) |
385 | { |
386 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
387 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
388 | return offset1; |
389 | } |
390 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) |
391 | { |
392 | if (table[j].to == to |
393 | && table[j].from == table[i].to) |
394 | { |
395 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
396 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
397 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) |
398 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); |
399 | return offset1 + offset2; |
400 | } |
401 | if (table[j].from == to |
402 | && table[j].to == table[i].to) |
403 | { |
404 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
405 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
406 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) |
407 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); |
408 | return offset1 - offset2; |
409 | } |
410 | } |
411 | } |
412 | else if (table[i].to == from) |
413 | { |
414 | if (table[i].from == to) |
415 | { |
416 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
417 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
418 | return - offset1; |
419 | } |
420 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) |
421 | { |
422 | if (table[j].to == to |
423 | && table[j].from == table[i].from) |
424 | { |
425 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
426 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
427 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) |
428 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); |
429 | return - offset1 + offset2; |
430 | } |
431 | if (table[j].from == to |
432 | && table[j].to == table[i].from) |
433 | { |
434 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) |
435 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); |
436 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) |
437 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); |
438 | return - offset1 - offset2; |
439 | } |
440 | } |
441 | } |
442 | |
443 | /* If the requested register combination was not found, |
444 | try a different more simple combination. */ |
445 | if (from == ARG_POINTER_REGNUM16) |
446 | return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM6, to); |
447 | else if (to == ARG_POINTER_REGNUM16) |
448 | return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM6); |
449 | else if (from == HARD_FRAME_POINTER_REGNUM6) |
450 | return get_initial_register_offset (FRAME_POINTER_REGNUM19, to); |
451 | else if (to == HARD_FRAME_POINTER_REGNUM6) |
452 | return get_initial_register_offset (from, FRAME_POINTER_REGNUM19); |
453 | else |
454 | return 0; |
455 | } |
456 | |
457 | /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE |
458 | bytes can cause a trap. MODE is the mode of the MEM (not that of X) and |
459 | UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory |
460 | references on strict alignment machines. */ |
461 | |
462 | static int |
463 | rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size, |
464 | machine_mode mode, bool unaligned_mems) |
465 | { |
466 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
467 | gcc_checking_assert (mode == BLKmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) |
468 | || mode == VOIDmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) |
469 | || known_size_p (size))((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)); |
470 | poly_int64 const_x1; |
471 | |
472 | /* The offset must be a multiple of the mode size if we are considering |
473 | unaligned memory references on strict alignment machines. */ |
474 | if (STRICT_ALIGNMENT0 |
475 | && unaligned_mems |
476 | && mode != BLKmode((void) 0, E_BLKmode) |
477 | && mode != VOIDmode((void) 0, E_VOIDmode)) |
478 | { |
479 | poly_int64 actual_offset = offset; |
480 | |
481 | #ifdef SPARC_STACK_BOUNDARY_HACK |
482 | /* ??? The SPARC port may claim a STACK_BOUNDARY higher than |
483 | the real alignment of %sp. However, when it does this, the |
484 | alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ |
485 | if (SPARC_STACK_BOUNDARY_HACK |
486 | && (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]))) |
487 | actual_offset -= STACK_POINTER_OFFSET0; |
488 | #endif |
489 | |
490 | if (!multiple_p (actual_offset, GET_MODE_SIZE (mode))) |
491 | return 1; |
492 | } |
493 | |
494 | switch (code) |
495 | { |
496 | case SYMBOL_REF: |
497 | if (SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 497, __FUNCTION__); _rtx; })->return_val)) |
498 | return 1; |
499 | if (!CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; })->unchanging) && !SYMBOL_REF_FUNCTION_P (x)(((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if ((( enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 0)) != 0)) |
500 | { |
501 | tree decl; |
502 | poly_int64 decl_size; |
503 | |
504 | if (maybe_lt (offset, 0)) |
505 | return 1; |
506 | if (!known_size_p (size)) |
507 | return maybe_ne (offset, 0); |
508 | |
509 | /* If the size of the access or of the symbol is unknown, |
510 | assume the worst. */ |
511 | decl = SYMBOL_REF_DECL (x)((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 511, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((x))->u.fld[1]).rt_tree)); |
512 | |
513 | /* Else check that the access is in bounds. TODO: restructure |
514 | expr_size/tree_expr_size/int_expr_size and just use the latter. */ |
515 | if (!decl) |
516 | decl_size = -1; |
517 | else if (DECL_P (decl)(tree_code_type_tmpl <0>::tree_code_type[(int) (((enum tree_code ) (decl)->base.code))] == tcc_declaration) && DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 517, __FUNCTION__))->decl_common.size_unit)) |
518 | { |
519 | if (!poly_int_tree_p (DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 519, __FUNCTION__))->decl_common.size_unit), &decl_size)) |
520 | decl_size = -1; |
521 | } |
522 | else if (TREE_CODE (decl)((enum tree_code) (decl)->base.code) == STRING_CST) |
523 | decl_size = TREE_STRING_LENGTH (decl)((tree_check ((decl), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 523, __FUNCTION__, (STRING_CST)))->string.length); |
524 | else if (TYPE_SIZE_UNIT (TREE_TYPE (decl))((tree_class_check ((((contains_struct_check ((decl), (TS_TYPED ), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->type_common.size_unit)) |
525 | decl_size = int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 525, __FUNCTION__))->typed.type)); |
526 | else |
527 | decl_size = -1; |
528 | |
529 | return (!known_size_p (decl_size) || known_eq (decl_size, 0)(!maybe_ne (decl_size, 0)) |
530 | ? maybe_ne (offset, 0) |
531 | : !known_subrange_p (offset, size, 0, decl_size)); |
532 | } |
533 | |
534 | return 0; |
535 | |
536 | case LABEL_REF: |
537 | return 0; |
538 | |
539 | case REG: |
540 | /* Stack references are assumed not to trap, but we need to deal with |
541 | nonsensical offsets. */ |
542 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) |
543 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) |
544 | /* The arg pointer varies if it is not a fixed register. */ |
545 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) |
546 | { |
547 | #ifdef RED_ZONE_SIZE128 |
548 | poly_int64 red_zone_size = RED_ZONE_SIZE128; |
549 | #else |
550 | poly_int64 red_zone_size = 0; |
551 | #endif |
552 | poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARYix86_preferred_stack_boundary / BITS_PER_UNIT(8); |
553 | poly_int64 low_bound, high_bound; |
554 | |
555 | if (!known_size_p (size)) |
556 | return 1; |
557 | |
558 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER])) |
559 | { |
560 | if (FRAME_GROWS_DOWNWARD1) |
561 | { |
562 | high_bound = targetm.starting_frame_offset (); |
563 | low_bound = high_bound - get_frame_size (); |
564 | } |
565 | else |
566 | { |
567 | low_bound = targetm.starting_frame_offset (); |
568 | high_bound = low_bound + get_frame_size (); |
569 | } |
570 | } |
571 | else if (x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER])) |
572 | { |
573 | poly_int64 sp_offset |
574 | = get_initial_register_offset (STACK_POINTER_REGNUM7, |
575 | HARD_FRAME_POINTER_REGNUM6); |
576 | poly_int64 ap_offset |
577 | = get_initial_register_offset (ARG_POINTER_REGNUM16, |
578 | HARD_FRAME_POINTER_REGNUM6); |
579 | |
580 | #if STACK_GROWS_DOWNWARD1 |
581 | low_bound = sp_offset - red_zone_size - stack_boundary; |
582 | high_bound = ap_offset |
583 | + FIRST_PARM_OFFSET (current_function_decl)0 |
584 | #if !ARGS_GROW_DOWNWARD0 |
585 | + crtl(&x_rtl)->args.size |
586 | #endif |
587 | + stack_boundary; |
588 | #else |
589 | high_bound = sp_offset + red_zone_size + stack_boundary; |
590 | low_bound = ap_offset |
591 | + FIRST_PARM_OFFSET (current_function_decl)0 |
592 | #if ARGS_GROW_DOWNWARD0 |
593 | - crtl(&x_rtl)->args.size |
594 | #endif |
595 | - stack_boundary; |
596 | #endif |
597 | } |
598 | else if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) |
599 | { |
600 | poly_int64 ap_offset |
601 | = get_initial_register_offset (ARG_POINTER_REGNUM16, |
602 | STACK_POINTER_REGNUM7); |
603 | |
604 | #if STACK_GROWS_DOWNWARD1 |
605 | low_bound = - red_zone_size - stack_boundary; |
606 | high_bound = ap_offset |
607 | + FIRST_PARM_OFFSET (current_function_decl)0 |
608 | #if !ARGS_GROW_DOWNWARD0 |
609 | + crtl(&x_rtl)->args.size |
610 | #endif |
611 | + stack_boundary; |
612 | #else |
613 | high_bound = red_zone_size + stack_boundary; |
614 | low_bound = ap_offset |
615 | + FIRST_PARM_OFFSET (current_function_decl)0 |
616 | #if ARGS_GROW_DOWNWARD0 |
617 | - crtl(&x_rtl)->args.size |
618 | #endif |
619 | - stack_boundary; |
620 | #endif |
621 | } |
622 | else |
623 | { |
624 | /* We assume that accesses are safe to at least the |
625 | next stack boundary. |
626 | Examples are varargs and __builtin_return_address. */ |
627 | #if ARGS_GROW_DOWNWARD0 |
628 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 |
629 | + stack_boundary; |
630 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 |
631 | - crtl(&x_rtl)->args.size - stack_boundary; |
632 | #else |
633 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 |
634 | - stack_boundary; |
635 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 |
636 | + crtl(&x_rtl)->args.size + stack_boundary; |
637 | #endif |
638 | } |
639 | |
640 | if (known_ge (offset, low_bound)(!maybe_lt (offset, low_bound)) |
641 | && known_le (offset, high_bound - size)(!maybe_lt (high_bound - size, offset))) |
642 | return 0; |
643 | return 1; |
644 | } |
645 | /* All of the virtual frame registers are stack references. */ |
646 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) |
647 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) |
648 | return 0; |
649 | return 1; |
650 | |
651 | case CONST: |
652 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, |
653 | mode, unaligned_mems); |
654 | |
655 | case PLUS: |
656 | /* An address is assumed not to trap if: |
657 | - it is the pic register plus a const unspec without offset. */ |
658 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) |
659 | && GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST |
660 | && GET_CODE (XEXP (XEXP (x, 1), 0))((enum rtx_code) (((((((x)->u.fld[1]).rt_rtx))->u.fld[0 ]).rt_rtx))->code) == UNSPEC |
661 | && known_eq (offset, 0)(!maybe_ne (offset, 0))) |
662 | return 0; |
663 | |
664 | /* - or it is an address that can't trap plus a constant integer. */ |
665 | if (poly_int_rtx_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), &const_x1) |
666 | && !rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset + const_x1, |
667 | size, mode, unaligned_mems)) |
668 | return 0; |
669 | |
670 | return 1; |
671 | |
672 | case LO_SUM: |
673 | case PRE_MODIFY: |
674 | return rtx_addr_can_trap_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), offset, size, |
675 | mode, unaligned_mems); |
676 | |
677 | case PRE_DEC: |
678 | case PRE_INC: |
679 | case POST_DEC: |
680 | case POST_INC: |
681 | case POST_MODIFY: |
682 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, |
683 | mode, unaligned_mems); |
684 | |
685 | default: |
686 | break; |
687 | } |
688 | |
689 | /* If it isn't one of the case above, it can cause a trap. */ |
690 | return 1; |
691 | } |
692 | |
693 | /* Return nonzero if the use of X as an address in a MEM can cause a trap. */ |
694 | |
695 | int |
696 | rtx_addr_can_trap_p (const_rtx x) |
697 | { |
698 | return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode((void) 0, E_BLKmode), false); |
699 | } |
700 | |
701 | /* Return true if X contains a MEM subrtx. */ |
702 | |
703 | bool |
704 | contains_mem_rtx_p (rtx x) |
705 | { |
706 | subrtx_iterator::array_type array; |
707 | FOR_EACH_SUBRTX (iter, array, x, ALL)for (subrtx_iterator iter (array, x, rtx_all_subrtx_bounds); ! iter.at_end (); iter.next ()) |
708 | if (MEM_P (*iter)(((enum rtx_code) (*iter)->code) == MEM)) |
709 | return true; |
710 | |
711 | return false; |
712 | } |
713 | |
714 | /* Return true if X is an address that is known to not be zero. */ |
715 | |
716 | bool |
717 | nonzero_address_p (const_rtx x) |
718 | { |
719 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
720 | |
721 | switch (code) |
722 | { |
723 | case SYMBOL_REF: |
724 | return flag_delete_null_pointer_checksglobal_options.x_flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 724, __FUNCTION__); _rtx; })->return_val); |
725 | |
726 | case LABEL_REF: |
727 | return true; |
728 | |
729 | case REG: |
730 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ |
731 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) |
732 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) |
733 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) |
734 | return true; |
735 | /* All of the virtual frame registers are stack references. */ |
736 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) |
737 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) |
738 | return true; |
739 | return false; |
740 | |
741 | case CONST: |
742 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
743 | |
744 | case PLUS: |
745 | /* Handle PIC references. */ |
746 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) |
747 | && CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) |
748 | return true; |
749 | return false; |
750 | |
751 | case PRE_MODIFY: |
752 | /* Similar to the above; allow positive offsets. Further, since |
753 | auto-inc is only allowed in memories, the register must be a |
754 | pointer. */ |
755 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
756 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) > 0) |
757 | return true; |
758 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
759 | |
760 | case PRE_INC: |
761 | /* Similarly. Further, the offset is always positive. */ |
762 | return true; |
763 | |
764 | case PRE_DEC: |
765 | case POST_DEC: |
766 | case POST_INC: |
767 | case POST_MODIFY: |
768 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
769 | |
770 | case LO_SUM: |
771 | return nonzero_address_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)); |
772 | |
773 | default: |
774 | break; |
775 | } |
776 | |
777 | /* If it isn't one of the case above, might be zero. */ |
778 | return false; |
779 | } |
780 | |
781 | /* Return 1 if X refers to a memory location whose address |
782 | cannot be compared reliably with constant addresses, |
783 | or if X refers to a BLKmode memory object. |
784 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is |
785 | zero, we are slightly more conservative. */ |
786 | |
787 | bool |
788 | rtx_addr_varies_p (const_rtx x, bool for_alias) |
789 | { |
790 | enum rtx_code code; |
791 | int i; |
792 | const char *fmt; |
793 | |
794 | if (x == 0) |
795 | return 0; |
796 | |
797 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
798 | if (code == MEM) |
799 | return GET_MODE (x)((machine_mode) (x)->mode) == BLKmode((void) 0, E_BLKmode) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); |
800 | |
801 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
802 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
803 | if (fmt[i] == 'e') |
804 | { |
805 | if (rtx_addr_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) |
806 | return 1; |
807 | } |
808 | else if (fmt[i] == 'E') |
809 | { |
810 | int j; |
811 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
812 | if (rtx_addr_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) |
813 | return 1; |
814 | } |
815 | return 0; |
816 | } |
817 | |
818 | /* Return the CALL in X if there is one. */ |
819 | |
820 | rtx |
821 | get_call_rtx_from (const rtx_insn *insn) |
822 | { |
823 | rtx x = PATTERN (insn); |
824 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) |
825 | x = XVECEXP (x, 0, 0)(((((x)->u.fld[0]).rt_rtvec))->elem[0]); |
826 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) |
827 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); |
828 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CALL && MEM_P (XEXP (x, 0))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) |
829 | return x; |
830 | return NULL_RTX(rtx) 0; |
831 | } |
832 | |
833 | /* Get the declaration of the function called by INSN. */ |
834 | |
835 | tree |
836 | get_call_fndecl (const rtx_insn *insn) |
837 | { |
838 | rtx note, datum; |
839 | |
840 | note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX(rtx) 0); |
841 | if (note == NULL_RTX(rtx) 0) |
842 | return NULL_TREE(tree) nullptr; |
843 | |
844 | datum = XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); |
845 | if (datum != NULL_RTX(rtx) 0) |
846 | return SYMBOL_REF_DECL (datum)((__extension__ ({ __typeof ((datum)) const _rtx = ((datum)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 846, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((datum))->u.fld[1]).rt_tree)); |
847 | |
848 | return NULL_TREE(tree) nullptr; |
849 | } |
850 | |
851 | /* Return the value of the integer term in X, if one is apparent; |
852 | otherwise return 0. |
853 | Only obvious integer terms are detected. |
854 | This is used in cse.cc with the `related_value' field. */ |
855 | |
856 | HOST_WIDE_INTlong |
857 | get_integer_term (const_rtx x) |
858 | { |
859 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) |
860 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
861 | |
862 | if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS |
863 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
864 | return - INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); |
865 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS |
866 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
867 | return INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); |
868 | return 0; |
869 | } |
870 | |
871 | /* If X is a constant, return the value sans apparent integer term; |
872 | otherwise return 0. |
873 | Only obvious integer terms are detected. */ |
874 | |
875 | rtx |
876 | get_related_value (const_rtx x) |
877 | { |
878 | if (GET_CODE (x)((enum rtx_code) (x)->code) != CONST) |
879 | return 0; |
880 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
881 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS |
882 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
883 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
884 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS |
885 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
886 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
887 | return 0; |
888 | } |
889 | |
890 | /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points |
891 | to somewhere in the same object or object_block as SYMBOL. */ |
892 | |
893 | bool |
894 | offset_within_block_p (const_rtx symbol, HOST_WIDE_INTlong offset) |
895 | { |
896 | tree decl; |
897 | |
898 | if (GET_CODE (symbol)((enum rtx_code) (symbol)->code) != SYMBOL_REF) |
899 | return false; |
900 | |
901 | if (offset == 0) |
902 | return true; |
903 | |
904 | if (offset > 0) |
905 | { |
906 | if (CONSTANT_POOL_ADDRESS_P (symbol)(__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol)) ; if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 906, __FUNCTION__); _rtx; })->unchanging) |
907 | && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol))) |
908 | return true; |
909 | |
910 | decl = SYMBOL_REF_DECL (symbol)((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol) ); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 910, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((symbol))->u.fld[1]).rt_tree)); |
911 | if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 911, __FUNCTION__))->typed.type))) |
912 | return true; |
913 | } |
914 | |
915 | if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)(((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol )); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 915, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 7)) != 0) |
916 | && SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block) |
917 | && SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) >= 0 |
918 | && ((unsigned HOST_WIDE_INTlong) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) |
919 | < (unsigned HOST_WIDE_INTlong) SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block)->size)) |
920 | return true; |
921 | |
922 | return false; |
923 | } |
924 | |
925 | /* Split X into a base and a constant offset, storing them in *BASE_OUT |
926 | and *OFFSET_OUT respectively. */ |
927 | |
928 | void |
929 | split_const (rtx x, rtx *base_out, rtx *offset_out) |
930 | { |
931 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) |
932 | { |
933 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
934 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
935 | { |
936 | *base_out = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
937 | *offset_out = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); |
938 | return; |
939 | } |
940 | } |
941 | *base_out = x; |
942 | *offset_out = const0_rtx(const_int_rtx[64]); |
943 | } |
944 | |
945 | /* Express integer value X as some value Y plus a polynomial offset, |
946 | where Y is either const0_rtx, X or something within X (as opposed |
947 | to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */ |
948 | |
949 | rtx |
950 | strip_offset (rtx x, poly_int64_pod *offset_out) |
951 | { |
952 | rtx base = const0_rtx(const_int_rtx[64]); |
953 | rtx test = x; |
954 | if (GET_CODE (test)((enum rtx_code) (test)->code) == CONST) |
955 | test = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); |
956 | if (GET_CODE (test)((enum rtx_code) (test)->code) == PLUS) |
957 | { |
958 | base = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); |
959 | test = XEXP (test, 1)(((test)->u.fld[1]).rt_rtx); |
960 | } |
961 | if (poly_int_rtx_p (test, offset_out)) |
962 | return base; |
963 | *offset_out = 0; |
964 | return x; |
965 | } |
966 | |
967 | /* Return the argument size in REG_ARGS_SIZE note X. */ |
968 | |
969 | poly_int64 |
970 | get_args_size (const_rtx x) |
971 | { |
972 | gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE)((void)(!(((enum reg_note) ((machine_mode) (x)->mode)) == REG_ARGS_SIZE ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 972, __FUNCTION__), 0 : 0)); |
973 | return rtx_to_poly_int64 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
974 | } |
975 | |
976 | /* Return the number of places FIND appears within X. If COUNT_DEST is |
977 | zero, we do not count occurrences inside the destination of a SET. */ |
978 | |
979 | int |
980 | count_occurrences (const_rtx x, const_rtx find, int count_dest) |
981 | { |
982 | int i, j; |
983 | enum rtx_code code; |
984 | const char *format_ptr; |
985 | int count; |
986 | |
987 | if (x == find) |
988 | return 1; |
989 | |
990 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
991 | |
992 | switch (code) |
993 | { |
994 | case REG: |
995 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
996 | case SYMBOL_REF: |
997 | case CODE_LABEL: |
998 | case PC: |
999 | return 0; |
1000 | |
1001 | case EXPR_LIST: |
1002 | count = count_occurrences (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), find, count_dest); |
1003 | if (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) |
1004 | count += count_occurrences (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), find, count_dest); |
1005 | return count; |
1006 | |
1007 | case MEM: |
1008 | if (MEM_P (find)(((enum rtx_code) (find)->code) == MEM) && rtx_equal_p (x, find)) |
1009 | return 1; |
1010 | break; |
1011 | |
1012 | case SET: |
1013 | if (SET_DEST (x)(((x)->u.fld[0]).rt_rtx) == find && ! count_dest) |
1014 | return count_occurrences (SET_SRC (x)(((x)->u.fld[1]).rt_rtx), find, count_dest); |
1015 | break; |
1016 | |
1017 | default: |
1018 | break; |
1019 | } |
1020 | |
1021 | format_ptr = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
1022 | count = 0; |
1023 | |
1024 | for (i = 0; i < GET_RTX_LENGTH (code)(rtx_length[(int) (code)]); i++) |
1025 | { |
1026 | switch (*format_ptr++) |
1027 | { |
1028 | case 'e': |
1029 | count += count_occurrences (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), find, count_dest); |
1030 | break; |
1031 | |
1032 | case 'E': |
1033 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
1034 | count += count_occurrences (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), find, count_dest); |
1035 | break; |
1036 | } |
1037 | } |
1038 | return count; |
1039 | } |
1040 | |
1041 | |
1042 | /* Return TRUE if OP is a register or subreg of a register that |
1043 | holds an unsigned quantity. Otherwise, return FALSE. */ |
1044 | |
1045 | bool |
1046 | unsigned_reg_p (rtx op) |
1047 | { |
1048 | if (REG_P (op)(((enum rtx_code) (op)->code) == REG) |
1049 | && REG_EXPR (op)(((&(op)->u.reg)->attrs) == 0 ? 0 : ((&(op)-> u.reg)->attrs)->decl) |
1050 | && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op)))((tree_class_check ((((contains_struct_check (((((&(op)-> u.reg)->attrs) == 0 ? 0 : ((&(op)->u.reg)->attrs )->decl)), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->base.u.bits.unsigned_flag)) |
1051 | return true; |
1052 | |
1053 | if (GET_CODE (op)((enum rtx_code) (op)->code) == SUBREG |
1054 | && SUBREG_PROMOTED_SIGN (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ("SUBREG_PROMOTED_SIGN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1054, __FUNCTION__); _rtx; })->volatil) ? 1 : (op)->unchanging - 1)) |
1055 | return true; |
1056 | |
1057 | return false; |
1058 | } |
1059 | |
1060 | |
1061 | /* Nonzero if register REG appears somewhere within IN. |
1062 | Also works if REG is not a register; in this case it checks |
1063 | for a subexpression of IN that is Lisp "equal" to REG. */ |
1064 | |
1065 | int |
