Bug Summary

File:build/gcc/loop-iv.cc
Warning:line 517, column 19
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-suse-linux -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name loop-iv.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -resource-dir /usr/lib64/clang/15.0.7 -D IN_GCC -D HAVE_CONFIG_H -I . -I . -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/. -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcpp/include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcody -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber/bid -I ../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libbacktrace -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13 -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/x86_64-suse-linux -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/backward -internal-isystem /usr/lib64/clang/15.0.7/include -internal-isystem /usr/local/include -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../x86_64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-narrowing -Wwrite-strings -Wno-long-long -Wno-variadic-macros -Wno-overlength-strings -fdeprecated-macro -fdebug-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=plist-html -analyzer-config silence-checkers=core.NullDereference -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /buildworker/marxinbox-gcc-clang-static-analyzer/objdir/clang-static-analyzer/2023-03-27-141847-20772-1/report-XW2GA9.plist -x c++ /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc
1/* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
37
38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used by
48 EXPR must also be used in INSN. MODE is the mode of EXPR.
49*/
50
51#include "config.h"
52#include "system.h"
53#include "coretypes.h"
54#include "backend.h"
55#include "rtl.h"
56#include "df.h"
57#include "memmodel.h"
58#include "emit-rtl.h"
59#include "diagnostic-core.h"
60#include "cfgloop.h"
61#include "intl.h"
62#include "dumpfile.h"
63#include "rtl-iter.h"
64#include "tree-ssa-loop-niter.h"
65#include "regs.h"
66#include "function-abi.h"
67
68/* Possible return values of iv_get_reaching_def. */
69
70enum iv_grd_result
71{
72 /* More than one reaching def, or reaching def that does not
73 dominate the use. */
74 GRD_INVALID,
75
76 /* The use is trivial invariant of the loop, i.e. is not changed
77 inside the loop. */
78 GRD_INVARIANT,
79
80 /* The use is reached by initial value and a value from the
81 previous iteration. */
82 GRD_MAYBE_BIV,
83
84 /* The use has single dominating def. */
85 GRD_SINGLE_DOM
86};
87
88/* Information about a biv. */
89
90class biv_entry
91{
92public:
93 unsigned regno; /* The register of the biv. */
94 class rtx_iv iv; /* Value of the biv. */
95};
96
97static bool clean_slate = true;
98
99static unsigned int iv_ref_table_size = 0;
100
101/* Table of rtx_ivs indexed by the df_ref uid field. */
102static class rtx_iv ** iv_ref_table;
103
104/* Induction variable stored at the reference. */
105#define DF_REF_IV(REF)iv_ref_table[((REF)->base.id)] iv_ref_table[DF_REF_ID (REF)((REF)->base.id)]
106#define DF_REF_IV_SET(REF, IV)iv_ref_table[((REF)->base.id)] = (IV) iv_ref_table[DF_REF_ID (REF)((REF)->base.id)] = (IV)
107
108/* The current loop. */
109
110static class loop *current_loop;
111
112/* Hashtable helper. */
113
114struct biv_entry_hasher : free_ptr_hash <biv_entry>
115{
116 typedef rtx_def *compare_type;
117 static inline hashval_t hash (const biv_entry *);
118 static inline bool equal (const biv_entry *, const rtx_def *);
119};
120
121/* Returns hash value for biv B. */
122
123inline hashval_t
124biv_entry_hasher::hash (const biv_entry *b)
125{
126 return b->regno;
127}
128
129/* Compares biv B and register R. */
130
131inline bool
132biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
133{
134 return b->regno == REGNO (r)(rhs_regno(r));
135}
136
137/* Bivs of the current loop. */
138
139static hash_table<biv_entry_hasher> *bivs;
140
141static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, class rtx_iv *);
142
143/* Return the RTX code corresponding to the IV extend code EXTEND. */
144static inline enum rtx_code
145iv_extend_to_rtx_code (enum iv_extend_code extend)
146{
147 switch (extend)
148 {
149 case IV_SIGN_EXTEND:
150 return SIGN_EXTEND;
151 case IV_ZERO_EXTEND:
152 return ZERO_EXTEND;
153 case IV_UNKNOWN_EXTEND:
154 return UNKNOWN;
155 }
156 gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 156, __FUNCTION__))
;
157}
158
159/* Dumps information about IV to FILE. */
160
161extern void dump_iv_info (FILE *, class rtx_iv *);
162void
163dump_iv_info (FILE *file, class rtx_iv *iv)
164{
165 if (!iv->base)
166 {
167 fprintf (file, "not simple");
168 return;
169 }
170
171 if (iv->step == const0_rtx(const_int_rtx[64])
172 && !iv->first_special)
173 fprintf (file, "invariant ");
174
175 print_rtl (file, iv->base);
176 if (iv->step != const0_rtx(const_int_rtx[64]))
177 {
178 fprintf (file, " + ");
179 print_rtl (file, iv->step);
180 fprintf (file, " * iteration");
181 }
182 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode)mode_name[iv->mode]);
183
184 if (iv->mode != iv->extend_mode)
185 fprintf (file, " %s to %s",
186 rtx_name[iv_extend_to_rtx_code (iv->extend)],
187 GET_MODE_NAME (iv->extend_mode)mode_name[iv->extend_mode]);
188
189 if (iv->mult != const1_rtx(const_int_rtx[64 +1]))
190 {
191 fprintf (file, " * ");
192 print_rtl (file, iv->mult);
193 }
194 if (iv->delta != const0_rtx(const_int_rtx[64]))
195 {
196 fprintf (file, " + ");
197 print_rtl (file, iv->delta);
198 }
199 if (iv->first_special)
200 fprintf (file, " (first special)");
201}
202
203static void
204check_iv_ref_table_size (void)
205{
206 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ()(df->def_info.table_size))
207 {