1066 | reg_mentioned_p (const_rtx reg, const_rtx in) |
1067 | { |
1068 | const char *fmt; |
1069 | int i; |
1070 | enum rtx_code code; |
1071 | |
1072 | if (in == 0) |
1073 | return 0; |
1074 | |
1075 | if (reg == in) |
1076 | return 1; |
1077 | |
1078 | if (GET_CODE (in)((enum rtx_code) (in)->code) == LABEL_REF) |
1079 | return reg == label_ref_label (in); |
1080 | |
1081 | code = GET_CODE (in)((enum rtx_code) (in)->code); |
1082 | |
1083 | switch (code) |
1084 | { |
1085 | /* Compare registers by number. */ |
1086 | case REG: |
1087 | return REG_P (reg)(((enum rtx_code) (reg)->code) == REG) && REGNO (in)(rhs_regno(in)) == REGNO (reg)(rhs_regno(reg)); |
1088 | |
1089 | /* These codes have no constituent expressions |
1090 | and are unique. */ |
1091 | case SCRATCH: |
1092 | case PC: |
1093 | return 0; |
1094 | |
1095 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
1096 | /* These are kept unique for a given value. */ |
1097 | return 0; |
1098 | |
1099 | default: |
1100 | break; |
1101 | } |
1102 | |
1103 | if (GET_CODE (reg)((enum rtx_code) (reg)->code) == code && rtx_equal_p (reg, in)) |
1104 | return 1; |
1105 | |
1106 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
1107 | |
1108 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
1109 | { |
1110 | if (fmt[i] == 'E') |
1111 | { |
1112 | int j; |
1113 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
1114 | if (reg_mentioned_p (reg, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) |
1115 | return 1; |
1116 | } |
1117 | else if (fmt[i] == 'e' |
1118 | && reg_mentioned_p (reg, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) |
1119 | return 1; |
1120 | } |
1121 | return 0; |
1122 | } |
1123 | |
1124 | /* Return 1 if in between BEG and END, exclusive of BEG and END, there is |
1125 | no CODE_LABEL insn. */ |
1126 | |
1127 | int |
1128 | no_labels_between_p (const rtx_insn *beg, const rtx_insn *end) |
1129 | { |
1130 | rtx_insn *p; |
1131 | if (beg == end) |
1132 | return 0; |
1133 | for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p)) |
1134 | if (LABEL_P (p)(((enum rtx_code) (p)->code) == CODE_LABEL)) |
1135 | return 0; |
1136 | return 1; |
1137 | } |
1138 | |
1139 | /* Nonzero if register REG is used in an insn between |
1140 | FROM_INSN and TO_INSN (exclusive of those two). */ |
1141 | |
1142 | int |
1143 | reg_used_between_p (const_rtx reg, const rtx_insn *from_insn, |
1144 | const rtx_insn *to_insn) |
1145 | { |
1146 | rtx_insn *insn; |
1147 | |
1148 | if (from_insn == to_insn) |
1149 | return 0; |
1150 | |
1151 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) |
1152 | if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) |
1153 | && (reg_overlap_mentioned_p (reg, PATTERN (insn)) |
1154 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && find_reg_fusage (insn, USE, reg)))) |
1155 | return 1; |
1156 | return 0; |
1157 | } |
1158 | |
1159 | /* Nonzero if the old value of X, a register, is referenced in BODY. If X |
1160 | is entirely replaced by a new value and the only use is as a SET_DEST, |
1161 | we do not consider it a reference. */ |
1162 | |
1163 | int |
1164 | reg_referenced_p (const_rtx x, const_rtx body) |
1165 | { |
1166 | int i; |
1167 | |
1168 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) |
1169 | { |
1170 | case SET: |
1171 | if (reg_overlap_mentioned_p (x, SET_SRC (body)(((body)->u.fld[1]).rt_rtx))) |
1172 | return 1; |
1173 | |
1174 | /* If the destination is anything other than PC, a REG or a SUBREG |
1175 | of a REG that occupies all of the REG, the insn references X if |
1176 | it is mentioned in the destination. */ |
1177 | if (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) != PC |
1178 | && !REG_P (SET_DEST (body))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == REG) |
1179 | && ! (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == SUBREG |
1180 | && REG_P (SUBREG_REG (SET_DEST (body)))(((enum rtx_code) (((((((body)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))->code) == REG) |
1181 | && !read_modify_subreg_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) |
1182 | && reg_overlap_mentioned_p (x, SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) |
1183 | return 1; |
1184 | return 0; |
1185 | |
1186 | case ASM_OPERANDS: |
1187 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1188 | if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]))) |
1189 | return 1; |
1190 | return 0; |
1191 | |
1192 | case CALL: |
1193 | case USE: |
1194 | case IF_THEN_ELSE: |
1195 | return reg_overlap_mentioned_p (x, body); |
1196 | |
1197 | case TRAP_IF: |
1198 | return reg_overlap_mentioned_p (x, TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx)); |
1199 | |
1200 | case PREFETCH: |
1201 | return reg_overlap_mentioned_p (x, XEXP (body, 0)(((body)->u.fld[0]).rt_rtx)); |
1202 | |
1203 | case UNSPEC: |
1204 | case UNSPEC_VOLATILE: |
1205 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1206 | if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) |
1207 | return 1; |
1208 | return 0; |
1209 | |
1210 | case PARALLEL: |
1211 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1212 | if (reg_referenced_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) |
1213 | return 1; |
1214 | return 0; |
1215 | |
1216 | case CLOBBER: |
1217 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) |
1218 | if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) |
1219 | return 1; |
1220 | return 0; |
1221 | |
1222 | case COND_EXEC: |
1223 | if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx))) |
1224 | return 1; |
1225 | return reg_referenced_p (x, COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx)); |
1226 | |
1227 | default: |
1228 | return 0; |
1229 | } |
1230 | } |
1231 | |
1232 | /* Nonzero if register REG is set or clobbered in an insn between |
1233 | FROM_INSN and TO_INSN (exclusive of those two). */ |
1234 | |
1235 | int |
1236 | reg_set_between_p (const_rtx reg, const rtx_insn *from_insn, |
1237 | const rtx_insn *to_insn) |
1238 | { |
1239 | const rtx_insn *insn; |
1240 | |
1241 | if (from_insn == to_insn) |
1242 | return 0; |
1243 | |
1244 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) |
1245 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && reg_set_p (reg, insn)) |
1246 | return 1; |
1247 | return 0; |
1248 | } |
1249 | |
1250 | /* Return true if REG is set or clobbered inside INSN. */ |
1251 | |
1252 | int |
1253 | reg_set_p (const_rtx reg, const_rtx insn) |
1254 | { |
1255 | /* After delay slot handling, call and branch insns might be in a |
1256 | sequence. Check all the elements there. */ |
1257 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == SEQUENCE) |
1258 | { |
1259 | for (int i = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); ++i) |
1260 | if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->elem[i]))) |
1261 | return true; |
1262 | |
1263 | return false; |
1264 | } |
1265 | |
1266 | /* We can be passed an insn or part of one. If we are passed an insn, |
1267 | check if a side-effect of the insn clobbers REG. */ |
1268 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) |
1269 | && (FIND_REG_INC_NOTE (insn, reg)0 |
1270 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) |
1271 | && ((REG_P (reg)(((enum rtx_code) (reg)->code) == REG) |
1272 | && REGNO (reg)(rhs_regno(reg)) < FIRST_PSEUDO_REGISTER76 |
1273 | && (insn_callee_abi (as_a<const rtx_insn *> (insn)) |
1274 | .clobbers_reg_p (GET_MODE (reg)((machine_mode) (reg)->mode), REGNO (reg)(rhs_regno(reg))))) |
1275 | || MEM_P (reg)(((enum rtx_code) (reg)->code) == MEM) |
1276 | || find_reg_fusage (insn, CLOBBER, reg))))) |
1277 | return true; |
1278 | |
1279 | /* There are no REG_INC notes for SP autoinc. */ |
1280 | if (reg == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) |
1281 | { |
1282 | subrtx_var_iterator::array_type array; |
1283 | FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)for (subrtx_var_iterator iter (array, PATTERN (insn), rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) |
1284 | { |
1285 | rtx mem = *iter; |
1286 | if (mem |
1287 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) |
1288 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) |
1289 | { |
1290 | if (XEXP (XEXP (mem, 0), 0)((((((mem)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) |
1291 | return true; |
1292 | iter.skip_subrtxes (); |
1293 | } |
1294 | } |
1295 | } |
1296 | |
1297 | return set_of (reg, insn) != NULL_RTX(rtx) 0; |
1298 | } |
1299 | |
1300 | /* Similar to reg_set_between_p, but check all registers in X. Return 0 |
1301 | only if none of them are modified between START and END. Return 1 if |
1302 | X contains a MEM; this routine does use memory aliasing. */ |
1303 | |
1304 | int |
1305 | modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end) |
1306 | { |
1307 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
1308 | const char *fmt; |
1309 | int i, j; |
1310 | rtx_insn *insn; |
1311 | |
1312 | if (start == end) |
1313 | return 0; |
1314 | |
1315 | switch (code) |
1316 | { |
1317 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
1318 | case CONST: |
1319 | case SYMBOL_REF: |
1320 | case LABEL_REF: |
1321 | return 0; |
1322 | |
1323 | case PC: |
1324 | return 1; |
1325 | |
1326 | case MEM: |
1327 | if (modified_between_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), start, end)) |
1328 | return 1; |
1329 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1329, __FUNCTION__); _rtx; })->unchanging)) |
1330 | return 0; |
1331 | for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn)) |
1332 | if (memory_modified_in_insn_p (x, insn)) |
1333 | return 1; |
1334 | return 0; |
1335 | |
1336 | case REG: |
1337 | return reg_set_between_p (x, start, end); |
1338 | |
1339 | default: |
1340 | break; |
1341 | } |
1342 | |
1343 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
1344 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
1345 | { |
1346 | if (fmt[i] == 'e' && modified_between_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), start, end)) |
1347 | return 1; |
1348 | |
1349 | else if (fmt[i] == 'E') |
1350 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
1351 | if (modified_between_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), start, end)) |
1352 | return 1; |
1353 | } |
1354 | |
1355 | return 0; |
1356 | } |
1357 | |
1358 | /* Similar to reg_set_p, but check all registers in X. Return 0 only if none |
1359 | of them are modified in INSN. Return 1 if X contains a MEM; this routine |
1360 | does use memory aliasing. */ |
1361 | |
1362 | int |
1363 | modified_in_p (const_rtx x, const_rtx insn) |
1364 | { |
1365 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
1366 | const char *fmt; |
1367 | int i, j; |
1368 | |
1369 | switch (code) |
1370 | { |
1371 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
1372 | case CONST: |
1373 | case SYMBOL_REF: |
1374 | case LABEL_REF: |
1375 | return 0; |
1376 | |
1377 | case PC: |
1378 | return 1; |
1379 | |
1380 | case MEM: |
1381 | if (modified_in_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), insn)) |
1382 | return 1; |
1383 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1383, __FUNCTION__); _rtx; })->unchanging)) |
1384 | return 0; |
1385 | if (memory_modified_in_insn_p (x, insn)) |
1386 | return 1; |
1387 | return 0; |
1388 | |
1389 | case REG: |
1390 | return reg_set_p (x, insn); |
1391 | |
1392 | default: |
1393 | break; |
1394 | } |
1395 | |
1396 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
1397 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
1398 | { |
1399 | if (fmt[i] == 'e' && modified_in_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), insn)) |
1400 | return 1; |
1401 | |
1402 | else if (fmt[i] == 'E') |
1403 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
1404 | if (modified_in_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), insn)) |
1405 | return 1; |
1406 | } |
1407 | |
1408 | return 0; |
1409 | } |
1410 | |
1411 | /* Return true if X is a SUBREG and if storing a value to X would |
1412 | preserve some of its SUBREG_REG. For example, on a normal 32-bit |
1413 | target, using a SUBREG to store to one half of a DImode REG would |
1414 | preserve the other half. */ |
1415 | |
1416 | bool |
1417 | read_modify_subreg_p (const_rtx x) |
1418 | { |
1419 | if (GET_CODE (x)((enum rtx_code) (x)->code) != SUBREG) |
1420 | return false; |
1421 | poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); |
1422 | poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x)((machine_mode) (x)->mode)); |
1423 | poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)))ix86_regmode_natural_size (((machine_mode) ((((x)->u.fld[0 ]).rt_rtx))->mode)); |
1424 | /* The inner and outer modes of a subreg must be ordered, so that we |
1425 | can tell whether they're paradoxical or partial. */ |
1426 | gcc_checking_assert (ordered_p (isize, osize))((void)(!(ordered_p (isize, osize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1426, __FUNCTION__), 0 : 0)); |
1427 | return (maybe_gt (isize, osize)maybe_lt (osize, isize) && maybe_gt (isize, regsize)maybe_lt (regsize, isize)); |
1428 | } |
1429 | |
1430 | /* Helper function for set_of. */ |
1431 | struct set_of_data |
1432 | { |
1433 | const_rtx found; |
1434 | const_rtx pat; |
1435 | }; |
1436 | |
1437 | static void |
1438 | set_of_1 (rtx x, const_rtx pat, void *data1) |
1439 | { |
1440 | struct set_of_data *const data = (struct set_of_data *) (data1); |
1441 | if (rtx_equal_p (x, data->pat) |
1442 | || (!MEM_P (x)(((enum rtx_code) (x)->code) == MEM) && reg_overlap_mentioned_p (data->pat, x))) |
1443 | data->found = pat; |
1444 | } |
1445 | |
1446 | /* Give an INSN, return a SET or CLOBBER expression that does modify PAT |
1447 | (either directly or via STRICT_LOW_PART and similar modifiers). */ |
1448 | const_rtx |
1449 | set_of (const_rtx pat, const_rtx insn) |
1450 | { |
1451 | struct set_of_data data; |
1452 | data.found = NULL_RTX(rtx) 0; |
1453 | data.pat = pat; |
1454 | note_pattern_stores (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) ? PATTERN (insn) : insn, set_of_1, &data); |
1455 | return data.found; |
1456 | } |
1457 | |
1458 | /* Check whether instruction pattern PAT contains a SET with the following |
1459 | properties: |
1460 | |
1461 | - the SET is executed unconditionally; and |
1462 | - either: |
1463 | - the destination of the SET is a REG that contains REGNO; or |
1464 | - both: |
1465 | - the destination of the SET is a SUBREG of such a REG; and |
1466 | - writing to the subreg clobbers all of the SUBREG_REG |
1467 | (in other words, read_modify_subreg_p is false). |
1468 | |
1469 | If PAT does have a SET like that, return the set, otherwise return null. |
1470 | |
1471 | This is intended to be an alternative to single_set for passes that |
1472 | can handle patterns with multiple_sets. */ |
1473 | rtx |
1474 | simple_regno_set (rtx pat, unsigned int regno) |
1475 | { |
1476 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) |
1477 | { |
1478 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; |
1479 | for (int i = 0; i < last; ++i) |
1480 | if (rtx set = simple_regno_set (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]), regno)) |
1481 | return set; |
1482 | |
1483 | pat = XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last]); |
1484 | } |
1485 | |
1486 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET |
1487 | && covers_regno_no_parallel_p (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx), regno)) |
1488 | return pat; |
1489 | |
1490 | return nullptr; |
1491 | } |
1492 | |
1493 | /* Add all hard register in X to *PSET. */ |
1494 | void |
1495 | find_all_hard_regs (const_rtx x, HARD_REG_SET *pset) |
1496 | { |
1497 | subrtx_iterator::array_type array; |
1498 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) |
1499 | { |
1500 | const_rtx x = *iter; |
1501 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76) |
1502 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); |
1503 | } |
1504 | } |
1505 | |
1506 | /* This function, called through note_stores, collects sets and |
1507 | clobbers of hard registers in a HARD_REG_SET, which is pointed to |
1508 | by DATA. */ |
1509 | void |
1510 | record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) |
1511 | { |
1512 | HARD_REG_SET *pset = (HARD_REG_SET *)data; |
1513 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && HARD_REGISTER_P (x)((((rhs_regno(x))) < 76))) |
1514 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); |
1515 | } |
1516 | |
1517 | /* Examine INSN, and compute the set of hard registers written by it. |
1518 | Store it in *PSET. Should only be called after reload. |
1519 | |
1520 | IMPLICIT is true if we should include registers that are fully-clobbered |
1521 | by calls. This should be used with caution, since it doesn't include |
1522 | partially-clobbered registers. */ |
1523 | void |
1524 | find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit) |
1525 | { |
1526 | rtx link; |
1527 | |
1528 | CLEAR_HARD_REG_SET (*pset); |
1529 | note_stores (insn, record_hard_reg_sets, pset); |
1530 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && implicit) |
1531 | *pset |= insn_callee_abi (insn).full_reg_clobbers (); |
1532 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
1533 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_INC) |
1534 | record_hard_reg_sets (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), NULLnullptr, pset); |
1535 | } |
1536 | |
1537 | /* Like record_hard_reg_sets, but called through note_uses. */ |
1538 | void |
1539 | record_hard_reg_uses (rtx *px, void *data) |
1540 | { |
1541 | find_all_hard_regs (*px, (HARD_REG_SET *) data); |
1542 | } |
1543 | |
1544 | /* Given an INSN, return a SET expression if this insn has only a single SET. |
1545 | It may also have CLOBBERs, USEs, or SET whose output |
1546 | will not be used, which we ignore. */ |
1547 | |
1548 | rtx |
1549 | single_set_2 (const rtx_insn *insn, const_rtx pat) |
1550 | { |
1551 | rtx set = NULLnullptr; |
1552 | int set_verified = 1; |
1553 | int i; |
1554 | |
1555 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) |
1556 | { |
1557 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) |
1558 | { |
1559 | rtx sub = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); |
1560 | switch (GET_CODE (sub)((enum rtx_code) (sub)->code)) |
1561 | { |
1562 | case USE: |
1563 | case CLOBBER: |
1564 | break; |
1565 | |
1566 | case SET: |
1567 | /* We can consider insns having multiple sets, where all |
1568 | but one are dead as single set insns. In common case |
1569 | only single set is present in the pattern so we want |
1570 | to avoid checking for REG_UNUSED notes unless necessary. |
1571 | |
1572 | When we reach set first time, we just expect this is |
1573 | the single set we are looking for and only when more |
1574 | sets are found in the insn, we check them. */ |
1575 | if (!set_verified) |
1576 | { |
1577 | if (find_reg_note (insn, REG_UNUSED, SET_DEST (set)(((set)->u.fld[0]).rt_rtx)) |
1578 | && !side_effects_p (set)) |
1579 | set = NULLnullptr; |
1580 | else |
1581 | set_verified = 1; |
1582 | } |
1583 | if (!set) |
1584 | set = sub, set_verified = 0; |
1585 | else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub)(((sub)->u.fld[0]).rt_rtx)) |
1586 | || side_effects_p (sub)) |
1587 | return NULL_RTX(rtx) 0; |
1588 | break; |
1589 | |
1590 | default: |
1591 | return NULL_RTX(rtx) 0; |
1592 | } |
1593 | } |
1594 | } |
1595 | return set; |
1596 | } |
1597 | |
1598 | /* Given an INSN, return nonzero if it has more than one SET, else return |
1599 | zero. */ |
1600 | |
1601 | int |
1602 | multiple_sets (const_rtx insn) |
1603 | { |
1604 | int found; |
1605 | int i; |
1606 | |
1607 | /* INSN must be an insn. */ |
1608 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) |
1609 | return 0; |
1610 | |
1611 | /* Only a PARALLEL can have multiple SETs. */ |
1612 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL) |
1613 | { |
1614 | for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); i++) |
1615 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i))((enum rtx_code) ((((((PATTERN (insn))->u.fld[0]).rt_rtvec ))->elem[i]))->code) == SET) |
1616 | { |
1617 | /* If we have already found a SET, then return now. */ |
1618 | if (found) |
1619 | return 1; |
1620 | else |
1621 | found = 1; |
1622 | } |
1623 | } |
1624 | |
1625 | /* Either zero or one SET. */ |
1626 | return 0; |
1627 | } |
1628 | |
1629 | /* Return nonzero if the destination of SET equals the source |
1630 | and there are no side effects. */ |
1631 | |
1632 | int |
1633 | set_noop_p (const_rtx set) |
1634 | { |
1635 | rtx src = SET_SRC (set)(((set)->u.fld[1]).rt_rtx); |
1636 | rtx dst = SET_DEST (set)(((set)->u.fld[0]).rt_rtx); |
1637 | |
1638 | if (dst == pc_rtx && src == pc_rtx) |
1639 | return 1; |
1640 | |
1641 | if (MEM_P (dst)(((enum rtx_code) (dst)->code) == MEM) && MEM_P (src)(((enum rtx_code) (src)->code) == MEM)) |
1642 | return rtx_equal_p (dst, src) && !side_effects_p (dst); |
1643 | |
1644 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == ZERO_EXTRACT) |
1645 | return rtx_equal_p (XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx), src) |
1646 | && !BITS_BIG_ENDIAN0 && XEXP (dst, 2)(((dst)->u.fld[2]).rt_rtx) == const0_rtx(const_int_rtx[64]) |
1647 | && !side_effects_p (src); |
1648 | |
1649 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == STRICT_LOW_PART) |
1650 | dst = XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx); |
1651 | |
1652 | if (GET_CODE (src)((enum rtx_code) (src)->code) == SUBREG && GET_CODE (dst)((enum rtx_code) (dst)->code) == SUBREG) |
1653 | { |
1654 | if (maybe_ne (SUBREG_BYTE (src)(((src)->u.fld[1]).rt_subreg), SUBREG_BYTE (dst)(((dst)->u.fld[1]).rt_subreg))) |
1655 | return 0; |
1656 | src = SUBREG_REG (src)(((src)->u.fld[0]).rt_rtx); |
1657 | dst = SUBREG_REG (dst)(((dst)->u.fld[0]).rt_rtx); |
1658 | if (GET_MODE (src)((machine_mode) (src)->mode) != GET_MODE (dst)((machine_mode) (dst)->mode)) |
1659 | /* It is hard to tell whether subregs refer to the same bits, so act |
1660 | conservatively and return 0. */ |
1661 | return 0; |
1662 | } |
1663 | |
1664 | /* It is a NOOP if destination overlaps with selected src vector |
1665 | elements. */ |
1666 | if (GET_CODE (src)((enum rtx_code) (src)->code) == VEC_SELECT |
1667 | && REG_P (XEXP (src, 0))(((enum rtx_code) ((((src)->u.fld[0]).rt_rtx))->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) |
1668 | && HARD_REGISTER_P (XEXP (src, 0))((((rhs_regno((((src)->u.fld[0]).rt_rtx)))) < 76)) |
1669 | && HARD_REGISTER_P (dst)((((rhs_regno(dst))) < 76))) |
1670 | { |
1671 | int i; |
1672 | rtx par = XEXP (src, 1)(((src)->u.fld[1]).rt_rtx); |
1673 | rtx src0 = XEXP (src, 0)(((src)->u.fld[0]).rt_rtx); |
1674 | poly_int64 c0; |
1675 | if (!poly_int_rtx_p (XVECEXP (par, 0, 0)(((((par)->u.fld[0]).rt_rtvec))->elem[0]), &c0)) |
1676 | return 0; |
1677 | poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0))mode_to_unit_size (((machine_mode) (src0)->mode)) * c0; |
1678 | |
1679 | for (i = 1; i < XVECLEN (par, 0)(((((par)->u.fld[0]).rt_rtvec))->num_elem); i++) |
1680 | { |
1681 | poly_int64 c0i; |
1682 | if (!poly_int_rtx_p (XVECEXP (par, 0, i)(((((par)->u.fld[0]).rt_rtvec))->elem[i]), &c0i) |
1683 | || maybe_ne (c0i, c0 + i)) |
1684 | return 0; |
1685 | } |
1686 | return |
1687 | REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))(targetm.can_change_mode_class (((machine_mode) (src0)->mode ), ((machine_mode) (dst)->mode), (regclass_map[((rhs_regno (dst)))]))) |
1688 | && simplify_subreg_regno (REGNO (src0)(rhs_regno(src0)), GET_MODE (src0)((machine_mode) (src0)->mode), |
1689 | offset, GET_MODE (dst)((machine_mode) (dst)->mode)) == (int) REGNO (dst)(rhs_regno(dst)); |
1690 | } |
1691 | |
1692 | return (REG_P (src)(((enum rtx_code) (src)->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) |
1693 | && REGNO (src)(rhs_regno(src)) == REGNO (dst)(rhs_regno(dst))); |
1694 | } |
1695 | |
1696 | /* Return nonzero if an insn consists only of SETs, each of which only sets a |
1697 | value to itself. */ |
1698 | |
1699 | int |
1700 | noop_move_p (const rtx_insn *insn) |
1701 | { |
1702 | rtx pat = PATTERN (insn); |
1703 | |
1704 | if (INSN_CODE (insn)(((insn)->u.fld[5]).rt_int) == NOOP_MOVE_INSN_CODE2147483647) |
1705 | return 1; |
1706 | |
1707 | /* Check the code to be executed for COND_EXEC. */ |
1708 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == COND_EXEC) |
1709 | pat = COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx); |
1710 | |
1711 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET && set_noop_p (pat)) |
1712 | return 1; |
1713 | |
1714 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) |
1715 | { |
1716 | int i; |
1717 | /* If nothing but SETs of registers to themselves, |
1718 | this insn can also be deleted. */ |
1719 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) |
1720 | { |
1721 | rtx tem = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); |
1722 | |
1723 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) == USE || GET_CODE (tem)((enum rtx_code) (tem)->code) == CLOBBER) |
1724 | continue; |
1725 | |
1726 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) != SET || ! set_noop_p (tem)) |
1727 | return 0; |
1728 | } |
1729 | |
1730 | return 1; |
1731 | } |
1732 | return 0; |
1733 | } |
1734 | |
1735 | |
1736 | /* Return nonzero if register in range [REGNO, ENDREGNO) |
1737 | appears either explicitly or implicitly in X |
1738 | other than being stored into. |
1739 | |
1740 | References contained within the substructure at LOC do not count. |
1741 | LOC may be zero, meaning don't ignore anything. */ |
1742 | |
1743 | bool |
1744 | refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x, |
1745 | rtx *loc) |
1746 | { |
1747 | int i; |
1748 | unsigned int x_regno; |
1749 | RTX_CODEenum rtx_code code; |
1750 | const char *fmt; |
1751 | |
1752 | repeat: |
1753 | /* The contents of a REG_NONNEG note is always zero, so we must come here |
1754 | upon repeat in case the last REG_NOTE is a REG_NONNEG note. */ |
1755 | if (x == 0) |
1756 | return false; |
1757 | |
1758 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
1759 | |
1760 | switch (code) |
1761 | { |
1762 | case REG: |
1763 | x_regno = REGNO (x)(rhs_regno(x)); |
1764 | |
1765 | /* If we modifying the stack, frame, or argument pointer, it will |
1766 | clobber a virtual register. In fact, we could be more precise, |
1767 | but it isn't worth it. */ |
1768 | if ((x_regno == STACK_POINTER_REGNUM7 |
1769 | || (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 |