208 unsigned int new_size = DF_DEFS_TABLE_SIZE ()(df->def_info.table_size) + (DF_DEFS_TABLE_SIZE ()(df->def_info.table_size) / 4);
209 iv_ref_table = XRESIZEVEC (class rtx_iv *, iv_ref_table, new_size)((class rtx_iv * *) xrealloc ((void *) (iv_ref_table), sizeof
(class rtx_iv *) * (new_size)))
;
210 memset (&iv_ref_table[iv_ref_table_size], 0,
211 (new_size - iv_ref_table_size) * sizeof (class rtx_iv *));
212 iv_ref_table_size = new_size;
213 }
214}
215
216
217/* Checks whether REG is a well-behaved register. */
218
219static bool
220simple_reg_p (rtx reg)
221{
222 unsigned r;
223
224 if (GET_CODE (reg)((enum rtx_code) (reg)->code) == SUBREG)
225 {
226 if (!subreg_lowpart_p (reg))
227 return false;
228 reg = SUBREG_REG (reg)(((reg)->u.fld[0]).rt_rtx);
229 }
230
231 if (!REG_P (reg)(((enum rtx_code) (reg)->code) == REG))
232 return false;
233
234 r = REGNO (reg)(rhs_regno(reg));
235 if (HARD_REGISTER_NUM_P (r)((r) < 76))
236 return false;
237
238 if (GET_MODE_CLASS (GET_MODE (reg))((enum mode_class) mode_class[((machine_mode) (reg)->mode)
])
!= MODE_INT)
239 return false;
240
241 return true;
242}
243
244/* Clears the information about ivs stored in df. */
245
246static void
247clear_iv_info (void)
248{
249 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ()(df->def_info.table_size);
250 class rtx_iv *iv;
251
252 check_iv_ref_table_size ();
253 for (i = 0; i < n_defs; i++)
254 {
255 iv = iv_ref_table[i];
256 if (iv)
257 {
258 free (iv);
259 iv_ref_table[i] = NULL__null;
260 }
261 }
262
263 bivs->empty ();
264}
265
266
267/* Prepare the data for an induction variable analysis of a LOOP. */
268
269void
270iv_analysis_loop_init (class loop *loop)
271{
272 current_loop = loop;
273
274 /* Clear the information from the analysis of the previous loop. */
275 if (clean_slate)
276 {
277 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
278 bivs = new hash_table<biv_entry_hasher> (10);
279 clean_slate = false;
280 }
281 else
282 clear_iv_info ();
283
284 /* Get rid of the ud chains before processing the rescans. Then add
285 the problem back. */
286 df_remove_problem (df_chain(df->problems_by_index[DF_CHAIN]));
287 df_process_deferred_rescans ();
288 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
289 df_chain_add_problem (DF_UD_CHAIN);
290 df_note_add_problem ();
291 df_analyze_loop (loop);
292 if (dump_file)
293 df_dump_region (dump_file);
294
295 check_iv_ref_table_size ();
296}
297
298/* Finds the definition of REG that dominates loop latch and stores
299 it to DEF. Returns false if there is not a single definition
300 dominating the latch. If REG has no definition in loop, DEF
301 is set to NULL and true is returned. */
302
303static bool
304latch_dominating_def (rtx reg, df_ref *def)
305{
306 df_ref single_rd = NULL__null, adef;
307 unsigned regno = REGNO (reg)(rhs_regno(reg));
308 class df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch)(df_rd_get_bb_info ((current_loop->latch)->index));
309
310 for (adef = DF_REG_DEF_CHAIN (regno)(df->def_regs[(regno)]->reg_chain); adef; adef = DF_REF_NEXT_REG (adef)((adef)->base.next_reg))
311 {
312 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef)(((((adef)->base.cl) == DF_REF_ARTIFICIAL) ? (adef)->artificial_ref
.bb : BLOCK_FOR_INSN (((adef)->base.insn_info->insn)))->
index)
)
313 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)((adef)->base.id)))
314 continue;
315
316 /* More than one reaching definition. */
317 if (single_rd)
318 return false;
319
320 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)((((adef)->base.cl) == DF_REF_ARTIFICIAL) ? (adef)->artificial_ref
.bb : BLOCK_FOR_INSN (((adef)->base.insn_info->insn)))
))
321 return false;
322
323 single_rd = adef;
324 }
325
326 *def = single_rd;
327 return true;
328}
329
330/* Gets definition of REG reaching its use in INSN and stores it to DEF. */
331
332static enum iv_grd_result
333iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
334{
335 df_ref use, adef;
336 basic_block def_bb, use_bb;
337 rtx_insn *def_insn;
338 bool dom_p;
339
340 *def = NULL__null;
341 if (!simple_reg_p (reg))
342 return GRD_INVALID;
343 if (GET_CODE (reg)((enum rtx_code) (reg)->code) == SUBREG)
344 reg = SUBREG_REG (reg)(((reg)->u.fld[0]).rt_rtx);
345 gcc_assert (REG_P (reg))((void)(!((((enum rtx_code) (reg)->code) == REG)) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 345, __FUNCTION__), 0 : 0))
;
346
347 use = df_find_use (insn, reg);
348 gcc_assert (use != NULL)((void)(!(use != __null) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 348, __FUNCTION__), 0 : 0))
;
349
350 if (!DF_REF_CHAIN (use)((use)->base.chain))
351 return GRD_INVARIANT;
352
353 /* More than one reaching def. */
354 if (DF_REF_CHAIN (use)((use)->base.chain)->next)
355 return GRD_INVALID;
356
357 adef = DF_REF_CHAIN (use)((use)->base.chain)->ref;
358
359 /* We do not handle setting only part of the register. */
360 if (DF_REF_FLAGS (adef)((adef)->base.flags) & DF_REF_READ_WRITE)
361 return GRD_INVALID;
362
363 def_insn = DF_REF_INSN (adef)((adef)->base.insn_info->insn);
364 def_bb = DF_REF_BB (adef)((((adef)->base.cl) == DF_REF_ARTIFICIAL) ? (adef)->artificial_ref
.bb : BLOCK_FOR_INSN (((adef)->base.insn_info->insn)))
;
365 use_bb = BLOCK_FOR_INSN (insn);
366
367 if (use_bb == def_bb)
368 dom_p = (DF_INSN_LUID (def_insn)((((df->insns[(INSN_UID (def_insn))]))->luid)) < DF_INSN_LUID (insn)((((df->insns[(INSN_UID (insn))]))->luid)));
369 else
370 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
371
372 if (dom_p)
373 {
374 *def = adef;
375 return GRD_SINGLE_DOM;
376 }
377
378 /* The definition does not dominate the use. This is still OK if
379 this may be a use of a biv, i.e. if the def_bb dominates loop
380 latch. */
381 if (just_once_each_iteration_p (current_loop, def_bb))
382 return GRD_MAYBE_BIV;
383