1770 | && x_regno == ARG_POINTER_REGNUM16) |
1771 | || x_regno == FRAME_POINTER_REGNUM19) |
1772 | && regno >= FIRST_VIRTUAL_REGISTER(76) && regno <= LAST_VIRTUAL_REGISTER(((76)) + 5)) |
1773 | return true; |
1774 | |
1775 | return endregno > x_regno && regno < END_REGNO (x); |
1776 | |
1777 | case SUBREG: |
1778 | /* If this is a SUBREG of a hard reg, we can see exactly which |
1779 | registers are being modified. Otherwise, handle normally. */ |
1780 | if (REG_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) |
1781 | && REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76) |
1782 | { |
1783 | unsigned int inner_regno = subreg_regno (x); |
1784 | unsigned int inner_endregno |
1785 | = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER76 |
1786 | ? subreg_nregs (x) : 1); |
1787 | |
1788 | return endregno > inner_regno && regno < inner_endregno; |
1789 | } |
1790 | break; |
1791 | |
1792 | case CLOBBER: |
1793 | case SET: |
1794 | if (&SET_DEST (x)(((x)->u.fld[0]).rt_rtx) != loc |
1795 | /* Note setting a SUBREG counts as referring to the REG it is in for |
1796 | a pseudo but not for hard registers since we can |
1797 | treat each word individually. */ |
1798 | && ((GET_CODE (SET_DEST (x))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SUBREG |
1799 | && loc != &SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) |
1800 | && REG_P (SUBREG_REG (SET_DEST (x)))(((enum rtx_code) (((((((x)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) |
1801 | && REGNO (SUBREG_REG (SET_DEST (x)))(rhs_regno(((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx ))) >= FIRST_PSEUDO_REGISTER76 |
1802 | && refers_to_regno_p (regno, endregno, |
1803 | SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), loc)) |
1804 | || (!REG_P (SET_DEST (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) |
1805 | && refers_to_regno_p (regno, endregno, SET_DEST (x)(((x)->u.fld[0]).rt_rtx), loc)))) |
1806 | return true; |
1807 | |
1808 | if (code == CLOBBER || loc == &SET_SRC (x)(((x)->u.fld[1]).rt_rtx)) |
1809 | return false; |
1810 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); |
1811 | goto repeat; |
1812 | |
1813 | default: |
1814 | break; |
1815 | } |
1816 | |
1817 | /* X does not match, so try its subexpressions. */ |
1818 | |
1819 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
1820 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
1821 | { |
1822 | if (fmt[i] == 'e' && loc != &XEXP (x, i)(((x)->u.fld[i]).rt_rtx)) |
1823 | { |
1824 | if (i == 0) |
1825 | { |
1826 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
1827 | goto repeat; |
1828 | } |
1829 | else |
1830 | if (refers_to_regno_p (regno, endregno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx), loc)) |
1831 | return true; |
1832 | } |
1833 | else if (fmt[i] == 'E') |
1834 | { |
1835 | int j; |
1836 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
1837 | if (loc != &XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) |
1838 | && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), loc)) |
1839 | return true; |
1840 | } |
1841 | } |
1842 | return false; |
1843 | } |
1844 | |
1845 | /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG, |
1846 | we check if any register number in X conflicts with the relevant register |
1847 | numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN |
1848 | contains a MEM (we don't bother checking for memory addresses that can't |
1849 | conflict because we expect this to be a rare case. */ |
1850 | |
1851 | int |
1852 | reg_overlap_mentioned_p (const_rtx x, const_rtx in) |
1853 | { |
1854 | unsigned int regno, endregno; |
1855 | |
1856 | /* If either argument is a constant, then modifying X cannot |
1857 | affect IN. Here we look at IN, we can profitably combine |
1858 | CONSTANT_P (x) with the switch statement below. */ |
1859 | if (CONSTANT_P (in)((rtx_class[(int) (((enum rtx_code) (in)->code))]) == RTX_CONST_OBJ )) |
1860 | return 0; |
1861 | |
1862 | recurse: |
1863 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) |
1864 | { |
1865 | case CLOBBER: |
1866 | case STRICT_LOW_PART: |
1867 | case ZERO_EXTRACT: |
1868 | case SIGN_EXTRACT: |
1869 | /* Overly conservative. */ |
1870 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
1871 | goto recurse; |
1872 | |
1873 | case SUBREG: |
1874 | regno = REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))); |
1875 | if (regno < FIRST_PSEUDO_REGISTER76) |
1876 | regno = subreg_regno (x); |
1877 | endregno = regno + (regno < FIRST_PSEUDO_REGISTER76 |
1878 | ? subreg_nregs (x) : 1); |
1879 | goto do_reg; |
1880 | |
1881 | case REG: |
1882 | regno = REGNO (x)(rhs_regno(x)); |
1883 | endregno = END_REGNO (x); |
1884 | do_reg: |
1885 | return refers_to_regno_p (regno, endregno, in, (rtx*) 0); |
1886 | |
1887 | case MEM: |
1888 | { |
1889 | const char *fmt; |
1890 | int i; |
1891 | |
1892 | if (MEM_P (in)(((enum rtx_code) (in)->code) == MEM)) |
1893 | return 1; |
1894 | |
1895 | fmt = GET_RTX_FORMAT (GET_CODE (in))(rtx_format[(int) (((enum rtx_code) (in)->code))]); |
1896 | for (i = GET_RTX_LENGTH (GET_CODE (in))(rtx_length[(int) (((enum rtx_code) (in)->code))]) - 1; i >= 0; i--) |
1897 | if (fmt[i] == 'e') |
1898 | { |
1899 | if (reg_overlap_mentioned_p (x, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) |
1900 | return 1; |
1901 | } |
1902 | else if (fmt[i] == 'E') |
1903 | { |
1904 | int j; |
1905 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; --j) |
1906 | if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) |
1907 | return 1; |
1908 | } |
1909 | |
1910 | return 0; |
1911 | } |
1912 | |
1913 | case SCRATCH: |
1914 | case PC: |
1915 | return reg_mentioned_p (x, in); |
1916 | |
1917 | case PARALLEL: |
1918 | { |
1919 | int i; |
1920 | |
1921 | /* If any register in here refers to it we return true. */ |
1922 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1923 | if (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx) != 0 |
1924 | && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx), in)) |
1925 | return 1; |
1926 | return 0; |
1927 | } |
1928 | |
1929 | default: |
1930 | gcc_assert (CONSTANT_P (x))((void)(!(((rtx_class[(int) (((enum rtx_code) (x)->code))] ) == RTX_CONST_OBJ)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1930, __FUNCTION__), 0 : 0)); |
1931 | return 0; |
1932 | } |
1933 | } |
1934 | |
1935 | /* Call FUN on each register or MEM that is stored into or clobbered by X. |
1936 | (X would be the pattern of an insn). DATA is an arbitrary pointer, |
1937 | ignored by note_stores, but passed to FUN. |
1938 | |
1939 | FUN receives three arguments: |
1940 | 1. the REG, MEM or PC being stored in or clobbered, |
1941 | 2. the SET or CLOBBER rtx that does the store, |
1942 | 3. the pointer DATA provided to note_stores. |
1943 | |
1944 | If the item being stored in or clobbered is a SUBREG of a hard register, |
1945 | the SUBREG will be passed. */ |
1946 | |
1947 | void |
1948 | note_pattern_stores (const_rtx x, |
1949 | void (*fun) (rtx, const_rtx, void *), void *data) |
1950 | { |
1951 | int i; |
1952 | |
1953 | if (GET_CODE (x)((enum rtx_code) (x)->code) == COND_EXEC) |
1954 | x = COND_EXEC_CODE (x)(((x)->u.fld[1]).rt_rtx); |
1955 | |
1956 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET || GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) |
1957 | { |
1958 | rtx dest = SET_DEST (x)(((x)->u.fld[0]).rt_rtx); |
1959 | |
1960 | while ((GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG |
1961 | && (!REG_P (SUBREG_REG (dest))(((enum rtx_code) ((((dest)->u.fld[0]).rt_rtx))->code) == REG) |
1962 | || REGNO (SUBREG_REG (dest))(rhs_regno((((dest)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76)) |
1963 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT |
1964 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) |
1965 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); |
1966 | |
1967 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, |
1968 | each of whose first operand is a register. */ |
1969 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) |
1970 | { |
1971 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1972 | if (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) != 0) |
1973 | (*fun) (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx), x, data); |
1974 | } |
1975 | else |
1976 | (*fun) (dest, x, data); |
1977 | } |
1978 | |
1979 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) |
1980 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
1981 | note_pattern_stores (XVECEXP (x, 0, i)(((((x)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); |
1982 | } |
1983 | |
1984 | /* Same, but for an instruction. If the instruction is a call, include |
1985 | any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */ |
1986 | |
1987 | void |
1988 | note_stores (const rtx_insn *insn, |
1989 | void (*fun) (rtx, const_rtx, void *), void *data) |
1990 | { |
1991 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) |
1992 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); |
1993 | link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
1994 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == CLOBBER) |
1995 | note_pattern_stores (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), fun, data); |
1996 | note_pattern_stores (PATTERN (insn), fun, data); |
1997 | } |
1998 | |
1999 | /* Like notes_stores, but call FUN for each expression that is being |
2000 | referenced in PBODY, a pointer to the PATTERN of an insn. We only call |
2001 | FUN for each expression, not any interior subexpressions. FUN receives a |
2002 | pointer to the expression and the DATA passed to this function. |
2003 | |
2004 | Note that this is not quite the same test as that done in reg_referenced_p |
2005 | since that considers something as being referenced if it is being |
2006 | partially set, while we do not. */ |
2007 | |
2008 | void |
2009 | note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data) |
2010 | { |
2011 | rtx body = *pbody; |
2012 | int i; |
2013 | |
2014 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) |
2015 | { |
2016 | case COND_EXEC: |
2017 | (*fun) (&COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx), data); |
2018 | note_uses (&COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx), fun, data); |
2019 | return; |
2020 | |
2021 | case PARALLEL: |
2022 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2023 | note_uses (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); |
2024 | return; |
2025 | |
2026 | case SEQUENCE: |
2027 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2028 | note_uses (&PATTERN (XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i])), fun, data); |
2029 | return; |
2030 | |
2031 | case USE: |
2032 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); |
2033 | return; |
2034 | |
2035 | case ASM_OPERANDS: |
2036 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2037 | (*fun) (&ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]), data); |
2038 | return; |
2039 | |
2040 | case TRAP_IF: |
2041 | (*fun) (&TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx), data); |
2042 | return; |
2043 | |
2044 | case PREFETCH: |
2045 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); |
2046 | return; |
2047 | |
2048 | case UNSPEC: |
2049 | case UNSPEC_VOLATILE: |
2050 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2051 | (*fun) (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), data); |
2052 | return; |
2053 | |
2054 | case CLOBBER: |
2055 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) |
2056 | (*fun) (&XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), data); |
2057 | return; |
2058 | |
2059 | case SET: |
2060 | { |
2061 | rtx dest = SET_DEST (body)(((body)->u.fld[0]).rt_rtx); |
2062 | |
2063 | /* For sets we replace everything in source plus registers in memory |
2064 | expression in store and operands of a ZERO_EXTRACT. */ |
2065 | (*fun) (&SET_SRC (body)(((body)->u.fld[1]).rt_rtx), data); |
2066 | |
2067 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT) |
2068 | { |
2069 | (*fun) (&XEXP (dest, 1)(((dest)->u.fld[1]).rt_rtx), data); |
2070 | (*fun) (&XEXP (dest, 2)(((dest)->u.fld[2]).rt_rtx), data); |
2071 | } |
2072 | |
2073 | while (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) |
2074 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); |
2075 | |
2076 | if (MEM_P (dest)(((enum rtx_code) (dest)->code) == MEM)) |
2077 | (*fun) (&XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx), data); |
2078 | } |
2079 | return; |
2080 | |
2081 | default: |
2082 | /* All the other possibilities never store. */ |
2083 | (*fun) (pbody, data); |
2084 | return; |
2085 | } |
2086 | } |
2087 | |
2088 | /* Try to add a description of REG X to this object, stopping once |
2089 | the REF_END limit has been reached. FLAGS is a bitmask of |
2090 | rtx_obj_reference flags that describe the context. */ |
2091 | |
2092 | void |
2093 | rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags) |
2094 | { |
2095 | if (REG_NREGS (x)((&(x)->u.reg)->nregs) != 1) |
2096 | flags |= rtx_obj_flags::IS_MULTIREG; |
2097 | machine_mode mode = GET_MODE (x)((machine_mode) (x)->mode); |
2098 | unsigned int start_regno = REGNO (x)(rhs_regno(x)); |
2099 | unsigned int end_regno = END_REGNO (x); |
2100 | for (unsigned int regno = start_regno; regno < end_regno; ++regno) |
2101 | if (ref_iter != ref_end) |
2102 | *ref_iter++ = rtx_obj_reference (regno, flags, mode, |
2103 | regno - start_regno); |
2104 | } |
2105 | |
2106 | /* Add a description of destination X to this object. FLAGS is a bitmask |
2107 | of rtx_obj_reference flags that describe the context. |
2108 | |
2109 | This routine accepts all rtxes that can legitimately appear in a |
2110 | SET_DEST. */ |
2111 | |
2112 | void |
2113 | rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags) |
2114 | { |
2115 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, |
2116 | each of whose first operand is a register. */ |
2117 | if (UNLIKELY (GET_CODE (x) == PARALLEL)(__builtin_expect ((((enum rtx_code) (x)->code) == PARALLEL ), 0))) |
2118 | { |
2119 | for (int i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; --i) |
2120 | if (rtx dest = XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx)) |
2121 | try_to_add_dest (dest, flags); |
2122 | return; |
2123 | } |
2124 | |
2125 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; |
2126 | flags |= rtx_obj_flags::IS_WRITE; |
2127 | for (;;) |
2128 | if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTRACT) |
2129 | { |
2130 | try_to_add_src (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), base_flags); |
2131 | try_to_add_src (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), base_flags); |
2132 | flags |= rtx_obj_flags::IS_READ; |
2133 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
2134 | } |
2135 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == STRICT_LOW_PART) |
2136 | { |
2137 | flags |= rtx_obj_flags::IS_READ; |
2138 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
2139 | } |
2140 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) |
2141 | { |
2142 | flags |= rtx_obj_flags::IN_SUBREG; |
2143 | if (read_modify_subreg_p (x)) |
2144 | flags |= rtx_obj_flags::IS_READ; |
2145 | x = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); |
2146 | } |
2147 | else |
2148 | break; |
2149 | |
2150 | if (MEM_P (x)(((enum rtx_code) (x)->code) == MEM)) |
2151 | { |
2152 | if (ref_iter != ref_end) |
2153 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x)((machine_mode) (x)->mode)); |
2154 | |
2155 | unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE; |
2156 | if (flags & rtx_obj_flags::IS_READ) |
2157 | addr_flags |= rtx_obj_flags::IN_MEM_LOAD; |
2158 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); |
2159 | return; |
2160 | } |
2161 | |
2162 | if (LIKELY (REG_P (x))(__builtin_expect (((((enum rtx_code) (x)->code) == REG)), 1))) |
2163 | { |
2164 | /* We want to keep sp alive everywhere - by making all |
2165 | writes to sp also use sp. */ |
2166 | if (REGNO (x)(rhs_regno(x)) == STACK_POINTER_REGNUM7) |
2167 | flags |= rtx_obj_flags::IS_READ; |
2168 | try_to_add_reg (x, flags); |
2169 | return; |
2170 | } |
2171 | } |
2172 | |
2173 | /* Try to add a description of source X to this object, stopping once |
2174 | the REF_END limit has been reached. FLAGS is a bitmask of |
2175 | rtx_obj_reference flags that describe the context. |
2176 | |
2177 | This routine accepts all rtxes that can legitimately appear in a SET_SRC. */ |
2178 | |
2179 | void |
2180 | rtx_properties::try_to_add_src (const_rtx x, unsigned int flags) |
2181 | { |
2182 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; |
2183 | subrtx_iterator::array_type array; |
2184 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) |
2185 | { |
2186 | const_rtx x = *iter; |
2187 | rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
2188 | if (code == REG) |
2189 | try_to_add_reg (x, flags | rtx_obj_flags::IS_READ); |
2190 | else if (code == MEM) |
2191 | { |
2192 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2192, __FUNCTION__); _rtx; })->volatil)) |
2193 | has_volatile_refs = true; |
2194 | |
2195 | if (!MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2195, __FUNCTION__); _rtx; })->unchanging) && ref_iter != ref_end) |
2196 | { |
2197 | auto mem_flags = flags | rtx_obj_flags::IS_READ; |
2198 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, |
2199 | GET_MODE (x)((machine_mode) (x)->mode)); |
2200 | } |
2201 | |
2202 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), |
2203 | base_flags | rtx_obj_flags::IN_MEM_LOAD); |
2204 | iter.skip_subrtxes (); |
2205 | } |
2206 | else if (code == SUBREG) |
2207 | { |
2208 | try_to_add_src (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), flags | rtx_obj_flags::IN_SUBREG); |
2209 | iter.skip_subrtxes (); |
2210 | } |
2211 | else if (code == UNSPEC_VOLATILE) |
2212 | has_volatile_refs = true; |
2213 | else if (code == ASM_INPUT || code == ASM_OPERANDS) |
2214 | { |
2215 | has_asm = true; |
2216 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2216, __FUNCTION__); _rtx; })->volatil)) |
2217 | has_volatile_refs = true; |
2218 | } |
2219 | else if (code == PRE_INC |
2220 | || code == PRE_DEC |
2221 | || code == POST_INC |
2222 | || code == POST_DEC |
2223 | || code == PRE_MODIFY |
2224 | || code == POST_MODIFY) |
2225 | { |
2226 | has_pre_post_modify = true; |
2227 | |
2228 | unsigned int addr_flags = (base_flags |
2229 | | rtx_obj_flags::IS_PRE_POST_MODIFY |
2230 | | rtx_obj_flags::IS_READ); |
2231 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); |
2232 | if (code == PRE_MODIFY || code == POST_MODIFY) |
2233 | iter.substitute (XEXP (XEXP (x, 1), 1)((((((x)->u.fld[1]).rt_rtx))->u.fld[1]).rt_rtx)); |
2234 | else |
2235 | iter.skip_subrtxes (); |
2236 | } |
2237 | else if (code == CALL) |
2238 | has_call = true; |
2239 | } |
2240 | } |
2241 | |
2242 | /* Try to add a description of instruction pattern PAT to this object, |
2243 | stopping once the REF_END limit has been reached. */ |
2244 | |
2245 | void |
2246 | rtx_properties::try_to_add_pattern (const_rtx pat) |
2247 | { |
2248 | switch (GET_CODE (pat)((enum rtx_code) (pat)->code)) |
2249 | { |
2250 | case COND_EXEC: |
2251 | try_to_add_src (COND_EXEC_TEST (pat)(((pat)->u.fld[0]).rt_rtx)); |
2252 | try_to_add_pattern (COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx)); |
2253 | break; |
2254 | |
2255 | case PARALLEL: |
2256 | { |
2257 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; |
2258 | for (int i = 0; i < last; ++i) |
2259 | try_to_add_pattern (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i])); |
2260 | try_to_add_pattern (XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last])); |
2261 | break; |
2262 | } |
2263 | |
2264 | case ASM_OPERANDS: |
2265 | for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat)(((((pat)->u.fld[3]).rt_rtvec))->num_elem); i < len; ++i) |
2266 | try_to_add_src (ASM_OPERANDS_INPUT (pat, i)(((((pat)->u.fld[3]).rt_rtvec))->elem[i])); |
2267 | break; |
2268 | |
2269 | case CLOBBER: |
2270 | try_to_add_dest (XEXP (pat, 0)(((pat)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); |
2271 | break; |
2272 | |
2273 | case SET: |
2274 | try_to_add_dest (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx)); |
2275 | try_to_add_src (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx)); |
2276 | break; |
2277 | |
2278 | default: |
2279 | /* All the other possibilities never store and can use a normal |
2280 | rtx walk. This includes: |
2281 | |
2282 | - USE |
2283 | - TRAP_IF |
2284 | - PREFETCH |
2285 | - UNSPEC |
2286 | - UNSPEC_VOLATILE. */ |
2287 | try_to_add_src (pat); |
2288 | break; |
2289 | } |
2290 | } |
2291 | |
2292 | /* Try to add a description of INSN to this object, stopping once |
2293 | the REF_END limit has been reached. INCLUDE_NOTES is true if the |
2294 | description should include REG_EQUAL and REG_EQUIV notes; all such |
2295 | references will then be marked with rtx_obj_flags::IN_NOTE. |
2296 | |
2297 | For calls, this description includes all accesses in |
2298 | CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses |
2299 | to global registers by the target function. However, it does not |
2300 | include clobbers performed by the target function; callers that want |
2301 | this information should instead use the function_abi interface. */ |
2302 | |
2303 | void |
2304 | rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes) |
2305 | { |
2306 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) |
2307 | { |
2308 | /* Non-const functions can read from global registers. Impure |
2309 | functions can also set them. |
2310 | |
2311 | Adding the global registers first removes a situation in which |
2312 | a fixed-form clobber of register R could come before a real set |
2313 | of register R. */ |
2314 | if (!hard_reg_set_empty_p (global_reg_set) |
2315 | && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2315, __FUNCTION__); _rtx; })->unchanging)) |
2316 | { |
2317 | unsigned int flags = rtx_obj_flags::IS_READ; |
2318 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2318, __FUNCTION__); _rtx; })->return_val)) |
2319 | flags |= rtx_obj_flags::IS_WRITE; |
2320 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) |
2321 | /* As a special case, the stack pointer is invariant across calls |
2322 | even if it has been marked global; see the corresponding |
2323 | handling in df_get_call_refs. */ |
2324 | if (regno != STACK_POINTER_REGNUM7 |
2325 | && global_regs[regno] |
2326 | && ref_iter != ref_end) |
2327 | *ref_iter++ = rtx_obj_reference (regno, flags, |
2328 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); |
2329 | } |
2330 | /* Untyped calls implicitly set all function value registers. |
2331 | Again, we add them first in case the main pattern contains |
2332 | a fixed-form clobber. */ |
2333 | if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX(rtx) 0)) |
2334 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) |
2335 | if (targetm.calls.function_value_regno_p (regno) |
2336 | && ref_iter != ref_end) |
2337 | *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE, |
2338 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); |
2339 | if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2339, __FUNCTION__); _rtx; })->unchanging)) |
2340 | { |
2341 | auto mem_flags = rtx_obj_flags::IS_READ; |
2342 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2342, __FUNCTION__); _rtx; })->return_val)) |
2343 | mem_flags |= rtx_obj_flags::IS_WRITE; |
2344 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode((void) 0, E_BLKmode)); |
2345 | } |
2346 | try_to_add_pattern (PATTERN (insn)); |
2347 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; |
2348 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2349 | { |
2350 | rtx x = XEXP (link, 0)(((link)->u.fld[0]).rt_rtx); |
2351 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) |
2352 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); |
2353 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == USE) |
2354 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); |
2355 | } |
2356 | } |
2357 | else |
2358 | try_to_add_pattern (PATTERN (insn)); |
2359 | |
2360 | if (include_notes) |
2361 | for (rtx note = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); note; note = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx)) |
2362 | if (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUAL |
2363 | || REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUIV) |
2364 | try_to_add_note (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); |
2365 | } |
2366 | |
2367 | /* Grow the storage by a bit while keeping the contents of the first |
2368 | START elements. */ |
2369 | |
2370 | void |
2371 | vec_rtx_properties_base::grow (ptrdiff_t start) |
2372 | { |
2373 | /* The same heuristic that vec uses. */ |
2374 | ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2; |
2375 | if (ref_begin == m_storage) |
2376 | { |
2377 | ref_begin = XNEWVEC (rtx_obj_reference, new_elems)((rtx_obj_reference *) xmalloc (sizeof (rtx_obj_reference) * ( new_elems))); |
2378 | if (start) |
2379 | memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference)); |
2380 | } |
2381 | else |
2382 | ref_begin = reinterpret_cast<rtx_obj_reference *> |
2383 | (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference))); |
2384 | ref_iter = ref_begin + start; |
2385 | ref_end = ref_begin + new_elems; |
2386 | } |
2387 | |
2388 | /* Return nonzero if X's old contents don't survive after INSN. |
2389 | This will be true if X is a register and X dies in INSN or because |
2390 | INSN entirely sets X. |
2391 | |
2392 | "Entirely set" means set directly and not through a SUBREG, or |
2393 | ZERO_EXTRACT, so no trace of the old contents remains. |
2394 | Likewise, REG_INC does not count. |
2395 | |
2396 | REG may be a hard or pseudo reg. Renumbering is not taken into account, |
2397 | but for this use that makes no difference, since regs don't overlap |
2398 | during their lifetimes. Therefore, this function may be used |
2399 | at any time after deaths have been computed. |
2400 | |
2401 | If REG is a hard reg that occupies multiple machine registers, this |
2402 | function will only return 1 if each of those registers will be replaced |
2403 | by INSN. */ |
2404 | |
2405 | int |
2406 | dead_or_set_p (const rtx_insn *insn, const_rtx x) |
2407 | { |
2408 | unsigned int regno, end_regno; |
2409 | unsigned int i; |
2410 | |
2411 | gcc_assert (REG_P (x))((void)(!((((enum rtx_code) (x)->code) == REG)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2411, __FUNCTION__), 0 : 0)); |