384 return GRD_INVALID;
385}
386
387/* Sets IV to invariant CST in MODE. Always returns true (just for
388 consistency with other iv manipulation functions that may fail). */
389
390static bool
391iv_constant (class rtx_iv *iv, scalar_int_mode mode, rtx cst)
392{
393 iv->mode = mode;
394 iv->base = cst;
395 iv->step = const0_rtx(const_int_rtx[64]);
396 iv->first_special = false;
397 iv->extend = IV_UNKNOWN_EXTEND;
398 iv->extend_mode = iv->mode;
399 iv->delta = const0_rtx(const_int_rtx[64]);
400 iv->mult = const1_rtx(const_int_rtx[64 +1]);
401
402 return true;
403}
404
405/* Evaluates application of subreg to MODE on IV. */
406
407static bool
408iv_subreg (class rtx_iv *iv, scalar_int_mode mode)
409{
410 /* If iv is invariant, just calculate the new value. */
411 if (iv->step == const0_rtx(const_int_rtx[64])
412 && !iv->first_special)
413 {
414 rtx val = get_iv_value (iv, const0_rtx(const_int_rtx[64]));
415 val = lowpart_subreg (mode, val,
416 iv->extend == IV_UNKNOWN_EXTEND
417 ? iv->mode : iv->extend_mode);
418
419 iv->base = val;
420 iv->extend = IV_UNKNOWN_EXTEND;
421 iv->mode = iv->extend_mode = mode;
422 iv->delta = const0_rtx(const_int_rtx[64]);
423 iv->mult = const1_rtx(const_int_rtx[64 +1]);
424 return true;
425 }
426
427 if (iv->extend_mode == mode)
428 return true;
429
430 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
431 return false;
432
433 iv->extend = IV_UNKNOWN_EXTEND;
434 iv->mode = mode;
435
436 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
437 simplify_gen_binary (MULT, iv->extend_mode,
438 iv->base, iv->mult));
439 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
440 iv->mult = const1_rtx(const_int_rtx[64 +1]);
441 iv->delta = const0_rtx(const_int_rtx[64]);
442 iv->first_special = false;
443
444 return true;
445}
446
447/* Evaluates application of EXTEND to MODE on IV. */
448
449static bool
450iv_extend (class rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
451{
452 /* If iv is invariant, just calculate the new value. */
453 if (iv->step == const0_rtx(const_int_rtx[64])
454 && !iv->first_special)
455 {
456 rtx val = get_iv_value (iv, const0_rtx(const_int_rtx[64]));
457 if (iv->extend_mode != iv->mode
458 && iv->extend != IV_UNKNOWN_EXTEND
459 && iv->extend != extend)
460 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
461 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
462 val,
463 iv->extend == extend
464 ? iv->extend_mode : iv->mode);
465 iv->base = val;
466 iv->extend = IV_UNKNOWN_EXTEND;
467 iv->mode = iv->extend_mode = mode;
468 iv->delta = const0_rtx(const_int_rtx[64]);
469 iv->mult = const1_rtx(const_int_rtx[64 +1]);
470 return true;
471 }
472
473 if (mode != iv->extend_mode)
474 return false;
475
476 if (iv->extend != IV_UNKNOWN_EXTEND
477 && iv->extend != extend)
478 return false;
479
480 iv->extend = extend;
481
482 return true;
483}
484
485/* Evaluates negation of IV. */
486
487static bool
488iv_neg (class rtx_iv *iv)
489{
490 if (iv->extend == IV_UNKNOWN_EXTEND)
491 {
492 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
493 iv->base, iv->extend_mode);
494 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
495 iv->step, iv->extend_mode);
496 }
497 else
498 {
499 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->delta, iv->extend_mode);
501 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
502 iv->mult, iv->extend_mode);
503 }
504
505 return true;
506}
507
508/* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
509
510static bool
511iv_add (class rtx_iv *iv0, class rtx_iv *iv1, enum rtx_code op)
512{
513 scalar_int_mode mode;
514 rtx arg;
515
516 /* Extend the constant to extend_mode of the other operand if necessary. */
517 if (iv0->extend == IV_UNKNOWN_EXTEND
30
The left operand of '==' is a garbage value
518 && iv0->mode == iv0->extend_mode
519 && iv0->step == const0_rtx(const_int_rtx[64])
520 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
521 {
522 iv0->extend_mode = iv1->extend_mode;
523 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
524 iv0->base, iv0->mode);
525 }
526 if (iv1->extend == IV_UNKNOWN_EXTEND
527 && iv1->mode == iv1->extend_mode
528 && iv1->step == const0_rtx(const_int_rtx[64])
529 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
530 {
531 iv1->extend_mode = iv0->extend_mode;
532 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
533 iv1->base, iv1->mode);
534 }
535
536 mode = iv0->extend_mode;
537 if (mode != iv1->extend_mode)
538 return false;
539
540 if (iv0->extend == IV_UNKNOWN_EXTEND
541 && iv1->extend == IV_UNKNOWN_EXTEND)
542 {
543 if (iv0->mode != iv1->mode)
544 return false;
545
546 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
547 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
548
549 return true;
550 }
551
552 /* Handle addition of constant. */
553 if (iv1->extend == IV_UNKNOWN_EXTEND
554 && iv1->mode == mode
555 && iv1->step == const0_rtx(const_int_rtx[64]))
556 {
557 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
558 return true;
559 }
560
561 if (iv0->extend == IV_UNKNOWN_EXTEND
562 && iv0->mode == mode
563 && iv0->step == const0_rtx(const_int_rtx[64]))
564 {
565 arg = iv0->base;
566 *iv0 = *iv1;
567 if (op == MINUS
568 && !iv_neg (iv0))
569 return false;
570
571 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
572 return true;
573 }
574
575 return false;
576}
577
578/* Evaluates multiplication of IV by constant CST. */
579
580static bool
581iv_mult (class rtx_iv *iv, rtx mby)
582{
583 scalar_int_mode mode = iv->extend_mode;
584
585 if (GET_MODE (mby)((machine_mode) (mby)->mode) != VOIDmode((void) 0, E_VOIDmode)
586 && GET_MODE (mby)((machine_mode) (mby)->mode) != mode)
587 return false;
588
589 if (iv->extend == IV_UNKNOWN_EXTEND)
590 {
591 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
592 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
593 }
594 else
595 {
596 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
597 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
598 }
599
600 return true;
601}
602
603/* Evaluates shift of IV by constant CST. */
604
605static bool
606iv_shift (class rtx_iv *iv, rtx mby)
607{
608 scalar_int_mode mode = iv->extend_mode;
609
610 if (GET_MODE (mby)((machine_mode) (mby)->mode) != VOIDmode((void) 0, E_VOIDmode)
611 && GET_MODE (mby)((machine_mode) (mby)->mode) != mode)
612 return false;
613
614 if (iv->extend == IV_UNKNOWN_EXTEND)
615 {
616 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
617 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
618 }
619 else
620 {
621 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
622 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
623 }
624
625 return true;
626}
627
628/* The recursive part of get_biv_step. Gets the value of the single value
629 defined by DEF wrto initial value of REG inside loop, in shape described
630 at get_biv_step. */
631
632static bool
633get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
634 rtx *inner_step, scalar_int_mode *inner_mode,
635 enum iv_extend_code *extend,
636 rtx *outer_step)
637{
638 rtx set, rhs, op0 = NULL_RTX(rtx) 0, op1 = NULL_RTX(rtx) 0;
639 rtx next, nextr;
640 enum rtx_code code;
641 rtx_insn *insn = DF_REF_INSN (def)((def)->base.insn_info->insn);
642 df_ref next_def;
643 enum iv_grd_result res;
644
645 set = single_set (insn);
646 if (!set)
647 return false;
648
649 rhs = find_reg_equal_equiv_note (insn);
650 if (rhs)
651 rhs = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
652 else
653 rhs = SET_SRC (set)(((set)->u.fld[1]).rt_rtx);
654
655 code = GET_CODE (rhs)((enum rtx_code) (rhs)->code);
656 switch (code)
657 {
658 case SUBREG:
659 case REG:
660 next = rhs;
661 break;
662
663 case PLUS:
664 case MINUS:
665 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
666 op1 = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
667
668 if (code == PLUS && CONSTANT_P (op0)((rtx_class[(int) (((enum rtx_code) (op0)->code))]) == RTX_CONST_OBJ
)
)
669 std::swap (op0, op1);
670
671 if (!simple_reg_p (op0)
672 || !CONSTANT_P (op1)((rtx_class[(int) (((enum rtx_code) (op1)->code))]) == RTX_CONST_OBJ
)
)
673 return false;
674
675 if (GET_MODE (rhs)((machine_mode) (rhs)->mode) != outer_mode)
676 {
677 /* ppc64 uses expressions like
678
679 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
680
681 this is equivalent to
682
683 (set x':DI (plus:DI y:DI 1))
684 (set x:SI (subreg:SI (x':DI)). */
685 if (GET_CODE (op0)((enum rtx_code) (op0)->code) != SUBREG)
686 return false;
687 if (GET_MODE (SUBREG_REG (op0))((machine_mode) ((((op0)->u.fld[0]).rt_rtx))->mode) != outer_mode)
688 return false;
689 }
690
691 next = op0;
692 break;
693
694 case SIGN_EXTEND:
695 case ZERO_EXTEND:
696 if (GET_MODE (rhs)((machine_mode) (rhs)->mode) != outer_mode)
697 return false;
698
699 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
700 if (!simple_reg_p (op0))
701 return false;
702
703 next = op0;
704 break;
705
706 default:
707 return false;
708 }
709
710 if (GET_CODE (next)((enum rtx_code) (next)->code) == SUBREG)
711 {
712 if (!subreg_lowpart_p (next))
713 return false;
714
715 nextr = SUBREG_REG (next)(((next)->u.fld[0]).rt_rtx);
716 if (GET_MODE (nextr)((machine_mode) (nextr)->mode) != outer_mode)
717 return false;
718 }
719 else
720 nextr = next;
721
722 res = iv_get_reaching_def (insn, nextr, &next_def);
723
724 if (res == GRD_INVALID || res == GRD_INVARIANT)
725 return false;
726
727 if (res == GRD_MAYBE_BIV)
728 {
729 if (!rtx_equal_p (nextr, reg))
730 return false;
731
732 *inner_step = const0_rtx(const_int_rtx[64]);
733 *extend = IV_UNKNOWN_EXTEND;
734 *inner_mode = outer_mode;
735 *outer_step = const0_rtx(const_int_rtx[64]);
736 }
737 else if (!get_biv_step_1 (next_def, outer_mode, reg,
738 inner_step, inner_mode, extend,
739 outer_step))
740 return false;
741
742 if (GET_CODE (next)((enum rtx_code) (next)->code) == SUBREG)
743 {
744 scalar_int_mode amode;
745 if (!is_a <scalar_int_mode> (GET_MODE (next)((machine_mode) (next)->mode), &amode)
746 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
747 return false;
748
749 *inner_mode = amode;
750 *inner_step = simplify_gen_binary (PLUS, outer_mode,
751 *inner_step, *outer_step);
752 *outer_step = const0_rtx(const_int_rtx[64]);
753 *extend = IV_UNKNOWN_EXTEND;
754 }
755
756 switch (code)
757 {
758 case REG:
759 case SUBREG:
760 break;
761
762 case PLUS:
763 case MINUS:
764 if (*inner_mode == outer_mode
765 /* See comment in previous switch. */
766 || GET_MODE (rhs)((machine_mode) (rhs)->mode) != outer_mode)
767 *inner_step = simplify_gen_binary (code, outer_mode,
768 *inner_step, op1);
769 else
770 *outer_step = simplify_gen_binary (code, outer_mode,
771 *outer_step, op1);
772 break;
773
774 case SIGN_EXTEND:
775 case ZERO_EXTEND:
776 gcc_assert (GET_MODE (op0) == *inner_mode((void)(!(((machine_mode) (op0)->mode) == *inner_mode &&
*extend == IV_UNKNOWN_EXTEND && *outer_step == (const_int_rtx
[64])) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 778, __FUNCTION__), 0 : 0))
777 && *extend == IV_UNKNOWN_EXTEND((void)(!(((machine_mode) (op0)->mode) == *inner_mode &&
*extend == IV_UNKNOWN_EXTEND && *outer_step == (const_int_rtx
[64])) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 778, __FUNCTION__), 0 : 0))
778 && *outer_step == const0_rtx)((void)(!(((machine_mode) (op0)->mode) == *inner_mode &&
*extend == IV_UNKNOWN_EXTEND && *outer_step == (const_int_rtx
[64])) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 778, __FUNCTION__), 0 : 0))
;
779
780 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
781 break;
782
783 default:
784 return false;
785 }
786
787 return true;