2412 | |
2413 | regno = REGNO (x)(rhs_regno(x)); |
2414 | end_regno = END_REGNO (x); |
2415 | for (i = regno; i < end_regno; i++) |
2416 | if (! dead_or_set_regno_p (insn, i)) |
2417 | return 0; |
2418 | |
2419 | return 1; |
2420 | } |
2421 | |
2422 | /* Return TRUE iff DEST is a register or subreg of a register, is a |
2423 | complete rather than read-modify-write destination, and contains |
2424 | register TEST_REGNO. */ |
2425 | |
2426 | static bool |
2427 | covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno) |
2428 | { |
2429 | unsigned int regno, endregno; |
2430 | |
2431 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG && !read_modify_subreg_p (dest)) |
2432 | dest = SUBREG_REG (dest)(((dest)->u.fld[0]).rt_rtx); |
2433 | |
2434 | if (!REG_P (dest)(((enum rtx_code) (dest)->code) == REG)) |
2435 | return false; |
2436 | |
2437 | regno = REGNO (dest)(rhs_regno(dest)); |
2438 | endregno = END_REGNO (dest); |
2439 | return (test_regno >= regno && test_regno < endregno); |
2440 | } |
2441 | |
2442 | /* Like covers_regno_no_parallel_p, but also handles PARALLELs where |
2443 | any member matches the covers_regno_no_parallel_p criteria. */ |
2444 | |
2445 | static bool |
2446 | covers_regno_p (const_rtx dest, unsigned int test_regno) |
2447 | { |
2448 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) |
2449 | { |
2450 | /* Some targets place small structures in registers for return |
2451 | values of functions, and those registers are wrapped in |
2452 | PARALLELs that we may see as the destination of a SET. */ |
2453 | int i; |
2454 | |
2455 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2456 | { |
2457 | rtx inner = XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx); |
2458 | if (inner != NULL_RTX(rtx) 0 |
2459 | && covers_regno_no_parallel_p (inner, test_regno)) |
2460 | return true; |
2461 | } |
2462 | |
2463 | return false; |
2464 | } |
2465 | else |
2466 | return covers_regno_no_parallel_p (dest, test_regno); |
2467 | } |
2468 | |
2469 | /* Utility function for dead_or_set_p to check an individual register. */ |
2470 | |
2471 | int |
2472 | dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno) |
2473 | { |
2474 | const_rtx pattern; |
2475 | |
2476 | /* See if there is a death note for something that includes TEST_REGNO. */ |
2477 | if (find_regno_note (insn, REG_DEAD, test_regno)) |
2478 | return 1; |
2479 | |
2480 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) |
2481 | && find_regno_fusage (insn, CLOBBER, test_regno)) |
2482 | return 1; |
2483 | |
2484 | pattern = PATTERN (insn); |
2485 | |
2486 | /* If a COND_EXEC is not executed, the value survives. */ |
2487 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == COND_EXEC) |
2488 | return 0; |
2489 | |
2490 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == SET || GET_CODE (pattern)((enum rtx_code) (pattern)->code) == CLOBBER) |
2491 | return covers_regno_p (SET_DEST (pattern)(((pattern)->u.fld[0]).rt_rtx), test_regno); |
2492 | else if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == PARALLEL) |
2493 | { |
2494 | int i; |
2495 | |
2496 | for (i = XVECLEN (pattern, 0)(((((pattern)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) |
2497 | { |
2498 | rtx body = XVECEXP (pattern, 0, i)(((((pattern)->u.fld[0]).rt_rtvec))->elem[i]); |
2499 | |
2500 | if (GET_CODE (body)((enum rtx_code) (body)->code) == COND_EXEC) |
2501 | body = COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx); |
2502 | |
2503 | if ((GET_CODE (body)((enum rtx_code) (body)->code) == SET || GET_CODE (body)((enum rtx_code) (body)->code) == CLOBBER) |
2504 | && covers_regno_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx), test_regno)) |
2505 | return 1; |
2506 | } |
2507 | } |
2508 | |
2509 | return 0; |
2510 | } |
2511 | |
2512 | /* Return the reg-note of kind KIND in insn INSN, if there is one. |
2513 | If DATUM is nonzero, look for one whose datum is DATUM. */ |
2514 | |
2515 | rtx |
2516 | find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum) |
2517 | { |
2518 | rtx link; |
2519 | |
2520 | gcc_checking_assert (insn)((void)(!(insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2520, __FUNCTION__), 0 : 0)); |
2521 | |
2522 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ |
2523 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) |
2524 | return 0; |
2525 | if (datum == 0) |
2526 | { |
2527 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2528 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind) |
2529 | return link; |
2530 | return 0; |
2531 | } |
2532 | |
2533 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2534 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind && datum == XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) |
2535 | return link; |
2536 | return 0; |
2537 | } |
2538 | |
2539 | /* Return the reg-note of kind KIND in insn INSN which applies to register |
2540 | number REGNO, if any. Return 0 if there is no such reg-note. Note that |
2541 | the REGNO of this NOTE need not be REGNO if REGNO is a hard register; |
2542 | it might be the case that the note overlaps REGNO. */ |
2543 | |
2544 | rtx |
2545 | find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno) |
2546 | { |
2547 | rtx link; |
2548 | |
2549 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ |
2550 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) |
2551 | return 0; |
2552 | |
2553 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2554 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind |
2555 | /* Verify that it is a register, so that scratch and MEM won't cause a |
2556 | problem here. */ |
2557 | && REG_P (XEXP (link, 0))(((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == REG) |
2558 | && REGNO (XEXP (link, 0))(rhs_regno((((link)->u.fld[0]).rt_rtx))) <= regno |
2559 | && END_REGNO (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) > regno) |
2560 | return link; |
2561 | return 0; |
2562 | } |
2563 | |
2564 | /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and |
2565 | has such a note. */ |
2566 | |
2567 | rtx |
2568 | find_reg_equal_equiv_note (const_rtx insn) |
2569 | { |
2570 | rtx link; |
2571 | |
2572 | if (!INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) |
2573 | return 0; |
2574 | |
2575 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2576 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUAL |
2577 | || REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUIV) |
2578 | { |
2579 | /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on |
2580 | insns that have multiple sets. Checking single_set to |
2581 | make sure of this is not the proper check, as explained |
2582 | in the comment in set_unique_reg_note. |
2583 | |
2584 | This should be changed into an assert. */ |
2585 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL && multiple_sets (insn)) |
2586 | return 0; |
2587 | return link; |
2588 | } |
2589 | return NULLnullptr; |
2590 | } |
2591 | |
2592 | /* Check whether INSN is a single_set whose source is known to be |
2593 | equivalent to a constant. Return that constant if so, otherwise |
2594 | return null. */ |
2595 | |
2596 | rtx |
2597 | find_constant_src (const rtx_insn *insn) |
2598 | { |
2599 | rtx note, set, x; |
2600 | |
2601 | set = single_set (insn); |
2602 | if (set) |
2603 | { |
2604 | x = avoid_constant_pool_reference (SET_SRC (set)(((set)->u.fld[1]).rt_rtx)); |
2605 | if (CONSTANT_P (x)((rtx_class[(int) (((enum rtx_code) (x)->code))]) == RTX_CONST_OBJ )) |
2606 | return x; |
2607 | } |
2608 | |
2609 | note = find_reg_equal_equiv_note (insn); |
2610 | if (note && CONSTANT_P (XEXP (note, 0))((rtx_class[(int) (((enum rtx_code) ((((note)->u.fld[0]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) |
2611 | return XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); |
2612 | |
2613 | return NULL_RTX(rtx) 0; |
2614 | } |
2615 | |
2616 | /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found |
2617 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ |
2618 | |
2619 | int |
2620 | find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum) |
2621 | { |
2622 | /* If it's not a CALL_INSN, it can't possibly have a |
2623 | CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */ |
2624 | if (!CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) |
2625 | return 0; |
2626 | |
2627 | gcc_assert (datum)((void)(!(datum) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2627, __FUNCTION__), 0 : 0)); |
2628 | |
2629 | if (!REG_P (datum)(((enum rtx_code) (datum)->code) == REG)) |
2630 | { |
2631 | rtx link; |
2632 | |
2633 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); |
2634 | link; |
2635 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2636 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == code |
2637 | && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)((((((link)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) |
2638 | return 1; |
2639 | } |
2640 | else |
2641 | { |
2642 | unsigned int regno = REGNO (datum)(rhs_regno(datum)); |
2643 | |
2644 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references |
2645 | to pseudo registers, so don't bother checking. */ |
2646 | |
2647 | if (regno < FIRST_PSEUDO_REGISTER76) |
2648 | { |
2649 | unsigned int end_regno = END_REGNO (datum); |
2650 | unsigned int i; |
2651 | |
2652 | for (i = regno; i < end_regno; i++) |
2653 | if (find_regno_fusage (insn, code, i)) |
2654 | return 1; |
2655 | } |
2656 | } |
2657 | |
2658 | return 0; |
2659 | } |
2660 | |
2661 | /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found |
2662 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ |
2663 | |
2664 | int |
2665 | find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno) |
2666 | { |
2667 | rtx link; |
2668 | |
2669 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references |
2670 | to pseudo registers, so don't bother checking. */ |
2671 | |
2672 | if (regno >= FIRST_PSEUDO_REGISTER76 |
2673 | || !CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) ) |
2674 | return 0; |
2675 | |
2676 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2677 | { |
2678 | rtx op, reg; |
2679 | |
2680 | if (GET_CODE (op = XEXP (link, 0))((enum rtx_code) (op = (((link)->u.fld[0]).rt_rtx))->code ) == code |
2681 | && REG_P (reg = XEXP (op, 0))(((enum rtx_code) (reg = (((op)->u.fld[0]).rt_rtx))->code ) == REG) |
2682 | && REGNO (reg)(rhs_regno(reg)) <= regno |
2683 | && END_REGNO (reg) > regno) |
2684 | return 1; |
2685 | } |
2686 | |
2687 | return 0; |
2688 | } |
2689 | |
2690 | |
2691 | /* Return true if KIND is an integer REG_NOTE. */ |
2692 | |
2693 | static bool |
2694 | int_reg_note_p (enum reg_note kind) |
2695 | { |
2696 | return kind == REG_BR_PROB; |
2697 | } |
2698 | |
2699 | /* Allocate a register note with kind KIND and datum DATUM. LIST is |
2700 | stored as the pointer to the next register note. */ |
2701 | |
2702 | rtx |
2703 | alloc_reg_note (enum reg_note kind, rtx datum, rtx list) |
2704 | { |
2705 | rtx note; |
2706 | |
2707 | gcc_checking_assert (!int_reg_note_p (kind))((void)(!(!int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2707, __FUNCTION__), 0 : 0)); |
2708 | switch (kind) |
2709 | { |
2710 | case REG_LABEL_TARGET: |
2711 | case REG_LABEL_OPERAND: |
2712 | case REG_TM: |
2713 | /* These types of register notes use an INSN_LIST rather than an |
2714 | EXPR_LIST, so that copying is done right and dumps look |
2715 | better. */ |
2716 | note = alloc_INSN_LIST (datum, list); |
2717 | PUT_REG_NOTE_KIND (note, kind)((note)->mode = ((machine_mode) (kind))); |
2718 | break; |
2719 | |
2720 | default: |
2721 | note = alloc_EXPR_LIST (kind, datum, list); |
2722 | break; |
2723 | } |
2724 | |
2725 | return note; |
2726 | } |
2727 | |
2728 | /* Add register note with kind KIND and datum DATUM to INSN. */ |
2729 | |
2730 | void |
2731 | add_reg_note (rtx insn, enum reg_note kind, rtx datum) |
2732 | { |
2733 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = alloc_reg_note (kind, datum, REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx)); |
2734 | } |
2735 | |
2736 | /* Add an integer register note with kind KIND and datum DATUM to INSN. */ |
2737 | |
2738 | void |
2739 | add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum) |
2740 | { |
2741 | gcc_checking_assert (int_reg_note_p (kind))((void)(!(int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2741, __FUNCTION__), 0 : 0)); |
2742 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = gen_rtx_INT_LIST ((machine_mode) kind,gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ) |
2743 | datum, REG_NOTES (insn))gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ); |
2744 | } |
2745 | |
2746 | /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */ |
2747 | |
2748 | void |
2749 | add_args_size_note (rtx_insn *insn, poly_int64 value) |
2750 | { |
2751 | gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX))((void)(!(!find_reg_note (insn, REG_ARGS_SIZE, (rtx) 0)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2751, __FUNCTION__), 0 : 0)); |
2752 | add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))))); |
2753 | } |
2754 | |
2755 | /* Add a register note like NOTE to INSN. */ |
2756 | |
2757 | void |
2758 | add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note) |
2759 | { |
2760 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) |
2761 | add_int_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XINT (note, 0)(((note)->u.fld[0]).rt_int)); |
2762 | else |
2763 | add_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); |
2764 | } |
2765 | |
2766 | /* Duplicate NOTE and return the copy. */ |
2767 | rtx |
2768 | duplicate_reg_note (rtx note) |
2769 | { |
2770 | reg_note kind = REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)); |
2771 | |
2772 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) |
2773 | return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX)gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((( ((note)->u.fld[0]).rt_int))), (((rtx) 0)) ); |
2774 | else if (GET_CODE (note)((enum rtx_code) (note)->code) == EXPR_LIST) |
2775 | return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)), NULL_RTX(rtx) 0); |
2776 | else |
2777 | return alloc_reg_note (kind, XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), NULL_RTX(rtx) 0); |
2778 | } |
2779 | |
2780 | /* Remove register note NOTE from the REG_NOTES of INSN. */ |
2781 | |
2782 | void |
2783 | remove_note (rtx_insn *insn, const_rtx note) |
2784 | { |
2785 | rtx link; |
2786 | |
2787 | if (note == NULL_RTX(rtx) 0) |
2788 | return; |
2789 | |
2790 | if (REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) == note) |
2791 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); |
2792 | else |
2793 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) |
2794 | if (XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) == note) |
2795 | { |
2796 | XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); |
2797 | break; |
2798 | } |
2799 | |
2800 | switch (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode))) |
2801 | { |
2802 | case REG_EQUAL: |
2803 | case REG_EQUIV: |
2804 | df_notes_rescan (insn); |
2805 | break; |
2806 | default: |
2807 | break; |
2808 | } |
2809 | } |
2810 | |
2811 | /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. |
2812 | If NO_RESCAN is false and any notes were removed, call |
2813 | df_notes_rescan. Return true if any note has been removed. */ |
2814 | |
2815 | bool |
2816 | remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan) |
2817 | { |
2818 | rtx *loc; |
2819 | bool ret = false; |
2820 | |
2821 | loc = ®_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); |
2822 | while (*loc) |
2823 | { |
2824 | enum reg_note kind = REG_NOTE_KIND (*loc)((enum reg_note) ((machine_mode) (*loc)->mode)); |
2825 | if (kind == REG_EQUAL || kind == REG_EQUIV) |
2826 | { |
2827 | *loc = XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); |
2828 | ret = true; |
2829 | } |
2830 | else |
2831 | loc = &XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); |
2832 | } |
2833 | if (ret && !no_rescan) |
2834 | df_notes_rescan (insn); |
2835 | return ret; |
2836 | } |
2837 | |
2838 | /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */ |
2839 | |
2840 | void |
2841 | remove_reg_equal_equiv_notes_for_regno (unsigned int regno) |
2842 | { |
2843 | df_ref eq_use; |
2844 | |
2845 | if (!df) |
2846 | return; |
2847 | |
2848 | /* This loop is a little tricky. We cannot just go down the chain because |
2849 | it is being modified by some actions in the loop. So we just iterate |
2850 | over the head. We plan to drain the list anyway. */ |
2851 | while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)(df->eq_use_regs[(regno)]->reg_chain)) != NULLnullptr) |
2852 | { |
2853 | rtx_insn *insn = DF_REF_INSN (eq_use)((eq_use)->base.insn_info->insn); |
2854 | rtx note = find_reg_equal_equiv_note (insn); |
2855 | |
2856 | /* This assert is generally triggered when someone deletes a REG_EQUAL |
2857 | or REG_EQUIV note by hacking the list manually rather than calling |
2858 | remove_note. */ |
2859 | gcc_assert (note)((void)(!(note) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2859, __FUNCTION__), 0 : 0)); |
2860 | |
2861 | remove_note (insn, note); |
2862 | } |
2863 | } |
2864 | |
2865 | /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and |
2866 | return 1 if it is found. A simple equality test is used to determine if |
2867 | NODE matches. */ |
2868 | |
2869 | bool |
2870 | in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node) |
2871 | { |
2872 | const_rtx x; |
2873 | |
2874 | for (x = listp; x; x = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) |
2875 | if (node == XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) |
2876 | return true; |
2877 | |
2878 | return false; |
2879 | } |
2880 | |
2881 | /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and |
2882 | remove that entry from the list if it is found. |
2883 | |
2884 | A simple equality test is used to determine if NODE matches. */ |
2885 | |
2886 | void |
2887 | remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp) |
2888 | { |
2889 | rtx_insn_list *temp = *listp; |
2890 | rtx_insn_list *prev = NULLnullptr; |
2891 | |
2892 | while (temp) |
2893 | { |
2894 | if (node == temp->insn ()) |
2895 | { |
2896 | /* Splice the node out of the list. */ |
2897 | if (prev) |
2898 | XEXP (prev, 1)(((prev)->u.fld[1]).rt_rtx) = temp->next (); |
2899 | else |
2900 | *listp = temp->next (); |
2901 | |
2902 | gcc_checking_assert (!in_insn_list_p (temp->next (), node))((void)(!(!in_insn_list_p (temp->next (), node)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2902, __FUNCTION__), 0 : 0)); |
2903 | return; |
2904 | } |
2905 | |
2906 | prev = temp; |
2907 | temp = temp->next (); |
2908 | } |
2909 | } |
2910 | |
2911 | /* Nonzero if X contains any volatile instructions. These are instructions |
2912 | which may cause unpredictable machine state instructions, and thus no |
2913 | instructions or register uses should be moved or combined across them. |
2914 | This includes only volatile asms and UNSPEC_VOLATILE instructions. */ |
2915 | |
2916 | int |
2917 | volatile_insn_p (const_rtx x) |
2918 | { |
2919 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
2920 | switch (code) |
2921 | { |
2922 | case LABEL_REF: |
2923 | case SYMBOL_REF: |
2924 | case CONST: |
2925 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
2926 | case PC: |
2927 | case REG: |
2928 | case SCRATCH: |
2929 | case CLOBBER: |
2930 | case ADDR_VEC: |
2931 | case ADDR_DIFF_VEC: |
2932 | case CALL: |
2933 | case MEM: |
2934 | return 0; |
2935 | |
2936 | case UNSPEC_VOLATILE: |
2937 | return 1; |
2938 | |
2939 | case ASM_INPUT: |
2940 | case ASM_OPERANDS: |
2941 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2941, __FUNCTION__); _rtx; })->volatil)) |
2942 | return 1; |
2943 | |
2944 | default: |
2945 | break; |
2946 | } |
2947 | |
2948 | /* Recursively scan the operands of this expression. */ |
2949 | |
2950 | { |
2951 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
2952 | int i; |
2953 | |
2954 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
2955 | { |
2956 | if (fmt[i] == 'e') |
2957 | { |
2958 | if (volatile_insn_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) |
2959 | return 1; |
2960 | } |
2961 | else if (fmt[i] == 'E') |
2962 | { |
2963 | int j; |
2964 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
2965 | if (volatile_insn_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) |
2966 | return 1; |
2967 | } |
2968 | } |
2969 | } |
2970 | return 0; |
2971 | } |
2972 | |
2973 | /* Nonzero if X contains any volatile memory references |
2974 | UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */ |
2975 | |
2976 | int |
2977 | volatile_refs_p (const_rtx x) |
2978 | { |
2979 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
2980 | switch (code) |
2981 | { |
2982 | case LABEL_REF: |
2983 | case SYMBOL_REF: |
2984 | case CONST: |
2985 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
2986 | case PC: |
2987 | case REG: |
2988 | case SCRATCH: |
2989 | case CLOBBER: |
2990 | case ADDR_VEC: |
2991 | case ADDR_DIFF_VEC: |
2992 | return 0; |
2993 | |
2994 | case UNSPEC_VOLATILE: |
2995 | return 1; |
2996 | |
2997 | case MEM: |
2998 | case ASM_INPUT: |
2999 | case ASM_OPERANDS: |
3000 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3000, __FUNCTION__); _rtx; })->volatil)) |
3001 | return 1; |
3002 | |
3003 | default: |
3004 | break; |
3005 | } |
3006 | |
3007 | /* Recursively scan the operands of this expression. */ |
3008 | |
3009 | { |
3010 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
3011 | int i; |
3012 | |
3013 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
3014 | { |
3015 | if (fmt[i] == 'e') |
3016 | { |
3017 | if (volatile_refs_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) |
3018 | return 1; |
3019 | } |
3020 | else if (fmt[i] == 'E') |
3021 | { |
3022 | int j; |
3023 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
3024 | if (volatile_refs_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) |
3025 | return 1; |
3026 | } |
3027 | } |
3028 | } |
3029 | return 0; |
3030 | } |
3031 | |
3032 | /* Similar to above, except that it also rejects register pre- and post- |
3033 | incrementing. */ |
3034 | |
3035 | int |
3036 | side_effects_p (const_rtx x) |
3037 | { |
3038 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
3039 | switch (code) |
3040 | { |
3041 | case LABEL_REF: |
3042 | case SYMBOL_REF: |
3043 | case CONST: |
3044 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
3045 | case PC: |
3046 | case REG: |
3047 | case SCRATCH: |
3048 | case ADDR_VEC: |
3049 | case ADDR_DIFF_VEC: |
3050 | case VAR_LOCATION: |
3051 | return 0; |
3052 | |
3053 | case CLOBBER: |
3054 | /* Reject CLOBBER with a non-VOID mode. These are made by combine.cc |
3055 | when some combination can't be done. If we see one, don't think |
3056 | that we can simplify the expression. */ |
3057 | return (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)); |
3058 | |
3059 | case PRE_INC: |
3060 | case PRE_DEC: |
3061 | case POST_INC: |
3062 | case POST_DEC: |
3063 | case PRE_MODIFY: |
3064 | case POST_MODIFY: |
3065 | case CALL: |
3066 | case UNSPEC_VOLATILE: |
3067 | return 1; |
3068 | |
3069 | case MEM: |
3070 | case ASM_INPUT: |
3071 | case ASM_OPERANDS: |
3072 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3072, __FUNCTION__); _rtx; })->volatil)) |
3073 | return 1; |
3074 | |
3075 | default: |
3076 | break; |
3077 | } |
3078 | |
3079 | /* Recursively scan the operands of this expression. */ |
3080 | |
3081 | { |
3082 | const char *fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
3083 | int i; |
3084 | |
3085 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
3086 | { |
3087 | if (fmt[i] == 'e') |
3088 | { |
3089 | if (side_effects_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) |
3090 | return 1; |
3091 | } |
3092 | else if (fmt[i] == 'E') |
3093 | { |
3094 | int j; |
3095 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
3096 | if (side_effects_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) |
3097 | return 1; |
3098 | } |
3099 | } |
3100 | } |
3101 | return 0; |
3102 | } |
3103 | |
3104 | /* Return nonzero if evaluating rtx X might cause a trap. |
3105 | FLAGS controls how to consider MEMs. A nonzero means the context |
3106 | of the access may have changed from the original, such that the |
3107 | address may have become invalid. */ |
3108 | |
3109 | int |
3110 | may_trap_p_1 (const_rtx x, unsigned flags) |
3111 | { |
3112 | int i; |
3113 | enum rtx_code code; |
3114 | const char *fmt; |
3115 | |
3116 | /* We make no distinction currently, but this function is part of |
3117 | the internal target-hooks ABI so we keep the parameter as |
3118 | "unsigned flags". */ |
3119 | bool code_changed = flags != 0; |
3120 | |
3121 | if (x == 0) |
3122 | return 0; |
3123 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
3124 | switch (code) |
3125 | { |
3126 | /* Handle these cases quickly. */ |
3127 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
3128 | case SYMBOL_REF: |
3129 | case LABEL_REF: |
3130 | case CONST: |
3131 | case PC: |
3132 | case REG: |
3133 | case SCRATCH: |
3134 | return 0; |
3135 | |
3136 | case UNSPEC: |
3137 | return targetm.unspec_may_trap_p (x, flags); |
3138 | |
3139 | case UNSPEC_VOLATILE: |
3140 | case ASM_INPUT: |
3141 | case TRAP_IF: |
3142 | return 1; |
3143 | |
3144 | case ASM_OPERANDS: |
3145 | return MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3145, __FUNCTION__); _rtx; })->volatil); |
3146 | |
3147 | /* Memory ref can trap unless it's a static var or a stack slot. */ |
3148 | case MEM: |
3149 | /* Recognize specific pattern of stack checking probes. */ |
3150 | if (flag_stack_checkglobal_options.x_flag_stack_check |
3151 | && MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3151, __FUNCTION__); _rtx; })->volatil) |
3152 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) |
3153 | return 1; |
3154 | if (/* MEM_NOTRAP_P only relates to the actual position of the memory |
3155 | reference; moving it out of context such as when moving code |
3156 | when optimizing, might cause its address to become invalid. */ |
3157 | code_changed |
3158 | || !MEM_NOTRAP_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_NOTRAP_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3158, __FUNCTION__); _rtx; })->call)) |
3159 | { |
3160 | poly_int64 size = MEM_SIZE_KNOWN_P (x)(get_mem_attrs (x)->size_known_p) ? MEM_SIZE (x)(get_mem_attrs (x)->size) : -1; |