788}
789
790/* Gets the operation on register REG inside loop, in shape
791
792 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
793
794 If the operation cannot be described in this shape, return false.
795 LAST_DEF is the definition of REG that dominates loop latch. */
796
797static bool
798get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
799 rtx *inner_step, scalar_int_mode *inner_mode,
800 enum iv_extend_code *extend, rtx *outer_step)
801{
802 if (!get_biv_step_1 (last_def, outer_mode, reg,
803 inner_step, inner_mode, extend,
804 outer_step))
805 return false;
806
807 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND))((void)(!((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 807, __FUNCTION__), 0 : 0))
;
808 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx)((void)(!(*inner_mode != outer_mode || *outer_step == (const_int_rtx
[64])) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 808, __FUNCTION__), 0 : 0))
;
809
810 return true;
811}
812
813/* Records information that DEF is induction variable IV. */
814
815static void
816record_iv (df_ref def, class rtx_iv *iv)
817{
818 class rtx_iv *recorded_iv = XNEW (class rtx_iv)((class rtx_iv *) xmalloc (sizeof (class rtx_iv)));
819
820 *recorded_iv = *iv;
821 check_iv_ref_table_size ();
822 DF_REF_IV_SET (def, recorded_iv)iv_ref_table[((def)->base.id)] = (recorded_iv);
823}
824
825/* If DEF was already analyzed for bivness, store the description of the biv to
826 IV and return true. Otherwise return false. */
827
828static bool
829analyzed_for_bivness_p (rtx def, class rtx_iv *iv)
830{
831 class biv_entry *biv = bivs->find_with_hash (def, REGNO (def)(rhs_regno(def)));
832
833 if (!biv)
834 return false;
835
836 *iv = biv->iv;
837 return true;
838}
839
840static void
841record_biv (rtx def, class rtx_iv *iv)
842{
843 class biv_entry *biv = XNEW (class biv_entry)((class biv_entry *) xmalloc (sizeof (class biv_entry)));
844 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def)(rhs_regno(def)), INSERT);
845
846 biv->regno = REGNO (def)(rhs_regno(def));
847 biv->iv = *iv;
848 gcc_assert (!*slot)((void)(!(!*slot) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 848, __FUNCTION__), 0 : 0))
;
849 *slot = biv;
850}
851
852/* Determines whether DEF is a biv and if so, stores its description
853 to *IV. OUTER_MODE is the mode of DEF. */
854
855static bool
856iv_analyze_biv (scalar_int_mode outer_mode, rtx def, class rtx_iv *iv)
857{
858 rtx inner_step, outer_step;
859 scalar_int_mode inner_mode;
860 enum iv_extend_code extend;
861 df_ref last_def;
862
863 if (dump_file)
864 {
865 fprintf (dump_file, "Analyzing ");
866 print_rtl (dump_file, def);
867 fprintf (dump_file, " for bivness.\n");
868 }
869
870 if (!REG_P (def)(((enum rtx_code) (def)->code) == REG))
871 {
872 if (!CONSTANT_P (def)((rtx_class[(int) (((enum rtx_code) (def)->code))]) == RTX_CONST_OBJ
)
)
873 return false;
874
875 return iv_constant (iv, outer_mode, def);
876 }
877
878 if (!latch_dominating_def (def, &last_def))
879 {
880 if (dump_file)
881 fprintf (dump_file, " not simple.\n");
882 return false;
883 }
884
885 if (!last_def)
886 return iv_constant (iv, outer_mode, def);
887
888 if (analyzed_for_bivness_p (def, iv))
889 {
890 if (dump_file)
891 fprintf (dump_file, " already analysed.\n");
892 return iv->base != NULL_RTX(rtx) 0;
893 }
894
895 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
896 &extend, &outer_step))
897 {
898 iv->base = NULL_RTX(rtx) 0;
899 goto end;
900 }
901
902 /* Loop transforms base to es (base + inner_step) + outer_step,
903 where es means extend of subreg between inner_mode and outer_mode.
904 The corresponding induction variable is
905
906 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
907
908 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
909 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
910 iv->mode = inner_mode;
911 iv->extend_mode = outer_mode;
912 iv->extend = extend;
913 iv->mult = const1_rtx(const_int_rtx[64 +1]);
914 iv->delta = outer_step;
915 iv->first_special = inner_mode != outer_mode;
916
917 end:
918 if (dump_file)
919 {
920 fprintf (dump_file, " ");
921 dump_iv_info (dump_file, iv);
922 fprintf (dump_file, "\n");
923 }
924
925 record_biv (def, iv);
926 return iv->base != NULL_RTX(rtx) 0;
927}
928
929/* Analyzes expression RHS used at INSN and stores the result to *IV.