3161 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), 0, size, |
3162 | GET_MODE (x)((machine_mode) (x)->mode), code_changed); |
3163 | } |
3164 | |
3165 | return 0; |
3166 | |
3167 | /* Division by a non-constant might trap. */ |
3168 | case DIV: |
3169 | case MOD: |
3170 | case UDIV: |
3171 | case UMOD: |
3172 | if (HONOR_SNANS (x)) |
3173 | return 1; |
3174 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT)) |
3175 | return flag_trapping_mathglobal_options.x_flag_trapping_math; |
3176 | if (!CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ) || (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == const0_rtx(const_int_rtx[64]))) |
3177 | return 1; |
3178 | if (GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_VECTOR) |
3179 | { |
3180 | /* For CONST_VECTOR, return 1 if any element is or might be zero. */ |
3181 | unsigned int n_elts; |
3182 | rtx op = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); |
3183 | if (!GET_MODE_NUNITS (GET_MODE (op)((machine_mode) (op)->mode)).is_constant (&n_elts)) |
3184 | { |
3185 | if (!CONST_VECTOR_DUPLICATE_P (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != CONST_VECTOR) rtl_check_failed_flag ("CONST_VECTOR_NELTS_PER_PATTERN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3185, __FUNCTION__); _rtx; }) ->u2.const_vector.nelts_per_pattern ) == 1)) |
3186 | return 1; |
3187 | for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0)(((((op)->u.fld[0]).rt_rtvec))->num_elem); i++) |
3188 | if (CONST_VECTOR_ENCODED_ELT (op, i)(((((op)->u.fld[0]).rt_rtvec))->elem[i]) == const0_rtx(const_int_rtx[64])) |
3189 | return 1; |
3190 | } |
3191 | else |
3192 | for (unsigned i = 0; i < n_elts; i++) |
3193 | if (CONST_VECTOR_ELT (op, i)const_vector_elt (op, i) == const0_rtx(const_int_rtx[64])) |
3194 | return 1; |
3195 | } |
3196 | break; |
3197 | |
3198 | case EXPR_LIST: |
3199 | /* An EXPR_LIST is used to represent a function call. This |
3200 | certainly may trap. */ |
3201 | return 1; |
3202 | |
3203 | case GE: |
3204 | case GT: |
3205 | case LE: |
3206 | case LT: |
3207 | case LTGT: |
3208 | case COMPARE: |
3209 | /* Some floating point comparisons may trap. */ |
3210 | if (!flag_trapping_mathglobal_options.x_flag_trapping_math) |
3211 | break; |
3212 | /* ??? There is no machine independent way to check for tests that trap |
3213 | when COMPARE is used, though many targets do make this distinction. |
3214 | For instance, sparc uses CCFPE for compares which generate exceptions |
3215 | and CCFP for compares which do not generate exceptions. */ |
3216 | if (HONOR_NANS (x)) |
3217 | return 1; |
3218 | /* But often the compare has some CC mode, so check operand |
3219 | modes as well. */ |
3220 | if (HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) |
3221 | || HONOR_NANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) |
3222 | return 1; |
3223 | break; |
3224 | |
3225 | case EQ: |
3226 | case NE: |
3227 | if (HONOR_SNANS (x)) |
3228 | return 1; |
3229 | /* Often comparison is CC mode, so check operand modes. */ |
3230 | if (HONOR_SNANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) |
3231 | || HONOR_SNANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) |
3232 | return 1; |
3233 | break; |
3234 | |
3235 | case FIX: |
3236 | case UNSIGNED_FIX: |
3237 | /* Conversion of floating point might trap. */ |
3238 | if (flag_trapping_mathglobal_options.x_flag_trapping_math && HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx))) |
3239 | return 1; |
3240 | break; |
3241 | |
3242 | case NEG: |
3243 | case ABS: |
3244 | case SUBREG: |
3245 | case VEC_MERGE: |
3246 | case VEC_SELECT: |
3247 | case VEC_CONCAT: |
3248 | case VEC_DUPLICATE: |
3249 | /* These operations don't trap even with floating point. */ |
3250 | break; |
3251 | |
3252 | default: |
3253 | /* Any floating arithmetic may trap. */ |
3254 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT) && flag_trapping_mathglobal_options.x_flag_trapping_math) |
3255 | return 1; |
3256 | } |
3257 | |
3258 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
3259 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
3260 | { |
3261 | if (fmt[i] == 'e') |
3262 | { |
3263 | if (may_trap_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), flags)) |
3264 | return 1; |
3265 | } |
3266 | else if (fmt[i] == 'E') |
3267 | { |
3268 | int j; |
3269 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
3270 | if (may_trap_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), flags)) |
3271 | return 1; |
3272 | } |
3273 | } |
3274 | return 0; |
3275 | } |
3276 | |
3277 | /* Return nonzero if evaluating rtx X might cause a trap. */ |
3278 | |
3279 | int |
3280 | may_trap_p (const_rtx x) |
3281 | { |
3282 | return may_trap_p_1 (x, 0); |
3283 | } |
3284 | |
3285 | /* Same as above, but additionally return nonzero if evaluating rtx X might |
3286 | cause a fault. We define a fault for the purpose of this function as a |
3287 | erroneous execution condition that cannot be encountered during the normal |
3288 | execution of a valid program; the typical example is an unaligned memory |
3289 | access on a strict alignment machine. The compiler guarantees that it |
3290 | doesn't generate code that will fault from a valid program, but this |
3291 | guarantee doesn't mean anything for individual instructions. Consider |
3292 | the following example: |
3293 | |
3294 | struct S { int d; union { char *cp; int *ip; }; }; |
3295 | |
3296 | int foo(struct S *s) |
3297 | { |
3298 | if (s->d == 1) |
3299 | return *s->ip; |
3300 | else |
3301 | return *s->cp; |
3302 | } |
3303 | |
3304 | on a strict alignment machine. In a valid program, foo will never be |
3305 | invoked on a structure for which d is equal to 1 and the underlying |
3306 | unique field of the union not aligned on a 4-byte boundary, but the |
3307 | expression *s->ip might cause a fault if considered individually. |
3308 | |
3309 | At the RTL level, potentially problematic expressions will almost always |
3310 | verify may_trap_p; for example, the above dereference can be emitted as |
3311 | (mem:SI (reg:P)) and this expression is may_trap_p for a generic register. |
3312 | However, suppose that foo is inlined in a caller that causes s->cp to |
3313 | point to a local character variable and guarantees that s->d is not set |
3314 | to 1; foo may have been effectively translated into pseudo-RTL as: |
3315 | |
3316 | if ((reg:SI) == 1) |
3317 | (set (reg:SI) (mem:SI (%fp - 7))) |
3318 | else |
3319 | (set (reg:QI) (mem:QI (%fp - 7))) |
3320 | |
3321 | Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a |
3322 | memory reference to a stack slot, but it will certainly cause a fault |
3323 | on a strict alignment machine. */ |
3324 | |
3325 | int |
3326 | may_trap_or_fault_p (const_rtx x) |
3327 | { |
3328 | return may_trap_p_1 (x, 1); |
3329 | } |
3330 | |
3331 | /* Replace any occurrence of FROM in X with TO. The function does |
3332 | not enter into CONST_DOUBLE for the replace. |
3333 | |
3334 | Note that copying is not done so X must not be shared unless all copies |
3335 | are to be modified. |
3336 | |
3337 | ALL_REGS is true if we want to replace all REGs equal to FROM, not just |
3338 | those pointer-equal ones. */ |
3339 | |
3340 | rtx |
3341 | replace_rtx (rtx x, rtx from, rtx to, bool all_regs) |
3342 | { |
3343 | int i, j; |
3344 | const char *fmt; |
3345 | |
3346 | if (x == from) |
3347 | return to; |
3348 | |
3349 | /* Allow this function to make replacements in EXPR_LISTs. */ |
3350 | if (x == 0) |
3351 | return 0; |
3352 | |
3353 | if (all_regs |
3354 | && REG_P (x)(((enum rtx_code) (x)->code) == REG) |
3355 | && REG_P (from)(((enum rtx_code) (from)->code) == REG) |
3356 | && REGNO (x)(rhs_regno(x)) == REGNO (from)(rhs_regno(from))) |
3357 | { |
3358 | gcc_assert (GET_MODE (x) == GET_MODE (from))((void)(!(((machine_mode) (x)->mode) == ((machine_mode) (from )->mode)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3358, __FUNCTION__), 0 : 0)); |
3359 | return to; |
3360 | } |
3361 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) |
3362 | { |
3363 | rtx new_rtx = replace_rtx (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); |
3364 | |
3365 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) |
3366 | { |
3367 | x = simplify_subreg (GET_MODE (x)((machine_mode) (x)->mode), new_rtx, |
3368 | GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), |
3369 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); |
3370 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3370, __FUNCTION__), 0 : 0)); |
3371 | } |
3372 | else |
3373 | SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx) = new_rtx; |
3374 | |
3375 | return x; |
3376 | } |
3377 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTEND) |
3378 | { |
3379 | rtx new_rtx = replace_rtx (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); |
3380 | |
3381 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) |
3382 | { |
3383 | x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x)((machine_mode) (x)->mode), |
3384 | new_rtx, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); |
3385 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3385, __FUNCTION__), 0 : 0)); |
3386 | } |
3387 | else |
3388 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_rtx; |
3389 | |
3390 | return x; |
3391 | } |
3392 | |
3393 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); |
3394 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) |
3395 | { |
3396 | if (fmt[i] == 'e') |
3397 | XEXP (x, i)(((x)->u.fld[i]).rt_rtx) = replace_rtx (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), from, to, all_regs); |
3398 | else if (fmt[i] == 'E') |
3399 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
3400 | XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) = replace_rtx (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), |
3401 | from, to, all_regs); |
3402 | } |
3403 | |
3404 | return x; |
3405 | } |
3406 | |
3407 | /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track |
3408 | the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */ |
3409 | |
3410 | void |
3411 | replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses) |
3412 | { |
3413 | /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */ |
3414 | rtx x = *loc; |
3415 | if (JUMP_TABLE_DATA_P (x)(((enum rtx_code) (x)->code) == JUMP_TABLE_DATA)) |
3416 | { |
3417 | x = PATTERN (x); |
3418 | rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC)(((x)->u.fld[((enum rtx_code) (x)->code) == ADDR_DIFF_VEC ]).rt_rtvec); |
3419 | int len = GET_NUM_ELEM (vec)((vec)->num_elem); |
3420 | for (int i = 0; i < len; ++i) |
3421 | { |
3422 | rtx ref = RTVEC_ELT (vec, i)((vec)->elem[i]); |
3423 | if (XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) == old_label) |
3424 | { |
3425 | XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) = new_label; |
3426 | if (update_label_nuses) |
3427 | { |
3428 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); |
3429 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); |
3430 | } |
3431 | } |
3432 | } |
3433 | return; |
3434 | } |
3435 | |
3436 | /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL |
3437 | field. This is not handled by the iterator because it doesn't |
3438 | handle unprinted ('0') fields. */ |
3439 | if (JUMP_P (x)(((enum rtx_code) (x)->code) == JUMP_INSN) && JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) == old_label) |
3440 | JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) = new_label; |
3441 | |
3442 | subrtx_ptr_iterator::array_type array; |
3443 | FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)for (subrtx_ptr_iterator iter (array, loc, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) |
3444 | { |
3445 | rtx *loc = *iter; |
3446 | if (rtx x = *loc) |
3447 | { |
3448 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SYMBOL_REF |
3449 | && CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3449, __FUNCTION__); _rtx; })->unchanging)) |
3450 | { |
3451 | rtx c = get_pool_constant (x); |
3452 | if (rtx_referenced_p (old_label, c)) |
3453 | { |
3454 | /* Create a copy of constant C; replace the label inside |
3455 | but do not update LABEL_NUSES because uses in constant pool |
3456 | are not counted. */ |
3457 | rtx new_c = copy_rtx (c); |
3458 | replace_label (&new_c, old_label, new_label, false); |
3459 | |
3460 | /* Add the new constant NEW_C to constant pool and replace |
3461 | the old reference to constant by new reference. */ |
3462 | rtx new_mem = force_const_mem (get_pool_mode (x), new_c); |
3463 | *loc = replace_rtx (x, x, XEXP (new_mem, 0)(((new_mem)->u.fld[0]).rt_rtx)); |
3464 | } |
3465 | } |
3466 | |
3467 | if ((GET_CODE (x)((enum rtx_code) (x)->code) == LABEL_REF |
3468 | || GET_CODE (x)((enum rtx_code) (x)->code) == INSN_LIST) |
3469 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == old_label) |
3470 | { |
3471 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_label; |
3472 | if (update_label_nuses) |
3473 | { |
3474 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); |
3475 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); |
3476 | } |
3477 | } |
3478 | } |
3479 | } |
3480 | } |
3481 | |
3482 | void |
3483 | replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label, |
3484 | rtx_insn *new_label, bool update_label_nuses) |
3485 | { |
3486 | rtx insn_as_rtx = insn; |
3487 | replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses); |
3488 | gcc_checking_assert (insn_as_rtx == insn)((void)(!(insn_as_rtx == insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3488, __FUNCTION__), 0 : 0)); |
3489 | } |
3490 | |
3491 | /* Return true if X is referenced in BODY. */ |
3492 | |
3493 | bool |
3494 | rtx_referenced_p (const_rtx x, const_rtx body) |
3495 | { |
3496 | subrtx_iterator::array_type array; |
3497 | FOR_EACH_SUBRTX (iter, array, body, ALL)for (subrtx_iterator iter (array, body, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) |
3498 | if (const_rtx y = *iter) |
3499 | { |
3500 | /* Check if a label_ref Y refers to label X. */ |
3501 | if (GET_CODE (y)((enum rtx_code) (y)->code) == LABEL_REF |
3502 | && LABEL_P (x)(((enum rtx_code) (x)->code) == CODE_LABEL) |
3503 | && label_ref_label (y) == x) |
3504 | return true; |
3505 | |
3506 | if (rtx_equal_p (x, y)) |
3507 | return true; |
3508 | |
3509 | /* If Y is a reference to pool constant traverse the constant. */ |
3510 | if (GET_CODE (y)((enum rtx_code) (y)->code) == SYMBOL_REF |
3511 | && CONSTANT_POOL_ADDRESS_P (y)(__extension__ ({ __typeof ((y)) const _rtx = ((y)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3511, __FUNCTION__); _rtx; })->unchanging)) |
3512 | iter.substitute (get_pool_constant (y)); |
3513 | } |
3514 | return false; |
3515 | } |
3516 | |
3517 | /* If INSN is a tablejump return true and store the label (before jump table) to |
3518 | *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */ |
3519 | |
3520 | bool |
3521 | tablejump_p (const rtx_insn *insn, rtx_insn **labelp, |
3522 | rtx_jump_table_data **tablep) |
3523 | { |
3524 | if (!JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) |
3525 | return false; |
3526 | |
3527 | rtx target = JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx); |
3528 | if (target == NULL_RTX(rtx) 0 || ANY_RETURN_P (target)(((enum rtx_code) (target)->code) == RETURN || ((enum rtx_code ) (target)->code) == SIMPLE_RETURN)) |
3529 | return false; |
3530 | |
3531 | rtx_insn *label = as_a<rtx_insn *> (target); |
3532 | rtx_insn *table = next_insn (label); |
3533 | if (table == NULL_RTX(rtx) 0 || !JUMP_TABLE_DATA_P (table)(((enum rtx_code) (table)->code) == JUMP_TABLE_DATA)) |
3534 | return false; |
3535 | |
3536 | if (labelp) |
3537 | *labelp = label; |
3538 | if (tablep) |
3539 | *tablep = as_a <rtx_jump_table_data *> (table); |
3540 | return true; |
3541 | } |
3542 | |
3543 | /* For INSN known to satisfy tablejump_p, determine if it actually is a |
3544 | CASESI. Return the insn pattern if so, NULL_RTX otherwise. */ |
3545 | |
3546 | rtx |
3547 | tablejump_casesi_pattern (const rtx_insn *insn) |
3548 | { |
3549 | rtx tmp; |
3550 | |
3551 | if ((tmp = single_set (insn)) != NULLnullptr |
3552 | && SET_DEST (tmp)(((tmp)->u.fld[0]).rt_rtx) == pc_rtx |
3553 | && GET_CODE (SET_SRC (tmp))((enum rtx_code) ((((tmp)->u.fld[1]).rt_rtx))->code) == IF_THEN_ELSE |
3554 | && GET_CODE (XEXP (SET_SRC (tmp), 2))((enum rtx_code) (((((((tmp)->u.fld[1]).rt_rtx))->u.fld [2]).rt_rtx))->code) == LABEL_REF) |
3555 | return tmp; |
3556 | |
3557 | return NULL_RTX(rtx) 0; |
3558 | } |
3559 | |
3560 | /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or |
3561 | constant that is not in the constant pool and not in the condition |
3562 | of an IF_THEN_ELSE. */ |
3563 | |
3564 | static int |
3565 | computed_jump_p_1 (const_rtx x) |
3566 | { |
3567 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
3568 | int i, j; |
3569 | const char *fmt; |
3570 | |
3571 | switch (code) |
3572 | { |
3573 | case LABEL_REF: |
3574 | case PC: |
3575 | return 0; |
3576 | |
3577 | case CONST: |
3578 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: |
3579 | case SYMBOL_REF: |
3580 | case REG: |
3581 | return 1; |
3582 | |
3583 | case MEM: |
3584 | return ! (GET_CODE (XEXP (x, 0))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SYMBOL_REF |
3585 | && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))(__extension__ ({ __typeof (((((x)->u.fld[0]).rt_rtx))) const _rtx = (((((x)->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3585, __FUNCTION__); _rtx; })->unchanging)); |
3586 | |
3587 | case IF_THEN_ELSE: |
3588 | return (computed_jump_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) |
3589 | || computed_jump_p_1 (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx))); |
3590 | |
3591 | default: |
3592 | break; |
3593 | } |
3594 | |
3595 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
3596 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
3597 | { |
3598 | if (fmt[i] == 'e' |
3599 | && computed_jump_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) |
3600 | return 1; |
3601 | |
3602 | else if (fmt[i] == 'E') |
3603 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
3604 | if (computed_jump_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) |
3605 | return 1; |
3606 | } |
3607 | |
3608 | return 0; |
3609 | } |
3610 | |
3611 | /* Return nonzero if INSN is an indirect jump (aka computed jump). |
3612 | |
3613 | Tablejumps and casesi insns are not considered indirect jumps; |
3614 | we can recognize them by a (use (label_ref)). */ |
3615 | |
3616 | int |
3617 | computed_jump_p (const rtx_insn *insn) |
3618 | { |
3619 | int i; |
3620 | if (JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) |
3621 | { |
3622 | rtx pat = PATTERN (insn); |
3623 | |
3624 | /* If we have a JUMP_LABEL set, we're not a computed jump. */ |
3625 | if (JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx) != NULLnullptr) |
3626 | return 0; |
3627 | |
3628 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) |
3629 | { |
3630 | int len = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); |
3631 | int has_use_labelref = 0; |
3632 | |
3633 | for (i = len - 1; i >= 0; i--) |
3634 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == USE |
3635 | && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))((enum rtx_code) (((((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->u.fld[0]).rt_rtx))->code) |
3636 | == LABEL_REF)) |
3637 | { |
3638 | has_use_labelref = 1; |
3639 | break; |
3640 | } |
3641 | |
3642 | if (! has_use_labelref) |
3643 | for (i = len - 1; i >= 0; i--) |
3644 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == SET |
3645 | && SET_DEST (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) == pc_rtx |
3646 | && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [1]).rt_rtx))) |
3647 | return 1; |
3648 | } |
3649 | else if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET |
3650 | && SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx) == pc_rtx |
3651 | && computed_jump_p_1 (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx))) |
3652 | return 1; |
3653 | } |
3654 | return 0; |
3655 | } |
3656 | |
3657 | |
3658 | |
3659 | /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of |
3660 | the equivalent add insn and pass the result to FN, using DATA as the |
3661 | final argument. */ |
3662 | |
3663 | static int |
3664 | for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data) |
3665 | { |
3666 | rtx x = XEXP (mem, 0)(((mem)->u.fld[0]).rt_rtx); |
3667 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) |
3668 | { |
3669 | case PRE_INC: |
3670 | case POST_INC: |
3671 | { |
3672 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); |
3673 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
3674 | rtx c = gen_int_mode (size, GET_MODE (r1)((machine_mode) (r1)->mode)); |
3675 | return fn (mem, x, r1, r1, c, data); |
3676 | } |
3677 | |
3678 | case PRE_DEC: |
3679 | case POST_DEC: |
3680 | { |
3681 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); |
3682 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
3683 | rtx c = gen_int_mode (-size, GET_MODE (r1)((machine_mode) (r1)->mode)); |
3684 | return fn (mem, x, r1, r1, c, data); |
3685 | } |
3686 | |
3687 | case PRE_MODIFY: |
3688 | case POST_MODIFY: |
3689 | { |
3690 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
3691 | rtx add = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); |
3692 | return fn (mem, x, r1, add, NULLnullptr, data); |
3693 | } |
3694 | |
3695 | default: |
3696 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3696, __FUNCTION__)); |
3697 | } |
3698 | } |
3699 | |
3700 | /* Traverse *LOC looking for MEMs that have autoinc addresses. |
3701 | For each such autoinc operation found, call FN, passing it |
3702 | the innermost enclosing MEM, the operation itself, the RTX modified |
3703 | by the operation, two RTXs (the second may be NULL) that, once |
3704 | added, represent the value to be held by the modified RTX |
3705 | afterwards, and DATA. FN is to return 0 to continue the |
3706 | traversal or any other value to have it returned to the caller of |
3707 | for_each_inc_dec. */ |
3708 | |
3709 | int |
3710 | for_each_inc_dec (rtx x, |
3711 | for_each_inc_dec_fn fn, |
3712 | void *data) |
3713 | { |
3714 | subrtx_var_iterator::array_type array; |
3715 | FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)for (subrtx_var_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) |
3716 | { |
3717 | rtx mem = *iter; |
3718 | if (mem |
3719 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) |
3720 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) |
3721 | { |
3722 | int res = for_each_inc_dec_find_inc_dec (mem, fn, data); |
3723 | if (res != 0) |
3724 | return res; |
3725 | iter.skip_subrtxes (); |
3726 | } |
3727 | } |
3728 | return 0; |
3729 | } |
3730 | |
3731 | |
3732 | /* Searches X for any reference to REGNO, returning the rtx of the |
3733 | reference found if any. Otherwise, returns NULL_RTX. */ |
3734 | |
3735 | rtx |
3736 | regno_use_in (unsigned int regno, rtx x) |
3737 | { |
3738 | const char *fmt; |
3739 | int i, j; |
3740 | rtx tem; |
3741 | |
3742 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) == regno) |
3743 | return x; |
3744 | |
3745 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); |
3746 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) |
3747 | { |
3748 | if (fmt[i] == 'e') |
3749 | { |
3750 | if ((tem = regno_use_in (regno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx)))) |
3751 | return tem; |
3752 | } |
3753 | else if (fmt[i] == 'E') |
3754 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
3755 | if ((tem = regno_use_in (regno , XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j])))) |
3756 | return tem; |
3757 | } |
3758 | |
3759 | return NULL_RTX(rtx) 0; |
3760 | } |
3761 | |
3762 | /* Return a value indicating whether OP, an operand of a commutative |
3763 | operation, is preferred as the first or second operand. The more |
3764 | positive the value, the stronger the preference for being the first |
3765 | operand. */ |
3766 | |
3767 | int |
3768 | commutative_operand_precedence (rtx op) |
3769 | { |
3770 | enum rtx_code code = GET_CODE (op)((enum rtx_code) (op)->code); |
3771 | |
3772 | /* Constants always become the second operand. Prefer "nice" constants. */ |
3773 | if (code == CONST_INT) |
3774 | return -10; |
3775 | if (code == CONST_WIDE_INT) |
3776 | return -9; |
3777 | if (code == CONST_POLY_INT) |
3778 | return -8; |
3779 | if (code == CONST_DOUBLE) |
3780 | return -8; |
3781 | if (code == CONST_FIXED) |
3782 | return -8; |
3783 | op = avoid_constant_pool_reference (op); |
3784 | code = GET_CODE (op)((enum rtx_code) (op)->code); |
3785 | |
3786 | switch (GET_RTX_CLASS (code)(rtx_class[(int) (code)])) |
3787 | { |
3788 | case RTX_CONST_OBJ: |
3789 | if (code == CONST_INT) |
3790 | return -7; |
3791 | if (code == CONST_WIDE_INT) |
3792 | return -6; |
3793 | if (code == CONST_POLY_INT) |
3794 | return -5; |
3795 | if (code == CONST_DOUBLE) |
3796 | return -5; |
3797 | if (code == CONST_FIXED) |
3798 | return -5; |
3799 | return -4; |
3800 | |
3801 | case RTX_EXTRA: |
3802 | /* SUBREGs of objects should come second. */ |
3803 | if (code == SUBREG && OBJECT_P (SUBREG_REG (op))(((rtx_class[(int) (((enum rtx_code) ((((op)->u.fld[0]).rt_rtx ))->code))]) & (~1)) == (RTX_OBJ & (~1)))) |
3804 | return -3; |
3805 | return 0; |
3806 | |
3807 | case RTX_OBJ: |
3808 | /* Complex expressions should be the first, so decrease priority |
3809 | of objects. Prefer pointer objects over non pointer objects. */ |
3810 | if ((REG_P (op)(((enum rtx_code) (op)->code) == REG) && REG_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3810, __FUNCTION__); _rtx; })->frame_related)) |
3811 | || (MEM_P (op)(((enum rtx_code) (op)->code) == MEM) && MEM_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3811, __FUNCTION__); _rtx; })->frame_related))) |
3812 | return -1; |
3813 | return -2; |
3814 | |
3815 | case RTX_COMM_ARITH: |
3816 | /* Prefer operands that are themselves commutative to be first. |
3817 | This helps to make things linear. In particular, |
3818 | (and (and (reg) (reg)) (not (reg))) is canonical. */ |
3819 | return 4; |
3820 | |
3821 | case RTX_BIN_ARITH: |
3822 | /* If only one operand is a binary expression, it will be the first |
3823 | operand. In particular, (plus (minus (reg) (reg)) (neg (reg))) |
3824 | is canonical, although it will usually be further simplified. */ |
3825 | return 2; |
3826 | |
3827 | case RTX_UNARY: |
3828 | /* Then prefer NEG and NOT. */ |
3829 | if (code == NEG || code == NOT) |
3830 | return 1; |
3831 | /* FALLTHRU */ |
3832 | |
3833 | default: |
3834 | return 0; |
3835 | } |
3836 | } |
3837 | |
3838 | /* Return 1 iff it is necessary to swap operands of commutative operation |
3839 | in order to canonicalize expression. */ |
3840 | |
3841 | bool |
3842 | swap_commutative_operands_p (rtx x, rtx y) |
3843 | { |
3844 | return (commutative_operand_precedence (x) |
3845 | < commutative_operand_precedence (y)); |
3846 | } |
3847 | |
3848 | /* Return 1 if X is an autoincrement side effect and the register is |
3849 | not the stack pointer. */ |
3850 | int |
3851 | auto_inc_p (const_rtx x) |
3852 | { |
3853 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) |
3854 | { |
3855 | case PRE_INC: |
3856 | case POST_INC: |
3857 | case PRE_DEC: |
3858 | case POST_DEC: |
3859 | case PRE_MODIFY: |
3860 | case POST_MODIFY: |
3861 | /* There are no REG_INC notes for SP. */ |
3862 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) != stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) |
3863 | return 1; |
3864 | default: |
3865 | break; |
3866 | } |
3867 | return 0; |
3868 | } |
3869 | |
3870 | /* Return nonzero if IN contains a piece of rtl that has the address LOC. */ |
3871 | int |
3872 | loc_mentioned_in_p (rtx *loc, const_rtx in) |
3873 | { |
3874 | enum rtx_code code; |
3875 | const char *fmt; |
3876 | int i, j; |
3877 | |
3878 | if (!in) |
3879 | return 0; |
3880 | |
3881 | code = GET_CODE (in)((enum rtx_code) (in)->code); |
3882 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
3883 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
3884 | { |
3885 | if (fmt[i] == 'e') |
3886 | { |
3887 | if (loc == &XEXP (in, i)(((in)->u.fld[i]).rt_rtx) || loc_mentioned_in_p (loc, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) |
3888 | return 1; |
3889 | } |
3890 | else if (fmt[i] == 'E') |
3891 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) |
3892 | if (loc == &XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]) |
3893 | || loc_mentioned_in_p (loc, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) |
3894 | return 1; |
3895 | } |
3896 | return 0; |
3897 | } |
3898 | |
3899 | /* Reinterpret a subreg as a bit extraction from an integer and return |
3900 | the position of the least significant bit of the extracted value. |
3901 | In other words, if the extraction were performed as a shift right |
3902 | and mask, return the number of bits to shift right. |
3903 | |
3904 | The outer value of the subreg has OUTER_BYTES bytes and starts at |
3905 | byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */ |
3906 | |
3907 | poly_uint64 |
3908 | subreg_size_lsb (poly_uint64 outer_bytes, |
3909 | poly_uint64 inner_bytes, |
3910 | poly_uint64 subreg_byte) |
3911 | { |
3912 | poly_uint64 subreg_end, trailing_bytes, byte_pos; |
3913 | |
3914 | /* A paradoxical subreg begins at bit position 0. */ |
3915 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3915, __FUNCTION__), 0 : 0)); |
3916 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) |
3917 | { |
3918 | gcc_checking_assert (known_eq (subreg_byte, 0U))((void)(!((!maybe_ne (subreg_byte, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3918, __FUNCTION__), 0 : 0)); |
3919 | return 0; |
3920 | } |
3921 | |
3922 | subreg_end = subreg_byte + outer_bytes; |
3923 | trailing_bytes = inner_bytes - subreg_end; |
3924 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) |
3925 | byte_pos = trailing_bytes; |
3926 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) |
3927 | byte_pos = subreg_byte; |
3928 | else |
3929 | { |
3930 | /* When bytes and words have opposite endianness, we must be able |
3931 | to split offsets into words and bytes at compile time. */ |
3932 | poly_uint64 leading_word_part |
3933 | = force_align_down (subreg_byte, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); |
3934 | poly_uint64 trailing_word_part |
3935 | = force_align_down (trailing_bytes, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); |
3936 | /* If the subreg crosses a word boundary ensure that |
3937 | it also begins and ends on a word boundary. */ |
3938 | gcc_assert (known_le (subreg_end - leading_word_part,((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) |
3939 | (unsigned int) UNITS_PER_WORD)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) |
3940 | || (known_eq (leading_word_part, subreg_byte)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) |
3941 | && known_eq (trailing_word_part, trailing_bytes)))((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)); |
3942 | if (WORDS_BIG_ENDIAN0) |
3943 | byte_pos = trailing_word_part + (subreg_byte - leading_word_part); |
3944 | else |
3945 | byte_pos = leading_word_part + (trailing_bytes - trailing_word_part); |
3946 | } |
3947 | |
3948 | return byte_pos * BITS_PER_UNIT(8); |
3949 | } |
3950 | |
3951 | /* Given a subreg X, return the bit offset where the subreg begins |
3952 | (counting from the least significant bit of the reg). */ |
3953 | |
3954 | poly_uint64 |
3955 | subreg_lsb (const_rtx x) |
3956 | { |
3957 | return subreg_lsb_1 (GET_MODE (x)((machine_mode) (x)->mode), GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), |
3958 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); |
3959 | } |
3960 | |
3961 | /* Return the subreg byte offset for a subreg whose outer value has |
3962 | OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where |
3963 | there are LSB_SHIFT *bits* between the lsb of the outer value and the |
3964 | lsb of the inner value. This is the inverse of the calculation |
3965 | performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */ |
3966 | |
3967 | poly_uint64 |
3968 | subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes, |
3969 | poly_uint64 lsb_shift) |
3970 | { |
3971 | /* A paradoxical subreg begins at bit position 0. */ |
3972 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3972, __FUNCTION__), 0 : 0)); |
3973 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) |
3974 | { |
3975 | gcc_checking_assert (known_eq (lsb_shift, 0U))((void)(!((!maybe_ne (lsb_shift, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3975, __FUNCTION__), 0 : 0)); |
3976 | return 0; |
3977 | } |
3978 | |
3979 | poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT(8)); |
3980 | poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes); |
3981 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) |
3982 | return upper_bytes; |
3983 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) |
3984 | return lower_bytes; |
3985 | else |
3986 | { |
3987 | /* When bytes and words have opposite endianness, we must be able |
3988 | to split offsets into words and bytes at compile time. */ |
3989 | poly_uint64 lower_word_part = force_align_down (lower_bytes, |
3990 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); |
3991 | poly_uint64 upper_word_part = force_align_down (upper_bytes, |
3992 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); |
3993 | if (WORDS_BIG_ENDIAN0) |
3994 | return upper_word_part + (lower_bytes - lower_word_part); |
3995 | else |
3996 | return lower_word_part + (upper_bytes - upper_word_part); |
3997 | } |
3998 | } |
3999 | |
4000 | /* Fill in information about a subreg of a hard register. |
4001 | xregno - A regno of an inner hard subreg_reg (or what will become one). |
4002 | xmode - The mode of xregno. |
4003 | offset - The byte offset. |
4004 | ymode - The mode of a top level SUBREG (or what may become one). |
4005 | info - Pointer to structure to fill in. |
4006 | |
4007 | Rather than considering one particular inner register (and thus one |
4008 | particular "outer" register) in isolation, this function really uses |
4009 | XREGNO as a model for a sequence of isomorphic hard registers. Thus the |
4010 | function does not check whether adding INFO->offset to XREGNO gives |
4011 | a valid hard register; even if INFO->offset + XREGNO is out of range, |
4012 | there might be another register of the same type that is in range. |
4013 | Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts |
4014 | the new register, since that can depend on things like whether the final |
4015 | register number is even or odd. Callers that want to check whether |
4016 | this particular subreg can be replaced by a simple (reg ...) should |
4017 | use simplify_subreg_regno. */ |
4018 | |
4019 | void |
4020 | subreg_get_info (unsigned int xregno, machine_mode xmode, |
4021 | poly_uint64 offset, machine_mode ymode, |
4022 | struct subreg_info *info) |
4023 | { |
4024 | unsigned int nregs_xmode, nregs_ymode; |
4025 | |
4026 | gcc_assert (xregno < FIRST_PSEUDO_REGISTER)((void)(!(xregno < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4026, __FUNCTION__), 0 : 0)); |
4027 | |
4028 | poly_uint64 xsize = GET_MODE_SIZE (xmode); |
4029 | poly_uint64 ysize = GET_MODE_SIZE (ymode); |
4030 | |
4031 | bool rknown = false; |
4032 | |
4033 | /* If the register representation of a non-scalar mode has holes in it, |
4034 | we expect the scalar units to be concatenated together, with the holes |
4035 | distributed evenly among the scalar units. Each scalar unit must occupy |
4036 | at least one register. */ |
4037 | if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) )))) |
4038 | { |
4039 | /* As a consequence, we must be dealing with a constant number of |
4040 | scalars, and thus a constant offset and number of units. */ |
4041 | HOST_WIDE_INTlong coffset = offset.to_constant (); |
4042 | HOST_WIDE_INTlong cysize = ysize.to_constant (); |
4043 | nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode)((xmode) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8); |
4044 | unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant (); |
4045 | scalar_mode xmode_unit = GET_MODE_INNER (xmode)(mode_to_inner (xmode)); |
4046 | gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit))((void)(!((((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno )) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int ) E_XFmode)) || (xmode_unit) == (complex_mode ((complex_mode:: from_int) E_XCmode))))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4046, __FUNCTION__), 0 : 0)); |
4047 | gcc_assert (nregs_xmode((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) |
4048 | == (nunits((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) |
4049 | * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)))((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)); |
4050 | gcc_assert (hard_regno_nregs (xregno, xmode)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)) |
4051 | == hard_regno_nregs (xregno, xmode_unit) * nunits)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)); |
4052 | |
4053 | /* You can only ask for a SUBREG of a value with holes in the middle |
4054 | if you don't cross the holes. (Such a SUBREG should be done by |
4055 | picking a different register class, or doing it in memory if |
4056 | necessary.) An example of a value with holes is XCmode on 32-bit |
4057 | x86 with -m128bit-long-double; it's represented in 6 32-bit registers, |
4058 | 3 for each part, but in memory it's two 128-bit parts. |
4059 | Padding is assumed to be at the end (not necessarily the 'high part') |
4060 | of each unit. */ |
4061 | if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits) |
4062 | && (coffset / GET_MODE_SIZE (xmode_unit) |
4063 | != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit)))) |
4064 | { |
4065 | info->representable_p = false; |
4066 | rknown = true; |
4067 | } |
4068 | } |
4069 | else |
4070 | nregs_xmode = hard_regno_nregs (xregno, xmode); |
4071 | |
4072 | nregs_ymode = hard_regno_nregs (xregno, ymode); |
4073 | |
4074 | /* Subreg sizes must be ordered, so that we can tell whether they are |
4075 | partial, paradoxical or complete. */ |
4076 | gcc_checking_assert (ordered_p (xsize, ysize))((void)(!(ordered_p (xsize, ysize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4076, __FUNCTION__), 0 : 0)); |
4077 | |
4078 | /* Paradoxical subregs are otherwise valid. */ |
4079 | if (!rknown && known_eq (offset, 0U)(!maybe_ne (offset, 0U)) && maybe_gt (ysize, xsize)maybe_lt (xsize, ysize)) |
4080 | { |
4081 | info->representable_p = true; |
4082 | /* If this is a big endian paradoxical subreg, which uses more |
4083 | actual hard registers than the original register, we must |
4084 | return a negative offset so that we find the proper highpart |
4085 | of the register. |
4086 | |
4087 | We assume that the ordering of registers within a multi-register |
4088 | value has a consistent endianness: if bytes and register words |
4089 | have different endianness, the hard registers that make up a |
4090 | multi-register value must be at least word-sized. */ |
4091 | if (REG_WORDS_BIG_ENDIAN0) |
4092 | info->offset = (int) nregs_xmode - (int) nregs_ymode; |
4093 | else |
4094 | info->offset = 0; |
4095 | info->nregs = nregs_ymode; |
4096 | return; |
4097 | } |
4098 | |
4099 | /* If registers store different numbers of bits in the different |
4100 | modes, we cannot generally form this subreg. */ |
4101 | poly_uint64 regsize_xmode, regsize_ymode; |
4102 | if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) |
4103 | && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((ymode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (ymode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) |
4104 | && multiple_p (xsize, nregs_xmode, ®size_xmode) |
4105 | && multiple_p (ysize, nregs_ymode, ®size_ymode)) |
4106 | { |
4107 | if (!rknown |
4108 | && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode)maybe_lt (regsize_ymode, regsize_xmode)) |
4109 | || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode)maybe_lt (regsize_xmode, regsize_ymode)))) |
4110 | { |
4111 | info->representable_p = false; |
4112 | if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs) |
4113 | || !can_div_trunc_p (offset, regsize_xmode, &info->offset)) |
4114 | /* Checked by validate_subreg. We must know at compile time |
4115 | which inner registers are being accessed. */ |
4116 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4116, __FUNCTION__)); |
4117 | return; |
4118 | } |
4119 | /* It's not valid to extract a subreg of mode YMODE at OFFSET that |
4120 | would go outside of XMODE. */ |
4121 | if (!rknown && maybe_gt (ysize + offset, xsize)maybe_lt (xsize, ysize + offset)) |
4122 | { |
4123 | info->representable_p = false; |
4124 | info->nregs = nregs_ymode; |
4125 | if (!can_div_trunc_p (offset, regsize_xmode, &info->offset)) |
4126 | /* Checked by validate_subreg. We must know at compile time |
4127 | which inner registers are being accessed. */ |
4128 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4128, __FUNCTION__)); |
4129 | return; |
4130 | } |
4131 | /* Quick exit for the simple and common case of extracting whole |
4132 | subregisters from a multiregister value. */ |
4133 | /* ??? It would be better to integrate this into the code below, |
4134 | if we can generalize the concept enough and figure out how |
4135 | odd-sized modes can coexist with the other weird cases we support. */ |
4136 | HOST_WIDE_INTlong count; |
4137 | if (!rknown |
4138 | && WORDS_BIG_ENDIAN0 == REG_WORDS_BIG_ENDIAN0 |
4139 | && known_eq (regsize_xmode, regsize_ymode)(!maybe_ne (regsize_xmode, regsize_ymode)) |
4140 | && constant_multiple_p (offset, regsize_ymode, &count)) |
4141 | { |
4142 | info->representable_p = true; |
4143 | info->nregs = nregs_ymode; |
4144 | info->offset = count; |
4145 | gcc_assert (info->offset + info->nregs <= (int) nregs_xmode)((void)(!(info->offset + info->nregs <= (int) nregs_xmode ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4145, __FUNCTION__), 0 : 0)); |
4146 | return; |
4147 | } |
4148 | } |
4149 | |
4150 | /* Lowpart subregs are otherwise valid. */ |
4151 | if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode))(!maybe_ne (offset, subreg_lowpart_offset (ymode, xmode)))) |
4152 | { |
4153 | info->representable_p = true; |
4154 | rknown = true; |
4155 | |
4156 | if (known_eq (offset, 0U)(!maybe_ne (offset, 0U)) || nregs_xmode == nregs_ymode) |
4157 | { |
4158 | info->offset = 0; |
4159 | info->nregs = nregs_ymode; |
4160 | return; |
4161 | } |
4162 | } |
4163 | |
4164 | /* Set NUM_BLOCKS to the number of independently-representable YMODE |
4165 | values there are in (reg:XMODE XREGNO). We can view the register |
4166 | as consisting of this number of independent "blocks", where each |
4167 | block occupies NREGS_YMODE registers and contains exactly one |
4168 | representable YMODE value. */ |
4169 | gcc_assert ((nregs_xmode % nregs_ymode) == 0)((void)(!((nregs_xmode % nregs_ymode) == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4169, __FUNCTION__), 0 : 0)); |
4170 | unsigned int num_blocks = nregs_xmode / nregs_ymode; |
4171 | |
4172 | /* Calculate the number of bytes in each block. This must always |
4173 | be exact, otherwise we don't know how to verify the constraint. |
4174 | These conditions may be relaxed but subreg_regno_offset would |
4175 | need to be redesigned. */ |
4176 | poly_uint64 bytes_per_block = exact_div (xsize, num_blocks); |
4177 | |
4178 | /* Get the number of the first block that contains the subreg and the byte |
4179 | offset of the subreg from the start of that block. */ |
4180 | unsigned int block_number; |
4181 | poly_uint64 subblock_offset; |
4182 | if (!can_div_trunc_p (offset, bytes_per_block, &block_number, |
4183 | &subblock_offset)) |
4184 | /* Checked by validate_subreg. We must know at compile time which |
4185 | inner registers are being accessed. */ |
4186 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4186, __FUNCTION__)); |
4187 | |
4188 | if (!rknown) |
4189 | { |
4190 | /* Only the lowpart of each block is representable. */ |
4191 | info->representable_p |
4192 | = known_eq (subblock_offset,(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))) |
4193 | subreg_size_lowpart_offset (ysize, bytes_per_block))(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))); |
4194 | rknown = true; |
Value stored to 'rknown' is never read | |
4195 | } |
4196 | |
4197 | /* We assume that the ordering of registers within a multi-register |
4198 | value has a consistent endianness: if bytes and register words |
4199 | have different endianness, the hard registers that make up a |
4200 | multi-register value must be at least word-sized. */ |
4201 | if (WORDS_BIG_ENDIAN0 != REG_WORDS_BIG_ENDIAN0) |
4202 | /* The block number we calculated above followed memory endianness. |
4203 | Convert it to register endianness by counting back from the end. |
4204 | (Note that, because of the assumption above, each block must be |
4205 | at least word-sized.) */ |
4206 | info->offset = (num_blocks - block_number - 1) * nregs_ymode; |
4207 | else |
4208 | info->offset = block_number * nregs_ymode; |
4209 | info->nregs = nregs_ymode; |
4210 | } |
4211 | |
4212 | /* This function returns the regno offset of a subreg expression. |
4213 | xregno - A regno of an inner hard subreg_reg (or what will become one). |
4214 | xmode - The mode of xregno. |
4215 | offset - The byte offset. |
4216 | ymode - The mode of a top level SUBREG (or what may become one). |
4217 | RETURN - The regno offset which would be used. */ |
4218 | unsigned int |
4219 | subreg_regno_offset (unsigned int xregno, machine_mode xmode, |
4220 | poly_uint64 offset, machine_mode ymode) |
4221 | { |
4222 | struct subreg_info info; |
4223 | subreg_get_info (xregno, xmode, offset, ymode, &info); |
4224 | return info.offset; |
4225 | } |
4226 | |
4227 | /* This function returns true when the offset is representable via |
4228 | subreg_offset in the given regno. |
4229 | xregno - A regno of an inner hard subreg_reg (or what will become one). |
4230 | xmode - The mode of xregno. |
4231 | offset - The byte offset. |
4232 | ymode - The mode of a top level SUBREG (or what may become one). |
4233 | RETURN - Whether the offset is representable. */ |
4234 | bool |
4235 | subreg_offset_representable_p (unsigned int xregno, machine_mode xmode, |
4236 | poly_uint64 offset, machine_mode ymode) |
4237 | { |
4238 | struct subreg_info info; |
4239 | subreg_get_info (xregno, xmode, offset, ymode, &info); |
4240 | return info.representable_p; |
4241 | } |
4242 | |
4243 | /* Return the number of a YMODE register to which |
4244 | |
4245 | (subreg:YMODE (reg:XMODE XREGNO) OFFSET) |
4246 | |
4247 | can be simplified. Return -1 if the subreg can't be simplified. |
4248 | |
4249 | XREGNO is a hard register number. */ |
4250 | |
4251 | int |
4252 | simplify_subreg_regno (unsigned int xregno, machine_mode xmode, |
4253 | poly_uint64 offset, machine_mode ymode) |
4254 | { |
4255 | struct subreg_info info; |
4256 | unsigned int yregno; |
4257 | |
4258 | /* Give the backend a chance to disallow the mode change. */ |
4259 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_INT |
4260 | && GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_FLOAT |
4261 | && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)(targetm.can_change_mode_class (xmode, ymode, (regclass_map[( xregno)])))) |
4262 | return -1; |
4263 | |
4264 | /* We shouldn't simplify stack-related registers. */ |
4265 | if ((!reload_completed || frame_pointer_needed((&x_rtl)->frame_pointer_needed)) |
4266 | && xregno == FRAME_POINTER_REGNUM19) |
4267 | return -1; |
4268 | |
4269 | if (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 |
4270 | && xregno == ARG_POINTER_REGNUM16) |
4271 | return -1; |
4272 | |
4273 | if (xregno == STACK_POINTER_REGNUM7 |
4274 | /* We should convert hard stack register in LRA if it is |
4275 | possible. */ |
4276 | && ! lra_in_progress) |
4277 | return -1; |
4278 | |
4279 | /* Try to get the register offset. */ |
4280 | subreg_get_info (xregno, xmode, offset, ymode, &info); |
4281 | if (!info.representable_p) |
4282 | return -1; |
4283 | |
4284 | /* Make sure that the offsetted register value is in range. */ |
4285 | yregno = xregno + info.offset; |
4286 | if (!HARD_REGISTER_NUM_P (yregno)((yregno) < 76)) |
4287 | return -1; |
4288 | |
4289 | /* See whether (reg:YMODE YREGNO) is valid. |
4290 | |
4291 | ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid. |
4292 | This is a kludge to work around how complex FP arguments are passed |
4293 | on IA-64 and should be fixed. See PR target/49226. */ |
4294 | if (!targetm.hard_regno_mode_ok (yregno, ymode) |
4295 | && targetm.hard_regno_mode_ok (xregno, xmode)) |
4296 | return -1; |
4297 | |
4298 | return (int) yregno; |
4299 | } |
4300 | |
4301 | /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset |
4302 | (xmode, ymode) as the offset. */ |
4303 | |
4304 | int |
4305 | lowpart_subreg_regno (unsigned int regno, machine_mode xmode, |
4306 | machine_mode ymode) |
4307 | { |
4308 | poly_uint64 offset = subreg_lowpart_offset (xmode, ymode); |
4309 | return simplify_subreg_regno (regno, xmode, offset, ymode); |
4310 | } |
4311 | |
4312 | /* Return the final regno that a subreg expression refers to. */ |
4313 | unsigned int |
4314 | subreg_regno (const_rtx x) |
4315 | { |
4316 | unsigned int ret; |
4317 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); |
4318 | int regno = REGNO (subreg)(rhs_regno(subreg)); |
4319 | |
4320 | ret = regno + subreg_regno_offset (regno, |
4321 | GET_MODE (subreg)((machine_mode) (subreg)->mode), |
4322 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), |
4323 | GET_MODE (x)((machine_mode) (x)->mode)); |
4324 | return ret; |
4325 | |
4326 | } |
4327 | |
4328 | /* Return the number of registers that a subreg expression refers |
4329 | to. */ |
4330 | unsigned int |
4331 | subreg_nregs (const_rtx x) |
4332 | { |
4333 | return subreg_nregs_with_regno (REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))), x); |
4334 | } |
4335 | |
4336 | /* Return the number of registers that a subreg REG with REGNO |
4337 | expression refers to. This is a copy of the rtlanal.cc:subreg_nregs |
4338 | changed so that the regno can be passed in. */ |
4339 | |
4340 | unsigned int |
4341 | subreg_nregs_with_regno (unsigned int regno, const_rtx x) |
4342 | { |
4343 | struct subreg_info info; |
4344 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); |
4345 | |
4346 | subreg_get_info (regno, GET_MODE (subreg)((machine_mode) (subreg)->mode), SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), GET_MODE (x)((machine_mode) (x)->mode), |
4347 | &info); |
4348 | return info.nregs; |
4349 | } |
4350 | |
4351 | struct parms_set_data |
4352 | { |
4353 | int nregs; |
4354 | HARD_REG_SET regs; |
4355 | }; |
4356 | |
4357 | /* Helper function for noticing stores to parameter registers. */ |
4358 | static void |
4359 | parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) |
4360 | { |
4361 | struct parms_set_data *const d = (struct parms_set_data *) data; |
4362 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76 |
4363 | && TEST_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x)))) |
4364 | { |
4365 | CLEAR_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x))); |
4366 | d->nregs--; |
4367 | } |
4368 | } |
4369 | |
4370 | /* Look backward for first parameter to be loaded. |
4371 | Note that loads of all parameters will not necessarily be |
4372 | found if CSE has eliminated some of them (e.g., an argument |
4373 | to the outer function is passed down as a parameter). |
4374 | Do not skip BOUNDARY. */ |
4375 | rtx_insn * |
4376 | find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary) |
4377 | { |
4378 | struct parms_set_data parm; |
4379 | rtx p; |
4380 | rtx_insn *before, *first_set; |
4381 | |
4382 | /* Since different machines initialize their parameter registers |
4383 | in different orders, assume nothing. Collect the set of all |
4384 | parameter registers. */ |
4385 | CLEAR_HARD_REG_SET (parm.regs); |
4386 | parm.nregs = 0; |
4387 | for (p = CALL_INSN_FUNCTION_USAGE (call_insn)(((call_insn)->u.fld[7]).rt_rtx); p; p = XEXP (p, 1)(((p)->u.fld[1]).rt_rtx)) |
4388 | if (GET_CODE (XEXP (p, 0))((enum rtx_code) ((((p)->u.fld[0]).rt_rtx))->code) == USE |
4389 | && REG_P (XEXP (XEXP (p, 0), 0))(((enum rtx_code) (((((((p)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) |
4390 | && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0))(__extension__ ({ __typeof ((((((((p)->u.fld[0]).rt_rtx))-> u.fld[0]).rt_rtx))) const _rtx = ((((((((p)->u.fld[0]).rt_rtx ))->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code ) != REG) rtl_check_failed_flag ("STATIC_CHAIN_REG_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4390, __FUNCTION__); _rtx; })->jump)) |
4391 | { |
4392 | gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER)((void)(!((rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))) < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4392, __FUNCTION__), 0 : 0)); |