930 The mode of the induction variable is MODE. */
931
932bool
933iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
934 class rtx_iv *iv)
935{
936 rtx mby = NULL_RTX(rtx) 0;
937 rtx op0 = NULL_RTX(rtx) 0, op1 = NULL_RTX(rtx) 0;
938 class rtx_iv iv0, iv1;
939 enum rtx_code code = GET_CODE (rhs)((enum rtx_code) (rhs)->code);
940 scalar_int_mode omode = mode;
941
942 iv->base = NULL_RTX(rtx) 0;
943 iv->step = NULL_RTX(rtx) 0;
944
945 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode)((void)(!(((machine_mode) (rhs)->mode) == mode || ((machine_mode
) (rhs)->mode) == ((void) 0, E_VOIDmode)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 945, __FUNCTION__), 0 : 0))
;
19
Assuming the condition is true
20
'?' condition is false
946
947 if (CONSTANT_P (rhs)((rtx_class[(int) (((enum rtx_code) (rhs)->code))]) == RTX_CONST_OBJ
)
21
Assuming the condition is false
24
Taking false branch
948 || REG_P (rhs)(((enum rtx_code) (rhs)->code) == REG)
22
Assuming field 'code' is not equal to REG
949 || code == SUBREG)
23
Assuming 'code' is not equal to SUBREG
950 return iv_analyze_op (insn, mode, rhs, iv);
951
952 switch (code)
25
Control jumps to 'case MINUS:' at line 968
953 {
954 case REG:
955 op0 = rhs;
956 break;
957
958 case SIGN_EXTEND:
959 case ZERO_EXTEND:
960 case NEG:
961 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
962 /* We don't know how many bits there are in a sign-extended constant. */
963 if (!is_a <scalar_int_mode> (GET_MODE (op0)((machine_mode) (op0)->mode), &omode))
964 return false;
965 break;
966
967 case PLUS:
968 case MINUS:
969 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
970 op1 = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
971 break;
972
973 case MULT:
974 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
975 mby = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
976 if (!CONSTANT_P (mby)((rtx_class[(int) (((enum rtx_code) (mby)->code))]) == RTX_CONST_OBJ
)
)
977 std::swap (op0, mby);
978 if (!CONSTANT_P (mby)((rtx_class[(int) (((enum rtx_code) (mby)->code))]) == RTX_CONST_OBJ
)
)
979 return false;
980 break;
981
982 case ASHIFT:
983 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
984 mby = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
985 if (!CONSTANT_P (mby)((rtx_class[(int) (((enum rtx_code) (mby)->code))]) == RTX_CONST_OBJ
)
)
986 return false;
987 break;
988
989 default:
990 return false;
991 }
992
993 if (op0
26
Assuming 'op0' is null
994 && !iv_analyze_expr (insn, omode, op0, &iv0))
995 return false;
996
997 if (op1
27
Assuming 'op1' is null
998 && !iv_analyze_expr (insn, omode, op1, &iv1))
999 return false;
1000
1001 switch (code)
28
Control jumps to 'case MINUS:' at line 1019
1002 {
1003 case SIGN_EXTEND:
1004 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1005 return false;
1006 break;
1007
1008 case ZERO_EXTEND:
1009 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1010 return false;
1011 break;
1012
1013 case NEG:
1014 if (!iv_neg (&iv0))
1015 return false;
1016 break;
1017
1018 case PLUS:
1019 case MINUS:
1020 if (!iv_add (&iv0, &iv1, code))
29
Calling 'iv_add'
1021 return false;
1022 break;
1023
1024 case MULT:
1025 if (!iv_mult (&iv0, mby))
1026 return false;
1027 break;
1028
1029 case ASHIFT:
1030 if (!iv_shift (&iv0, mby))
1031 return false;
1032 break;
1033
1034 default:
1035 break;
1036 }
1037
1038 *iv = iv0;
1039 return iv->base != NULL_RTX(rtx) 0;
1040}
1041
1042/* Analyzes iv DEF and stores the result to *IV. */
1043
1044static bool
1045iv_analyze_def (df_ref def, class rtx_iv *iv)
1046{
1047 rtx_insn *insn = DF_REF_INSN (def)((def)->base.insn_info->insn);
1048 rtx reg = DF_REF_REG (def)((def)->base.reg);
1049 rtx set, rhs;
1050
1051 if (dump_file)
4
Assuming 'dump_file' is null
5
Taking false branch
1052 {
1053 fprintf (dump_file, "Analyzing def of ");
1054 print_rtl (dump_file, reg);
1055 fprintf (dump_file, " in insn ");
1056 print_rtl_single (dump_file, insn);
1057 }
1058
1059 check_iv_ref_table_size ();
1060 if (DF_REF_IV (def)iv_ref_table[((def)->base.id)])
6
Assuming the condition is false
7
Taking false branch
1061 {
1062 if (dump_file)
1063 fprintf (dump_file, " already analysed.\n");
1064 *iv = *DF_REF_IV (def)iv_ref_table[((def)->base.id)];
1065 return iv->base != NULL_RTX(rtx) 0;
1066 }
1067
1068 iv->base = NULL_RTX(rtx) 0;
1069 iv->step = NULL_RTX(rtx) 0;
1070
1071 scalar_int_mode mode;
1072 if (!REG_P (reg)(((enum rtx_code) (reg)->code) == REG) || !is_a <scalar_int_mode> (GET_MODE (reg)((machine_mode) (reg)->mode), &mode))
8
Assuming field 'code' is equal to REG
9
Taking false branch
1073 return false;
1074
1075 set = single_set (insn);
1076 if (!set)
10
Assuming 'set' is non-null
11
Taking false branch
1077 return false;
1078
1079 if (!REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) ==
REG)
)
12
Assuming field 'code' is equal to REG
13
Taking false branch
1080 return false;
1081
1082 gcc_assert (SET_DEST (set) == reg)((void)(!((((set)->u.fld[0]).rt_rtx) == reg) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1082, __FUNCTION__), 0 : 0))
;
14
Assuming 'reg' is equal to field 'rt_rtx'
15
'?' condition is false
1083 rhs = find_reg_equal_equiv_note (insn);