4393 | |
4394 | /* We only care about registers which can hold function |
4395 | arguments. */ |
4396 | if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0)))ix86_function_arg_regno_p ((rhs_regno(((((((p)->u.fld[0]). rt_rtx))->u.fld[0]).rt_rtx))))) |
4397 | continue; |
4398 | |
4399 | SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0))(rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx )))); |
4400 | parm.nregs++; |
4401 | } |
4402 | before = call_insn; |
4403 | first_set = call_insn; |
4404 | |
4405 | /* Search backward for the first set of a register in this set. */ |
4406 | while (parm.nregs && before != boundary) |
4407 | { |
4408 | before = PREV_INSN (before); |
4409 | |
4410 | /* It is possible that some loads got CSEed from one call to |
4411 | another. Stop in that case. */ |
4412 | if (CALL_P (before)(((enum rtx_code) (before)->code) == CALL_INSN)) |
4413 | break; |
4414 | |
4415 | /* Our caller needs either ensure that we will find all sets |
4416 | (in case code has not been optimized yet), or take care |
4417 | for possible labels in a way by setting boundary to preceding |
4418 | CODE_LABEL. */ |
4419 | if (LABEL_P (before)(((enum rtx_code) (before)->code) == CODE_LABEL)) |
4420 | { |
4421 | gcc_assert (before == boundary)((void)(!(before == boundary) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4421, __FUNCTION__), 0 : 0)); |
4422 | break; |
4423 | } |
4424 | |
4425 | if (INSN_P (before)(((((enum rtx_code) (before)->code) == INSN) || (((enum rtx_code ) (before)->code) == JUMP_INSN) || (((enum rtx_code) (before )->code) == CALL_INSN)) || (((enum rtx_code) (before)-> code) == DEBUG_INSN))) |
4426 | { |
4427 | int nregs_old = parm.nregs; |
4428 | note_stores (before, parms_set, &parm); |
4429 | /* If we found something that did not set a parameter reg, |
4430 | we're done. Do not keep going, as that might result |
4431 | in hoisting an insn before the setting of a pseudo |
4432 | that is used by the hoisted insn. */ |
4433 | if (nregs_old != parm.nregs) |
4434 | first_set = before; |
4435 | else |
4436 | break; |
4437 | } |
4438 | } |
4439 | return first_set; |
4440 | } |
4441 | |
4442 | /* Return true if we should avoid inserting code between INSN and preceding |
4443 | call instruction. */ |
4444 | |
4445 | bool |
4446 | keep_with_call_p (const rtx_insn *insn) |
4447 | { |
4448 | rtx set; |
4449 | |
4450 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && (set = single_set (insn)) != NULLnullptr) |
4451 | { |
4452 | if (REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) |
4453 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76 |
4454 | && fixed_regs(this_target_hard_regs->x_fixed_regs)[REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx)))] |
4455 | && general_operand (SET_SRC (set)(((set)->u.fld[1]).rt_rtx), VOIDmode((void) 0, E_VOIDmode))) |
4456 | return true; |
4457 | if (REG_P (SET_SRC (set))(((enum rtx_code) ((((set)->u.fld[1]).rt_rtx))->code) == REG) |
4458 | && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set))(rhs_regno((((set)->u.fld[1]).rt_rtx)))) |
4459 | && REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) |
4460 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76) |
4461 | return true; |
4462 | /* There may be a stack pop just after the call and before the store |
4463 | of the return register. Search for the actual store when deciding |
4464 | if we can break or not. */ |
4465 | if (SET_DEST (set)(((set)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) |
4466 | { |
4467 | /* This CONST_CAST is okay because next_nonnote_insn just |
4468 | returns its argument and we assign it to a const_rtx |
4469 | variable. */ |
4470 | const rtx_insn *i2 |
4471 | = next_nonnote_insn (const_cast<rtx_insn *> (insn)); |
4472 | if (i2 && keep_with_call_p (i2)) |
4473 | return true; |
4474 | } |
4475 | } |
4476 | return false; |
4477 | } |
4478 | |
4479 | /* Return true if LABEL is a target of JUMP_INSN. This applies only |
4480 | to non-complex jumps. That is, direct unconditional, conditional, |
4481 | and tablejumps, but not computed jumps or returns. It also does |
4482 | not apply to the fallthru case of a conditional jump. */ |
4483 | |
4484 | bool |
4485 | label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn) |
4486 | { |
4487 | rtx tmp = JUMP_LABEL (jump_insn)(((jump_insn)->u.fld[7]).rt_rtx); |
4488 | rtx_jump_table_data *table; |
4489 | |
4490 | if (label == tmp) |
4491 | return true; |
4492 | |
4493 | if (tablejump_p (jump_insn, NULLnullptr, &table)) |
4494 | { |
4495 | rtvec vec = table->get_labels (); |
4496 | int i, veclen = GET_NUM_ELEM (vec)((vec)->num_elem); |
4497 | |
4498 | for (i = 0; i < veclen; ++i) |
4499 | if (XEXP (RTVEC_ELT (vec, i), 0)(((((vec)->elem[i]))->u.fld[0]).rt_rtx) == label) |
4500 | return true; |
4501 | } |
4502 | |
4503 | if (find_reg_note (jump_insn, REG_LABEL_TARGET, label)) |
4504 | return true; |
4505 | |
4506 | return false; |
4507 | } |
4508 | |
4509 | |
4510 | /* Return an estimate of the cost of computing rtx X. |
4511 | One use is in cse, to decide which expression to keep in the hash table. |
4512 | Another is in rtl generation, to pick the cheapest way to multiply. |
4513 | Other uses like the latter are expected in the future. |
4514 | |
4515 | X appears as operand OPNO in an expression with code OUTER_CODE. |
4516 | SPEED specifies whether costs optimized for speed or size should |
4517 | be returned. */ |
4518 | |
4519 | int |
4520 | rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code, |
4521 | int opno, bool speed) |
4522 | { |
4523 | int i, j; |
4524 | enum rtx_code code; |
4525 | const char *fmt; |
4526 | int total; |
4527 | int factor; |
4528 | unsigned mode_size; |
4529 | |
4530 | if (x == 0) |
4531 | return 0; |
4532 | |
4533 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) |
4534 | /* A SET doesn't have a mode, so let's look at the SET_DEST to get |
4535 | the mode for the factor. */ |
4536 | mode = GET_MODE (SET_DEST (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); |
4537 | else if (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)) |
4538 | mode = GET_MODE (x)((machine_mode) (x)->mode); |
4539 | |
4540 | mode_size = estimated_poly_value (GET_MODE_SIZE (mode)); |
4541 | |
4542 | /* A size N times larger than UNITS_PER_WORD likely needs N times as |
4543 | many insns, taking N times as long. */ |
4544 | factor = mode_size > UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) ? mode_size / UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) : 1; |
4545 | |
4546 | /* Compute the default costs of certain things. |
4547 | Note that targetm.rtx_costs can override the defaults. */ |
4548 | |
4549 | code = GET_CODE (x)((enum rtx_code) (x)->code); |
4550 | switch (code) |
4551 | { |
4552 | case MULT: |
4553 | case FMA: |
4554 | case SS_MULT: |
4555 | case US_MULT: |
4556 | case SMUL_HIGHPART: |
4557 | case UMUL_HIGHPART: |
4558 | /* Multiplication has time-complexity O(N*N), where N is the |
4559 | number of units (translated from digits) when using |
4560 | schoolbook long multiplication. */ |
4561 | total = factor * factor * COSTS_N_INSNS (5)((5) * 4); |
4562 | break; |
4563 | case DIV: |
4564 | case UDIV: |
4565 | case MOD: |
4566 | case UMOD: |
4567 | case SS_DIV: |
4568 | case US_DIV: |
4569 | /* Similarly, complexity for schoolbook long division. */ |
4570 | total = factor * factor * COSTS_N_INSNS (7)((7) * 4); |
4571 | break; |
4572 | case USE: |
4573 | /* Used in combine.cc as a marker. */ |
4574 | total = 0; |
4575 | break; |
4576 | default: |
4577 | total = factor * COSTS_N_INSNS (1)((1) * 4); |
4578 | } |
4579 | |
4580 | switch (code) |
4581 | { |
4582 | case REG: |
4583 | return 0; |
4584 | |
4585 | case SUBREG: |
4586 | total = 0; |
4587 | /* If we can't tie these modes, make this expensive. The larger |
4588 | the mode, the more expensive it is. */ |
4589 | if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) |
4590 | return COSTS_N_INSNS (2 + factor)((2 + factor) * 4); |
4591 | break; |
4592 | |
4593 | case TRUNCATE: |
4594 | if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) |
4595 | { |
4596 | total = 0; |
4597 | break; |
4598 | } |
4599 | /* FALLTHRU */ |
4600 | default: |
4601 | if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed)) |
4602 | return total; |
4603 | break; |
4604 | } |
4605 | |
4606 | /* Sum the costs of the sub-rtx's, plus cost of this operation, |
4607 | which is already in total. */ |
4608 | |
4609 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); |
4610 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) |
4611 | if (fmt[i] == 'e') |
4612 | total += rtx_cost (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), mode, code, i, speed); |
4613 | else if (fmt[i] == 'E') |
4614 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) |
4615 | total += rtx_cost (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), mode, code, i, speed); |
4616 | |
4617 | return total; |
4618 | } |
4619 | |
4620 | /* Fill in the structure C with information about both speed and size rtx |
4621 | costs for X, which is operand OPNO in an expression with code OUTER. */ |
4622 | |
4623 | void |
4624 | get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno, |
4625 | struct full_rtx_costs *c) |
4626 | { |
4627 | c->speed = rtx_cost (x, mode, outer, opno, true); |
4628 | c->size = rtx_cost (x, mode, outer, opno, false); |
4629 | } |
4630 | |
4631 | |
4632 | /* Return cost of address expression X. |
4633 | Expect that X is properly formed address reference. |
4634 | |
4635 | SPEED parameter specify whether costs optimized for speed or size should |
4636 | be returned. */ |
4637 | |
4638 | int |
4639 | address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed) |
4640 | { |
4641 | /* We may be asked for cost of various unusual addresses, such as operands |
4642 | of push instruction. It is not worthwhile to complicate writing |
4643 | of the target hook by such cases. */ |
4644 | |
4645 | if (!memory_address_addr_space_p (mode, x, as)) |
4646 | return 1000; |
4647 | |
4648 | return targetm.address_cost (x, mode, as, speed); |
4649 | } |
4650 | |
4651 | /* If the target doesn't override, compute the cost as with arithmetic. */ |
4652 | |
4653 | int |
4654 | default_address_cost (rtx x, machine_mode, addr_space_t, bool speed) |
4655 | { |
4656 | return rtx_cost (x, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))), MEM, 0, speed); |
4657 | } |
4658 | |
4659 | |
4660 | unsigned HOST_WIDE_INTlong |
4661 | nonzero_bits (const_rtx x, machine_mode mode) |
4662 | { |
4663 | if (mode == VOIDmode((void) 0, E_VOIDmode)) |
4664 | mode = GET_MODE (x)((machine_mode) (x)->mode); |
4665 | scalar_int_mode int_mode; |
4666 | if (!is_a <scalar_int_mode> (mode, &int_mode)) |
4667 | return GET_MODE_MASK (mode)mode_mask_array[mode]; |
4668 | return cached_nonzero_bits (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); |
4669 | } |
4670 | |
4671 | unsigned int |
4672 | num_sign_bit_copies (const_rtx x, machine_mode mode) |
4673 | { |
4674 | if (mode == VOIDmode((void) 0, E_VOIDmode)) |
4675 | mode = GET_MODE (x)((machine_mode) (x)->mode); |
4676 | scalar_int_mode int_mode; |
4677 | if (!is_a <scalar_int_mode> (mode, &int_mode)) |
4678 | return 1; |
4679 | return cached_num_sign_bit_copies (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); |
4680 | } |
4681 | |
4682 | /* Return true if nonzero_bits1 might recurse into both operands |
4683 | of X. */ |
4684 | |
4685 | static inline bool |
4686 | nonzero_bits_binary_arith_p (const_rtx x) |
4687 | { |
4688 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) |
4689 | return false; |
4690 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) |
4691 | { |
4692 | case AND: |
4693 | case XOR: |
4694 | case IOR: |
4695 | case UMIN: |
4696 | case UMAX: |
4697 | case SMIN: |
4698 | case SMAX: |
4699 | case PLUS: |
4700 | case MINUS: |
4701 | case MULT: |
4702 | case DIV: |
4703 | case UDIV: |
4704 | case MOD: |
4705 | case UMOD: |
4706 | return true; |
4707 | default: |
4708 | return false; |
4709 | } |
4710 | } |
4711 | |
4712 | /* The function cached_nonzero_bits is a wrapper around nonzero_bits1. |
4713 | It avoids exponential behavior in nonzero_bits1 when X has |
4714 | identical subexpressions on the first or the second level. */ |
4715 | |
4716 | static unsigned HOST_WIDE_INTlong |
4717 | cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x, |
4718 | machine_mode known_mode, |
4719 | unsigned HOST_WIDE_INTlong known_ret) |
4720 | { |
4721 | if (x == known_x && mode == known_mode) |
4722 | return known_ret; |
4723 | |
4724 | /* Try to find identical subexpressions. If found call |
4725 | nonzero_bits1 on X with the subexpressions as KNOWN_X and the |
4726 | precomputed value for the subexpression as KNOWN_RET. */ |
4727 | |
4728 | if (nonzero_bits_binary_arith_p (x)) |
4729 | { |
4730 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
4731 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); |
4732 | |
4733 | /* Check the first level. */ |
4734 | if (x0 == x1) |
4735 | return nonzero_bits1 (x, mode, x0, mode, |
4736 | cached_nonzero_bits (x0, mode, known_x, |
4737 | known_mode, known_ret)); |
4738 | |
4739 | /* Check the second level. */ |
4740 | if (nonzero_bits_binary_arith_p (x0) |
4741 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) |
4742 | return nonzero_bits1 (x, mode, x1, mode, |
4743 | cached_nonzero_bits (x1, mode, known_x, |
4744 | known_mode, known_ret)); |
4745 | |
4746 | if (nonzero_bits_binary_arith_p (x1) |
4747 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) |
4748 | return nonzero_bits1 (x, mode, x0, mode, |
4749 | cached_nonzero_bits (x0, mode, known_x, |
4750 | known_mode, known_ret)); |
4751 | } |
4752 | |
4753 | return nonzero_bits1 (x, mode, known_x, known_mode, known_ret); |
4754 | } |
4755 | |
4756 | /* We let num_sign_bit_copies recur into nonzero_bits as that is useful. |
4757 | We don't let nonzero_bits recur into num_sign_bit_copies, because that |
4758 | is less useful. We can't allow both, because that results in exponential |
4759 | run time recursion. There is a nullstone testcase that triggered |
4760 | this. This macro avoids accidental uses of num_sign_bit_copies. */ |
4761 | #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior |
4762 | |
4763 | /* Given an expression, X, compute which bits in X can be nonzero. |
4764 | We don't care about bits outside of those defined in MODE. |
4765 | |
4766 | For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is |
4767 | an arithmetic operation, we can do better. */ |
4768 | |
4769 | static unsigned HOST_WIDE_INTlong |
4770 | nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, |
4771 | machine_mode known_mode, |
4772 | unsigned HOST_WIDE_INTlong known_ret) |
4773 | { |
4774 | unsigned HOST_WIDE_INTlong nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; |
4775 | unsigned HOST_WIDE_INTlong inner_nz; |
4776 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
4777 | machine_mode inner_mode; |
4778 | unsigned int inner_width; |
4779 | scalar_int_mode xmode; |
4780 | |
4781 | unsigned int mode_width = GET_MODE_PRECISION (mode); |
4782 | |
4783 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) |
4784 | { |
4785 | if (SHORT_IMMEDIATES_SIGN_EXTEND0 |
4786 | && INTVAL (x)((x)->u.hwint[0]) > 0 |
4787 | && mode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) |
4788 | && (UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & (HOST_WIDE_INT_1U1UL << (mode_width - 1))) != 0) |
4789 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) | (HOST_WIDE_INT_M1U-1UL << mode_width); |
4790 | |
4791 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])); |
4792 | } |
4793 | |
4794 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) |
4795 | return nonzero; |
4796 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); |
4797 | |
4798 | /* If X is wider than MODE, use its mode instead. */ |
4799 | if (xmode_width > mode_width) |
4800 | { |
4801 | mode = xmode; |
4802 | nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; |
4803 | mode_width = xmode_width; |
4804 | } |
4805 | |
4806 | if (mode_width > HOST_BITS_PER_WIDE_INT64) |
4807 | /* Our only callers in this case look for single bit values. So |
4808 | just return the mode mask. Those tests will then be false. */ |
4809 | return nonzero; |
4810 | |
4811 | /* If MODE is wider than X, but both are a single word for both the host |
4812 | and target machines, we can compute this from which bits of the object |
4813 | might be nonzero in its own mode, taking into account the fact that, on |
4814 | CISC machines, accessing an object in a wider mode generally causes the |
4815 | high-order bits to become undefined, so they are not known to be zero. |
4816 | We extend this reasoning to RISC machines for operations that might not |
4817 | operate on the full registers. */ |
4818 | if (mode_width > xmode_width |
4819 | && xmode_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) |
4820 | && xmode_width <= HOST_BITS_PER_WIDE_INT64 |
4821 | && !(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) |
4822 | { |
4823 | nonzero &= cached_nonzero_bits (x, xmode, |
4824 | known_x, known_mode, known_ret); |
4825 | nonzero |= GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]; |
4826 | return nonzero; |
4827 | } |
4828 | |
4829 | /* Please keep nonzero_bits_binary_arith_p above in sync with |
4830 | the code in the switch below. */ |
4831 | switch (code) |
4832 | { |
4833 | case REG: |
4834 | #if defined(POINTERS_EXTEND_UNSIGNED1) |
4835 | /* If pointers extend unsigned and this is a pointer in Pmode, say that |
4836 | all the bits above ptr_mode are known to be zero. */ |
4837 | /* As we do not know which address space the pointer is referring to, |
4838 | we can do this only if the target does not support different pointer |
4839 | or address modes depending on the address space. */ |
4840 | if (target_default_pointer_address_modes_p () |
4841 | && POINTERS_EXTEND_UNSIGNED1 |
4842 | && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) |
4843 | && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4843, __FUNCTION__); _rtx; })->frame_related) |
4844 | && !targetm.have_ptr_extend ()) |
4845 | nonzero &= GET_MODE_MASK (ptr_mode)mode_mask_array[ptr_mode]; |
4846 | #endif |
4847 | |
4848 | /* Include declared information about alignment of pointers. */ |
4849 | /* ??? We don't properly preserve REG_POINTER changes across |
4850 | pointer-to-integer casts, so we can't trust it except for |
4851 | things that we know must be pointers. See execute/960116-1.c. */ |
4852 | if ((x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) |
4853 | || x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) |
4854 | || x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER])) |
4855 | && REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))])) |
4856 | { |
4857 | unsigned HOST_WIDE_INTlong alignment |
4858 | = REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))]) / BITS_PER_UNIT(8); |
4859 | |
4860 | #ifdef PUSH_ROUNDING |
4861 | /* If PUSH_ROUNDING is defined, it is possible for the |
4862 | stack to be momentarily aligned only to that amount, |
4863 | so we pick the least alignment. */ |
4864 | if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && targetm.calls.push_argument (0)) |
4865 | { |
4866 | poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1))ix86_push_rounding (poly_int64 (1)); |
4867 | alignment = MIN (known_alignment (rounded_1), alignment)((known_alignment (rounded_1)) < (alignment) ? (known_alignment (rounded_1)) : (alignment)); |
4868 | } |
4869 | #endif |
4870 | |
4871 | nonzero &= ~(alignment - 1); |
4872 | } |
4873 | |
4874 | { |
4875 | unsigned HOST_WIDE_INTlong nonzero_for_hook = nonzero; |
4876 | rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode, |
4877 | &nonzero_for_hook); |
4878 | |
4879 | if (new_rtx) |
4880 | nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x, |
4881 | known_mode, known_ret); |
4882 | |
4883 | return nonzero_for_hook; |
4884 | } |
4885 | |
4886 | case MEM: |
4887 | /* In many, if not most, RISC machines, reading a byte from memory |
4888 | zeros the rest of the register. Noticing that fact saves a lot |
4889 | of extra zero-extends. */ |
4890 | if (load_extend_op (xmode) == ZERO_EXTEND) |
4891 | nonzero &= GET_MODE_MASK (xmode)mode_mask_array[xmode]; |
4892 | break; |
4893 | |
4894 | case EQ: case NE: |
4895 | case UNEQ: case LTGT: |
4896 | case GT: case GTU: case UNGT: |
4897 | case LT: case LTU: case UNLT: |
4898 | case GE: case GEU: case UNGE: |
4899 | case LE: case LEU: case UNLE: |
4900 | case UNORDERED: case ORDERED: |
4901 | /* If this produces an integer result, we know which bits are set. |
4902 | Code here used to clear bits outside the mode of X, but that is |
4903 | now done above. */ |
4904 | /* Mind that MODE is the mode the caller wants to look at this |
4905 | operation in, and not the actual operation mode. We can wind |
4906 | up with (subreg:DI (gt:V4HI x y)), and we don't have anything |
4907 | that describes the results of a vector compare. */ |
4908 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) == MODE_INT |
4909 | && mode_width <= HOST_BITS_PER_WIDE_INT64) |
4910 | nonzero = STORE_FLAG_VALUE1; |
4911 | break; |
4912 | |
4913 | case NEG: |
4914 | #if 0 |
4915 | /* Disabled to avoid exponential mutual recursion between nonzero_bits |
4916 | and num_sign_bit_copies. */ |
4917 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) |
4918 | nonzero = 1; |
4919 | #endif |
4920 | |
4921 | if (xmode_width < mode_width) |
4922 | nonzero |= (GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]); |
4923 | break; |
4924 | |
4925 | case ABS: |
4926 | #if 0 |
4927 | /* Disabled to avoid exponential mutual recursion between nonzero_bits |
4928 | and num_sign_bit_copies. */ |
4929 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) |
4930 | nonzero = 1; |
4931 | #endif |
4932 | break; |
4933 | |
4934 | case TRUNCATE: |
4935 | nonzero &= (cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4936 | known_x, known_mode, known_ret) |
4937 | & GET_MODE_MASK (mode)mode_mask_array[mode]); |
4938 | break; |
4939 | |
4940 | case ZERO_EXTEND: |
4941 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4942 | known_x, known_mode, known_ret); |
4943 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) |
4944 | nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; |
4945 | break; |
4946 | |
4947 | case SIGN_EXTEND: |
4948 | /* If the sign bit is known clear, this is the same as ZERO_EXTEND. |
4949 | Otherwise, show all the bits in the outer mode but not the inner |
4950 | may be nonzero. */ |
4951 | inner_nz = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4952 | known_x, known_mode, known_ret); |
4953 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) |
4954 | { |
4955 | inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; |
4956 | if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), inner_nz)) |
4957 | inner_nz |= (GET_MODE_MASK (mode)mode_mask_array[mode] |
4958 | & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]); |
4959 | } |
4960 | |
4961 | nonzero &= inner_nz; |
4962 | break; |
4963 | |
4964 | case AND: |
4965 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4966 | known_x, known_mode, known_ret) |
4967 | & cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
4968 | known_x, known_mode, known_ret); |
4969 | break; |
4970 | |
4971 | case XOR: case IOR: |
4972 | case UMIN: case UMAX: case SMIN: case SMAX: |
4973 | { |
4974 | unsigned HOST_WIDE_INTlong nonzero0 |
4975 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4976 | known_x, known_mode, known_ret); |
4977 | |
4978 | /* Don't call nonzero_bits for the second time if it cannot change |
4979 | anything. */ |
4980 | if ((nonzero & nonzero0) != nonzero) |
4981 | nonzero &= nonzero0 |
4982 | | cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
4983 | known_x, known_mode, known_ret); |
4984 | } |
4985 | break; |
4986 | |
4987 | case PLUS: case MINUS: |
4988 | case MULT: |
4989 | case DIV: case UDIV: |
4990 | case MOD: case UMOD: |
4991 | /* We can apply the rules of arithmetic to compute the number of |
4992 | high- and low-order zero bits of these operations. We start by |
4993 | computing the width (position of the highest-order nonzero bit) |
4994 | and the number of low-order zero bits for each value. */ |
4995 | { |
4996 | unsigned HOST_WIDE_INTlong nz0 |
4997 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
4998 | known_x, known_mode, known_ret); |
4999 | unsigned HOST_WIDE_INTlong nz1 |
5000 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5001 | known_x, known_mode, known_ret); |
5002 | int sign_index = xmode_width - 1; |
5003 | int width0 = floor_log2 (nz0) + 1; |
5004 | int width1 = floor_log2 (nz1) + 1; |
5005 | int low0 = ctz_or_zero (nz0); |
5006 | int low1 = ctz_or_zero (nz1); |
5007 | unsigned HOST_WIDE_INTlong op0_maybe_minusp |
5008 | = nz0 & (HOST_WIDE_INT_1U1UL << sign_index); |
5009 | unsigned HOST_WIDE_INTlong op1_maybe_minusp |
5010 | = nz1 & (HOST_WIDE_INT_1U1UL << sign_index); |
5011 | unsigned int result_width = mode_width; |
5012 | int result_low = 0; |
5013 | |
5014 | switch (code) |
5015 | { |
5016 | case PLUS: |
5017 | result_width = MAX (width0, width1)((width0) > (width1) ? (width0) : (width1)) + 1; |
5018 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); |
5019 | break; |
5020 | case MINUS: |
5021 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); |
5022 | break; |
5023 | case MULT: |
5024 | result_width = width0 + width1; |
5025 | result_low = low0 + low1; |
5026 | break; |
5027 | case DIV: |
5028 | if (width1 == 0) |
5029 | break; |
5030 | if (!op0_maybe_minusp && !op1_maybe_minusp) |
5031 | result_width = width0; |
5032 | break; |
5033 | case UDIV: |
5034 | if (width1 == 0) |
5035 | break; |
5036 | result_width = width0; |
5037 | break; |
5038 | case MOD: |
5039 | if (width1 == 0) |
5040 | break; |
5041 | if (!op0_maybe_minusp && !op1_maybe_minusp) |
5042 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); |
5043 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); |
5044 | break; |
5045 | case UMOD: |
5046 | if (width1 == 0) |
5047 | break; |
5048 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); |
5049 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); |
5050 | break; |
5051 | default: |
5052 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5052, __FUNCTION__)); |
5053 | } |
5054 | |
5055 | /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */ |
5056 | if (result_width < mode_width) |
5057 | nonzero &= (HOST_WIDE_INT_1U1UL << result_width) - 1; |
5058 | |
5059 | if (result_low > 0) |
5060 | { |
5061 | if (result_low < HOST_BITS_PER_WIDE_INT64) |
5062 | nonzero &= ~((HOST_WIDE_INT_1U1UL << result_low) - 1); |
5063 | else |
5064 | nonzero = 0; |
5065 | } |
5066 | } |
5067 | break; |
5068 | |
5069 | case ZERO_EXTRACT: |
5070 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5071 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64) |
5072 | nonzero &= (HOST_WIDE_INT_1U1UL << INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0])) - 1; |
5073 | break; |
5074 | |
5075 | case SUBREG: |
5076 | /* If this is a SUBREG formed for a promoted variable that has |
5077 | been zero-extended, we know that at least the high-order bits |
5078 | are zero, though others might be too. */ |
5079 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_UNSIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_UNSIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->volatil)) |
5080 | nonzero = GET_MODE_MASK (xmode)mode_mask_array[xmode] |
5081 | & cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), xmode, |
5082 | known_x, known_mode, known_ret); |
5083 | |
5084 | /* If the inner mode is a single word for both the host and target |
5085 | machines, we can compute this from which bits of the inner |
5086 | object might be nonzero. */ |
5087 | inner_mode = GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); |
5088 | if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width) |
5089 | && inner_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) |
5090 | && inner_width <= HOST_BITS_PER_WIDE_INT64) |
5091 | { |
5092 | nonzero &= cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, |
5093 | known_x, known_mode, known_ret); |
5094 | |
5095 | /* On a typical CISC machine, accessing an object in a wider mode |
5096 | causes the high-order bits to become undefined. So they are |
5097 | not known to be zero. |
5098 | |
5099 | On a typical RISC machine, we only have to worry about the way |
5100 | loads are extended. Otherwise, if we get a reload for the inner |
5101 | part, it may be loaded from the stack, and then we may lose all |
5102 | the zero bits that existed before the store to the stack. */ |
5103 | rtx_code extend_op; |
5104 | if ((!WORD_REGISTER_OPERATIONS0 |
5105 | || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND |
5106 | ? val_signbit_known_set_p (inner_mode, nonzero) |
5107 | : extend_op != ZERO_EXTEND) |
5108 | || !MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) |
5109 | && xmode_width > inner_width) |
5110 | nonzero |
5111 | |= (GET_MODE_MASK (GET_MODE (x))mode_mask_array[((machine_mode) (x)->mode)] & ~GET_MODE_MASK (inner_mode)mode_mask_array[inner_mode]); |
5112 | } |
5113 | break; |
5114 | |
5115 | case ASHIFT: |
5116 | case ASHIFTRT: |
5117 | case LSHIFTRT: |
5118 | case ROTATE: |
5119 | case ROTATERT: |
5120 | /* The nonzero bits are in two classes: any bits within MODE |
5121 | that aren't in xmode are always significant. The rest of the |
5122 | nonzero bits are those that are significant in the operand of |
5123 | the shift when shifted the appropriate number of bits. This |
5124 | shows that high-order bits are cleared by the right shift and |
5125 | low-order bits by left shifts. */ |
5126 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5127 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 |
5128 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64 |
5129 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < xmode_width) |
5130 | { |
5131 | int count = INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); |
5132 | unsigned HOST_WIDE_INTlong mode_mask = GET_MODE_MASK (xmode)mode_mask_array[xmode]; |
5133 | unsigned HOST_WIDE_INTlong op_nonzero |
5134 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5135 | known_x, known_mode, known_ret); |
5136 | unsigned HOST_WIDE_INTlong inner = op_nonzero & mode_mask; |
5137 | unsigned HOST_WIDE_INTlong outer = 0; |
5138 | |
5139 | if (mode_width > xmode_width) |
5140 | outer = (op_nonzero & nonzero & ~mode_mask); |
5141 | |
5142 | switch (code) |
5143 | { |
5144 | case ASHIFT: |
5145 | inner <<= count; |
5146 | break; |
5147 | |
5148 | case LSHIFTRT: |
5149 | inner >>= count; |
5150 | break; |
5151 | |
5152 | case ASHIFTRT: |
5153 | inner >>= count; |
5154 | |
5155 | /* If the sign bit may have been nonzero before the shift, we |
5156 | need to mark all the places it could have been copied to |
5157 | by the shift as possibly nonzero. */ |
5158 | if (inner & (HOST_WIDE_INT_1U1UL << (xmode_width - 1 - count))) |
5159 | inner |= (((HOST_WIDE_INT_1U1UL << count) - 1) |
5160 | << (xmode_width - count)); |
5161 | break; |
5162 | |
5163 | case ROTATE: |
5164 | inner = (inner << (count % xmode_width) |
5165 | | (inner >> (xmode_width - (count % xmode_width)))) |
5166 | & mode_mask; |
5167 | break; |
5168 | |
5169 | case ROTATERT: |
5170 | inner = (inner >> (count % xmode_width) |
5171 | | (inner << (xmode_width - (count % xmode_width)))) |
5172 | & mode_mask; |
5173 | break; |
5174 | |
5175 | default: |
5176 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5176, __FUNCTION__)); |
5177 | } |
5178 | |
5179 | nonzero &= (outer | inner); |
5180 | } |
5181 | break; |
5182 | |
5183 | case FFS: |
5184 | case POPCOUNT: |
5185 | /* This is at most the number of bits in the mode. */ |
5186 | nonzero = ((unsigned HOST_WIDE_INTlong) 2 << (floor_log2 (mode_width))) - 1; |
5187 | break; |
5188 | |
5189 | case CLZ: |
5190 | /* If CLZ has a known value at zero, then the nonzero bits are |
5191 | that value, plus the number of bits in the mode minus one. */ |
5192 | if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 35)) != 0) ? 2 : 0)) |
5193 | nonzero |
5194 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; |
5195 | else |
5196 | nonzero = -1; |
5197 | break; |
5198 | |
5199 | case CTZ: |
5200 | /* If CTZ has a known value at zero, then the nonzero bits are |
5201 | that value, plus the number of bits in the mode minus one. */ |
5202 | if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 23)) != 0) ? 2 : 0)) |
5203 | nonzero |
5204 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; |
5205 | else |
5206 | nonzero = -1; |
5207 | break; |
5208 | |
5209 | case CLRSB: |
5210 | /* This is at most the number of bits in the mode minus 1. */ |
5211 | nonzero = (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; |
5212 | break; |
5213 | |
5214 | case PARITY: |
5215 | nonzero = 1; |
5216 | break; |
5217 | |
5218 | case IF_THEN_ELSE: |
5219 | { |
5220 | unsigned HOST_WIDE_INTlong nonzero_true |
5221 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5222 | known_x, known_mode, known_ret); |
5223 | |
5224 | /* Don't call nonzero_bits for the second time if it cannot change |
5225 | anything. */ |
5226 | if ((nonzero & nonzero_true) != nonzero) |
5227 | nonzero &= nonzero_true |
5228 | | cached_nonzero_bits (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), mode, |
5229 | known_x, known_mode, known_ret); |
5230 | } |
5231 | break; |
5232 | |
5233 | default: |
5234 | break; |
5235 | } |
5236 | |
5237 | return nonzero; |
5238 | } |
5239 | |
5240 | /* See the macro definition above. */ |
5241 | #undef cached_num_sign_bit_copies |
5242 | |
5243 | |
5244 | /* Return true if num_sign_bit_copies1 might recurse into both operands |
5245 | of X. */ |
5246 | |
5247 | static inline bool |
5248 | num_sign_bit_copies_binary_arith_p (const_rtx x) |
5249 | { |
5250 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) |
5251 | return false; |
5252 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) |
5253 | { |
5254 | case IOR: |
5255 | case AND: |
5256 | case XOR: |
5257 | case SMIN: |
5258 | case SMAX: |
5259 | case UMIN: |
5260 | case UMAX: |
5261 | case PLUS: |
5262 | case MINUS: |
5263 | case MULT: |
5264 | return true; |
5265 | default: |
5266 | return false; |
5267 | } |
5268 | } |
5269 | |
5270 | /* The function cached_num_sign_bit_copies is a wrapper around |
5271 | num_sign_bit_copies1. It avoids exponential behavior in |
5272 | num_sign_bit_copies1 when X has identical subexpressions on the |
5273 | first or the second level. */ |
5274 | |
5275 | static unsigned int |
5276 | cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode, |
5277 | const_rtx known_x, machine_mode known_mode, |
5278 | unsigned int known_ret) |
5279 | { |
5280 | if (x == known_x && mode == known_mode) |
5281 | return known_ret; |
5282 | |
5283 | /* Try to find identical subexpressions. If found call |
5284 | num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and |
5285 | the precomputed value for the subexpression as KNOWN_RET. */ |
5286 | |
5287 | if (num_sign_bit_copies_binary_arith_p (x)) |
5288 | { |
5289 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); |
5290 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); |
5291 | |
5292 | /* Check the first level. */ |
5293 | if (x0 == x1) |
5294 | return |
5295 | num_sign_bit_copies1 (x, mode, x0, mode, |
5296 | cached_num_sign_bit_copies (x0, mode, known_x, |
5297 | known_mode, |
5298 | known_ret)); |
5299 | |
5300 | /* Check the second level. */ |
5301 | if (num_sign_bit_copies_binary_arith_p (x0) |
5302 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) |
5303 | return |
5304 | num_sign_bit_copies1 (x, mode, x1, mode, |
5305 | cached_num_sign_bit_copies (x1, mode, known_x, |
5306 | known_mode, |
5307 | known_ret)); |
5308 | |
5309 | if (num_sign_bit_copies_binary_arith_p (x1) |
5310 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) |
5311 | return |
5312 | num_sign_bit_copies1 (x, mode, x0, mode, |
5313 | cached_num_sign_bit_copies (x0, mode, known_x, |
5314 | known_mode, |
5315 | known_ret)); |
5316 | } |
5317 | |
5318 | return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret); |
5319 | } |
5320 | |
5321 | /* Return the number of bits at the high-order end of X that are known to |
5322 | be equal to the sign bit. X will be used in mode MODE. The returned |
5323 | value will always be between 1 and the number of bits in MODE. */ |
5324 | |
5325 | static unsigned int |
5326 | num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, |
5327 | machine_mode known_mode, |
5328 | unsigned int known_ret) |
5329 | { |
5330 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); |
5331 | unsigned int bitwidth = GET_MODE_PRECISION (mode); |
5332 | int num0, num1, result; |
5333 | unsigned HOST_WIDE_INTlong nonzero; |
5334 | |
5335 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) |
5336 | { |
5337 | /* If the constant is negative, take its 1's complement and remask. |
5338 | Then see how many zero bits we have. */ |
5339 | nonzero = UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & GET_MODE_MASK (mode)mode_mask_array[mode]; |
5340 | if (bitwidth <= HOST_BITS_PER_WIDE_INT64 |
5341 | && (nonzero & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) |
5342 | nonzero = (~nonzero) & GET_MODE_MASK (mode)mode_mask_array[mode]; |
5343 | |
5344 | return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); |
5345 | } |
5346 | |
5347 | scalar_int_mode xmode, inner_mode; |
5348 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) |
5349 | return 1; |
5350 | |
5351 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); |
5352 | |
5353 | /* For a smaller mode, just ignore the high bits. */ |
5354 | if (bitwidth < xmode_width) |
5355 | { |
5356 | num0 = cached_num_sign_bit_copies (x, xmode, |
5357 | known_x, known_mode, known_ret); |
5358 | return MAX (1, num0 - (int) (xmode_width - bitwidth))((1) > (num0 - (int) (xmode_width - bitwidth)) ? (1) : (num0 - (int) (xmode_width - bitwidth))); |
5359 | } |
5360 | |
5361 | if (bitwidth > xmode_width) |
5362 | { |
5363 | /* If this machine does not do all register operations on the entire |
5364 | register and MODE is wider than the mode of X, we can say nothing |
5365 | at all about the high-order bits. We extend this reasoning to RISC |
5366 | machines for operations that might not operate on full registers. */ |
5367 | if (!(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) |
5368 | return 1; |
5369 | |
5370 | /* Likewise on machines that do, if the mode of the object is smaller |
5371 | than a word and loads of that size don't sign extend, we can say |
5372 | nothing about the high order bits. */ |
5373 | if (xmode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) |
5374 | && load_extend_op (xmode) != SIGN_EXTEND) |
5375 | return 1; |
5376 | } |
5377 | |
5378 | /* Please keep num_sign_bit_copies_binary_arith_p above in sync with |
5379 | the code in the switch below. */ |
5380 | switch (code) |
5381 | { |
5382 | case REG: |
5383 | |
5384 | #if defined(POINTERS_EXTEND_UNSIGNED1) |
5385 | /* If pointers extend signed and this is a pointer in Pmode, say that |
5386 | all the bits above ptr_mode are known to be sign bit copies. */ |
5387 | /* As we do not know which address space the pointer is referring to, |
5388 | we can do this only if the target does not support different pointer |
5389 | or address modes depending on the address space. */ |
5390 | if (target_default_pointer_address_modes_p () |
5391 | && ! POINTERS_EXTEND_UNSIGNED1 && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) |
5392 | && mode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5392, __FUNCTION__); _rtx; })->frame_related) |
5393 | && !targetm.have_ptr_extend ()) |
5394 | return GET_MODE_PRECISION (Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode)))) - GET_MODE_PRECISION (ptr_mode) + 1; |
5395 | #endif |
5396 | |
5397 | { |
5398 | unsigned int copies_for_hook = 1, copies = 1; |
5399 | rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode, |
5400 | &copies_for_hook); |
5401 | |
5402 | if (new_rtx) |
5403 | copies = cached_num_sign_bit_copies (new_rtx, mode, known_x, |
5404 | known_mode, known_ret); |
5405 | |
5406 | if (copies > 1 || copies_for_hook > 1) |
5407 | return MAX (copies, copies_for_hook)((copies) > (copies_for_hook) ? (copies) : (copies_for_hook )); |
5408 | |
5409 | /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */ |
5410 | } |
5411 | break; |
5412 | |
5413 | case MEM: |
5414 | /* Some RISC machines sign-extend all loads of smaller than a word. */ |
5415 | if (load_extend_op (xmode) == SIGN_EXTEND) |
5416 | return MAX (1, ((int) bitwidth - (int) xmode_width + 1))((1) > (((int) bitwidth - (int) xmode_width + 1)) ? (1) : ( ((int) bitwidth - (int) xmode_width + 1))); |
5417 | break; |
5418 | |
5419 | case SUBREG: |
5420 | /* If this is a SUBREG for a promoted object that is sign-extended |
5421 | and we are looking at it in a wider mode, we know that at least the |
5422 | high-order bits are known to be sign bit copies. */ |
5423 | |
5424 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_SIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_SIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->unchanging)) |
5425 | { |
5426 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, |
5427 | known_x, known_mode, known_ret); |
5428 | return MAX ((int) bitwidth - (int) xmode_width + 1, num0)(((int) bitwidth - (int) xmode_width + 1) > (num0) ? ((int ) bitwidth - (int) xmode_width + 1) : (num0)); |
5429 | } |
5430 | |
5431 | if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) |
5432 | { |
5433 | /* For a smaller object, just ignore the high bits. */ |
5434 | if (bitwidth <= GET_MODE_PRECISION (inner_mode)) |
5435 | { |
5436 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), inner_mode, |
5437 | known_x, known_mode, |
5438 | known_ret); |
5439 | return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) |
5440 | - bitwidth))((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))); |
5441 | } |
5442 | |
5443 | /* For paradoxical SUBREGs on machines where all register operations |
5444 | affect the entire register, just look inside. Note that we are |
5445 | passing MODE to the recursive call, so the number of sign bit |
5446 | copies will remain relative to that mode, not the inner mode. |
5447 | |
5448 | This works only if loads sign extend. Otherwise, if we get a |
5449 | reload for the inner part, it may be loaded from the stack, and |
5450 | then we lose all sign bit copies that existed before the store |
5451 | to the stack. */ |
5452 | if (WORD_REGISTER_OPERATIONS0 |
5453 | && load_extend_op (inner_mode) == SIGN_EXTEND |
5454 | && paradoxical_subreg_p (x) |
5455 | && MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) |
5456 | return cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, |
5457 | known_x, known_mode, known_ret); |
5458 | } |
5459 | break; |
5460 | |
5461 | case SIGN_EXTRACT: |
5462 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) |
5463 | return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)))((1) > ((int) bitwidth - (((((x)->u.fld[1]).rt_rtx))-> u.hwint[0])) ? (1) : ((int) bitwidth - (((((x)->u.fld[1]). rt_rtx))->u.hwint[0]))); |
5464 | break; |
5465 | |
5466 | case SIGN_EXTEND: |
5467 | if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) |
5468 | return (bitwidth - GET_MODE_PRECISION (inner_mode) |
5469 | + cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, |
5470 | known_x, known_mode, known_ret)); |
5471 | break; |
5472 | |
5473 | case TRUNCATE: |
5474 | /* For a smaller object, just ignore the high bits. */ |
5475 | inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); |
5476 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, |
5477 | known_x, known_mode, known_ret); |
5478 | return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))) |
5479 | - bitwidth)))((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))); |
5480 | |
5481 | case NOT: |
5482 | return cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5483 | known_x, known_mode, known_ret); |
5484 | |
5485 | case ROTATE: case ROTATERT: |
5486 | /* If we are rotating left by a number of bits less than the number |
5487 | of sign bit copies, we can just subtract that amount from the |
5488 | number. */ |
5489 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5490 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 |
5491 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < (int) bitwidth) |
5492 | { |
5493 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5494 | known_x, known_mode, known_ret); |
5495 | return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))) |
5496 | : (int) bitwidth - INTVAL (XEXP (x, 1))))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))); |
5497 | } |
5498 | break; |
5499 | |
5500 | case NEG: |
5501 | /* In general, this subtracts one sign bit copy. But if the value |
5502 | is known to be positive, the number of sign bit copies is the |
5503 | same as that of the input. Finally, if the input has just one bit |
5504 | that might be nonzero, all the bits are copies of the sign bit. */ |
5505 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5506 | known_x, known_mode, known_ret); |
5507 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) |
5508 | return num0 > 1 ? num0 - 1 : 1; |
5509 | |
5510 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); |
5511 | if (nonzero == 1) |
5512 | return bitwidth; |
5513 | |
5514 | if (num0 > 1 |
5515 | && ((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero)) |
5516 | num0--; |
5517 | |
5518 | return num0; |
5519 | |
5520 | case IOR: case AND: case XOR: |
5521 | case SMIN: case SMAX: case UMIN: case UMAX: |
5522 | /* Logical operations will preserve the number of sign-bit copies. |
5523 | MIN and MAX operations always return one of the operands. */ |
5524 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5525 | known_x, known_mode, known_ret); |
5526 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5527 | known_x, known_mode, known_ret); |
5528 | |
5529 | /* If num1 is clearing some of the top bits then regardless of |
5530 | the other term, we are guaranteed to have at least that many |
5531 | high-order zero bits. */ |
5532 | if (code == AND |
5533 | && num1 > 1 |
5534 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 |
5535 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5536 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) |
5537 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) == 0) |
5538 | return num1; |
5539 | |
5540 | /* Similarly for IOR when setting high-order bits. */ |
5541 | if (code == IOR |
5542 | && num1 > 1 |
5543 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 |
5544 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5545 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) |
5546 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) |
5547 | return num1; |
5548 | |
5549 | return MIN (num0, num1)((num0) < (num1) ? (num0) : (num1)); |
5550 | |
5551 | case PLUS: case MINUS: |
5552 | /* For addition and subtraction, we can have a 1-bit carry. However, |
5553 | if we are subtracting 1 from a positive number, there will not |
5554 | be such a carry. Furthermore, if the positive number is known to |
5555 | be 0 or 1, we know the result is either -1 or 0. */ |
5556 | |
5557 | if (code == PLUS && XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == constm1_rtx(const_int_rtx[64 -1]) |
5558 | && bitwidth <= HOST_BITS_PER_WIDE_INT64) |
5559 | { |
5560 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); |
5561 | if (((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero) == 0) |
5562 | return (nonzero == 1 || nonzero == 0 ? bitwidth |
5563 | : bitwidth - floor_log2 (nonzero) - 1); |
5564 | } |
5565 | |
5566 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5567 | known_x, known_mode, known_ret); |
5568 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5569 | known_x, known_mode, known_ret); |
5570 | result = MAX (1, MIN (num0, num1) - 1)((1) > (((num0) < (num1) ? (num0) : (num1)) - 1) ? (1) : (((num0) < (num1) ? (num0) : (num1)) - 1)); |
5571 | |
5572 | return result; |
5573 | |
5574 | case MULT: |
5575 | /* The number of bits of the product is the sum of the number of |
5576 | bits of both terms. However, unless one of the terms if known |
5577 | to be positive, we must allow for an additional bit since negating |
5578 | a negative number can remove one sign bit copy. */ |
5579 | |
5580 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5581 | known_x, known_mode, known_ret); |
5582 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5583 | known_x, known_mode, known_ret); |
5584 | |
5585 | result = bitwidth - (bitwidth - num0) - (bitwidth - num1); |
5586 | if (result > 0 |
5587 | && (bitwidth > HOST_BITS_PER_WIDE_INT64 |
5588 | || (((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) |
5589 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) |
5590 | && ((nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) |
5591 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) |
5592 | != 0)))) |
5593 | result--; |
5594 | |
5595 | return MAX (1, result)((1) > (result) ? (1) : (result)); |
5596 | |
5597 | case UDIV: |
5598 | /* The result must be <= the first operand. If the first operand |
5599 | has the high bit set, we know nothing about the number of sign |
5600 | bit copies. */ |
5601 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) |
5602 | return 1; |
5603 | else if ((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) |
5604 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) |
5605 | return 1; |
5606 | else |
5607 | return cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5608 | known_x, known_mode, known_ret); |
5609 | |
5610 | case UMOD: |
5611 | /* The result must be <= the second operand. If the second operand |
5612 | has (or just might have) the high bit set, we know nothing about |
5613 | the number of sign bit copies. */ |
5614 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) |
5615 | return 1; |
5616 | else if ((nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) |
5617 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) |
5618 | return 1; |
5619 | else |
5620 | return cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5621 | known_x, known_mode, known_ret); |
5622 | |
5623 | case DIV: |
5624 | /* Similar to unsigned division, except that we have to worry about |
5625 | the case where the divisor is negative, in which case we have |
5626 | to add 1. */ |
5627 | result = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5628 | known_x, known_mode, known_ret); |
5629 | if (result > 1 |
5630 | && (bitwidth > HOST_BITS_PER_WIDE_INT64 |
5631 | || (nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) |
5632 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0)) |
5633 | result--; |
5634 | |
5635 | return result; |
5636 | |
5637 | case MOD: |
5638 | result = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5639 | known_x, known_mode, known_ret); |
5640 | if (result > 1 |
5641 | && (bitwidth > HOST_BITS_PER_WIDE_INT64 |
5642 | || (nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) |
5643 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0)) |
5644 | result--; |
5645 | |
5646 | return result; |
5647 | |
5648 | case ASHIFTRT: |
5649 | /* Shifts by a constant add to the number of bits equal to the |
5650 | sign bit. */ |
5651 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5652 | known_x, known_mode, known_ret); |
5653 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5654 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) > 0 |
5655 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < xmode_width) |
5656 | num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)))(((int) bitwidth) < (num0 + (((((x)->u.fld[1]).rt_rtx)) ->u.hwint[0])) ? ((int) bitwidth) : (num0 + (((((x)->u. fld[1]).rt_rtx))->u.hwint[0]))); |
5657 | |
5658 | return num0; |
5659 | |
5660 | case ASHIFT: |
5661 | /* Left shifts destroy copies. */ |
5662 | if (!CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) |
5663 | || INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < 0 |
5664 | || INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= (int) bitwidth |
5665 | || INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= xmode_width) |
5666 | return 1; |
5667 | |
5668 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, |
5669 | known_x, known_mode, known_ret); |
5670 | return MAX (1, num0 - INTVAL (XEXP (x, 1)))((1) > (num0 - (((((x)->u.fld[1]).rt_rtx))->u.hwint[ 0])) ? (1) : (num0 - (((((x)->u.fld[1]).rt_rtx))->u.hwint [0]))); |
5671 | |
5672 | case IF_THEN_ELSE: |
5673 | num0 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, |
5674 | known_x, known_mode, known_ret); |
5675 | num1 = cached_num_sign_bit_copies (XEXP ( |