1084 if (rhs)
16
Assuming 'rhs' is null
17
Taking false branch
1085 rhs = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
1086 else
1087 rhs = SET_SRC (set)(((set)->u.fld[1]).rt_rtx);
1088
1089 iv_analyze_expr (insn, mode, rhs, iv);
18
Calling 'iv_analyze_expr'
1090 record_iv (def, iv);
1091
1092 if (dump_file)
1093 {
1094 print_rtl (dump_file, reg);
1095 fprintf (dump_file, " in insn ");
1096 print_rtl_single (dump_file, insn);
1097 fprintf (dump_file, " is ");
1098 dump_iv_info (dump_file, iv);
1099 fprintf (dump_file, "\n");
1100 }
1101
1102 return iv->base != NULL_RTX(rtx) 0;
1103}
1104
1105/* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1106 mode of OP. */
1107
1108static bool
1109iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, class rtx_iv *iv)
1110{
1111 df_ref def = NULL__null;
1112 enum iv_grd_result res;
1113
1114 if (dump_file)
1115 {
1116 fprintf (dump_file, "Analyzing operand ");
1117 print_rtl (dump_file, op);
1118 fprintf (dump_file, " of insn ");
1119 print_rtl_single (dump_file, insn);
1120 }
1121
1122 if (function_invariant_p (op))
1123 res = GRD_INVARIANT;
1124 else if (GET_CODE (op)((enum rtx_code) (op)->code) == SUBREG)
1125 {
1126 scalar_int_mode inner_mode;
1127 if (!subreg_lowpart_p (op)
1128 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op))((machine_mode) ((((op)->u.fld[0]).rt_rtx))->mode), &inner_mode))
1129 return false;
1130
1131 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op)(((op)->u.fld[0]).rt_rtx), iv))
1132 return false;
1133
1134 return iv_subreg (iv, mode);
1135 }
1136 else
1137 {
1138 res = iv_get_reaching_def (insn, op, &def);
1139 if (res == GRD_INVALID)
1140 {
1141 if (dump_file)
1142 fprintf (dump_file, " not simple.\n");
1143 return false;
1144 }
1145 }
1146
1147 if (res == GRD_INVARIANT)
1148 {
1149 iv_constant (iv, mode, op);
1150
1151 if (dump_file)
1152 {
1153 fprintf (dump_file, " ");
1154 dump_iv_info (dump_file, iv);
1155 fprintf (dump_file, "\n");
1156 }
1157 return true;
1158 }
1159
1160 if (res == GRD_MAYBE_BIV)
1161 return iv_analyze_biv (mode, op, iv);
1162
1163 return iv_analyze_def (def, iv);
1164}
1165
1166/* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1167 mode of VAL. */
1168
1169bool
1170iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, class rtx_iv *iv)
1171{
1172 rtx reg;
1173
1174 /* We must find the insn in that val is used, so that we get to UD chains.
1175 Since the function is sometimes called on result of get_condition,
1176 this does not necessarily have to be directly INSN; scan also the
1177 following insns. */
1178 if (simple_reg_p (val))
1179 {
1180 if (GET_CODE (val)((enum rtx_code) (val)->code) == SUBREG)
1181 reg = SUBREG_REG (val)(((val)->u.fld[0]).rt_rtx);
1182 else
1183 reg = val;
1184
1185 while (!df_find_use (insn, reg))
1186 insn = NEXT_INSN (insn);
1187 }
1188
1189 return iv_analyze_op (insn, mode, val, iv);
1190}
1191
1192/* Analyzes definition of DEF in INSN and stores the result to IV. */
1193
1194bool
1195iv_analyze_result (rtx_insn *insn, rtx def, class rtx_iv *iv)
1196{
1197 df_ref adef;
1198
1199 adef = df_find_def (insn, def);
1200 if (!adef)
1
Assuming 'adef' is non-null
2
Taking false branch
1201 return false;
1202
1203 return iv_analyze_def (adef, iv);
3
Calling 'iv_analyze_def'
1204}
1205
1206/* Checks whether definition of register REG in INSN is a basic induction
1207 variable. MODE is the mode of REG.
1208
1209 IV analysis must have been initialized (via a call to
1210 iv_analysis_loop_init) for this function to produce a result. */
1211
1212bool
1213biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
1214{
1215 class rtx_iv iv;
1216 df_ref def, last_def;
1217
1218 if (!simple_reg_p (reg))
1219 return false;
1220
1221 def = df_find_def (insn, reg);
1222 gcc_assert (def != NULL)((void)(!(def != __null) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1222, __FUNCTION__), 0 : 0))
;
1223 if (!latch_dominating_def (reg, &last_def))
1224 return false;
1225 if (last_def != def)
1226 return false;
1227
1228 if (!iv_analyze_biv (mode, reg, &iv))
1229 return false;
1230
1231 return iv.step != const0_rtx(const_int_rtx[64]);
1232}
1233
1234/* Calculates value of IV at ITERATION-th iteration. */
1235
1236rtx
1237get_iv_value (class rtx_iv *iv, rtx iteration)
1238{
1239 rtx val;
1240
1241 /* We would need to generate some if_then_else patterns, and so far
1242 it is not needed anywhere. */
1243 gcc_assert (!iv->first_special)((void)(!(!iv->first_special) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1243, __FUNCTION__), 0 : 0))
;
1244
1245 if (iv->step != const0_rtx(const_int_rtx[64]) && iteration != const0_rtx(const_int_rtx[64]))
1246 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1247 simplify_gen_binary (MULT, iv->extend_mode,
1248 iv->step, iteration));
1249 else
1250 val = iv->base;
1251
1252 if (iv->extend_mode == iv->mode)
1253 return val;
1254
1255 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1256
1257 if (iv->extend == IV_UNKNOWN_EXTEND)
1258 return val;
1259
1260 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1261 iv->extend_mode, val, iv->mode);
1262 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1263 simplify_gen_binary (MULT, iv->extend_mode,
1264 iv->mult, val));
1265
1266 return val;
1267}
1268
1269/* Free the data for an induction variable analysis. */
1270
1271void
1272iv_analysis_done (void)
1273{
1274 if (!clean_slate)
1275 {
1276 clear_iv_info ();
1277 clean_slate = true;
1278 df_finish_pass (true);
1279 delete bivs;
1280 bivs = NULL__null;
1281 free (iv_ref_table);
1282 iv_ref_table = NULL__null;
1283 iv_ref_table_size = 0;
1284 }
1285}
1286
1287/* Computes inverse to X modulo (1 << MOD). */
1288
1289static uint64_t
1290inverse (uint64_t x, int mod)
1291{
1292 uint64_t mask =
1293 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1294 uint64_t rslt = 1;
1295 int i;
1296
1297 for (i = 0; i < mod - 1; i++)
1298 {
1299 rslt = (rslt * x) & mask;
1300 x = (x * x) & mask;
1301 }
1302
1303 return rslt;
1304}
1305
1306/* Checks whether any register in X is in set ALT. */
1307
1308static bool
1309altered_reg_used (const_rtx x, bitmap alt)
1310{
1311 subrtx_iterator::array_type array;
1312 FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds
); !iter.at_end (); iter.next ())
1313 {
1314 const_rtx x = *iter;
1315 if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO_REG_SET_P (alt, REGNO (x))bitmap_bit_p (alt, (rhs_regno(x))))
1316 return true;
1317 }
1318 return false;
1319}
1320
1321/* Marks registers altered by EXPR in set ALT. */
1322
1323static void
1324mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *alt)
1325{
1326 if (GET_CODE (expr)((enum rtx_code) (expr)->code) == SUBREG)
1327 expr = SUBREG_REG (expr)(((expr)->u.fld[0]).rt_rtx);
1328 if (!REG_P (expr)(((enum rtx_code) (expr)->code) == REG))
1329 return;
1330
1331 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr))bitmap_set_bit ((bitmap) alt, (rhs_regno(expr)));
1332}
1333
1334/* Checks whether RHS is simple enough to process. */
1335
1336static bool
1337simple_rhs_p (rtx rhs)
1338{
1339 rtx op0, op1;
1340
1341 if (function_invariant_p (rhs)
1342 || (REG_P (rhs)(((enum rtx_code) (rhs)->code) == REG) && !HARD_REGISTER_P (rhs)((((rhs_regno(rhs))) < 76))))
1343 return true;
1344
1345 switch (GET_CODE (rhs)((enum rtx_code) (rhs)->code))
1346 {
1347 case PLUS:
1348 case MINUS:
1349 case AND:
1350 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
1351 op1 = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
1352 /* Allow reg OP const and reg OP reg. */
1353 if (!(REG_P (op0)(((enum rtx_code) (op0)->code) == REG) && !HARD_REGISTER_P (op0)((((rhs_regno(op0))) < 76)))
1354 && !function_invariant_p (op0))
1355 return false;
1356 if (!(REG_P (op1)(((enum rtx_code) (op1)->code) == REG) && !HARD_REGISTER_P (op1)((((rhs_regno(op1))) < 76)))
1357 && !function_invariant_p (op1))
1358 return false;
1359
1360 return true;
1361
1362 case ASHIFT:
1363 case ASHIFTRT:
1364 case LSHIFTRT:
1365 case MULT:
1366 op0 = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
1367 op1 = XEXP (rhs, 1)(((rhs)->u.fld[1]).rt_rtx);
1368 /* Allow reg OP const. */
1369 if (!(REG_P (op0)(((enum rtx_code) (op0)->code) == REG) && !HARD_REGISTER_P (op0)((((rhs_regno(op0))) < 76))))
1370 return false;
1371 if (!function_invariant_p (op1))
1372 return false;
1373
1374 return true;
1375
1376 default:
1377 return false;
1378 }
1379}
1380
1381/* If any registers in *EXPR that have a single definition, try to replace
1382 them with the known-equivalent values. */
1383
1384static void
1385replace_single_def_regs (rtx *expr)
1386{
1387 subrtx_var_iterator::array_type array;
1388 repeat:
1389 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)for (subrtx_var_iterator iter (array, *expr, rtx_nonconst_subrtx_bounds
); !iter.at_end (); iter.next ())
1390 {
1391 rtx x = *iter;
1392 if (REG_P (x)(((enum rtx_code) (x)->code) == REG))
1393 if (rtx new_x = df_find_single_def_src (x))
1394 {
1395 *expr = simplify_replace_rtx (*expr, x, new_x);
1396 goto repeat;
1397 }
1398 }
1399}
1400
1401/* A subroutine of simplify_using_initial_values, this function examines INSN
1402 to see if it contains a suitable set that we can use to make a replacement.
1403 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1404 the set; return false otherwise. */
1405
1406static bool
1407suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1408{
1409 rtx set = single_set (insn);
1410 rtx lhs = NULL_RTX(rtx) 0, rhs;
1411
1412 if (!set)
1413 return false;
1414
1415 lhs = SET_DEST (set)(((set)->u.fld[0]).rt_rtx);
1416 if (!REG_P (lhs)(((enum rtx_code) (lhs)->code) == REG))
1417 return false;
1418
1419 rhs = find_reg_equal_equiv_note (insn);
1420 if (rhs)
1421 rhs = XEXP (rhs, 0)(((rhs)->u.fld[0]).rt_rtx);
1422 else
1423 rhs = SET_SRC (set)(((set)->u.fld[1]).rt_rtx);
1424
1425 if (!simple_rhs_p (rhs))
1426 return false;
1427
1428 *dest = lhs;
1429 *src = rhs;
1430 return true;
1431}
1432
1433/* Using the data returned by suitable_set_for_replacement, replace DEST
1434 with SRC in *EXPR and return the new expression. Also call
1435 replace_single_def_regs if the replacement changed something. */
1436static void
1437replace_in_expr (rtx *expr, rtx dest, rtx src)
1438{
1439 rtx old = *expr;
1440 *expr = simplify_replace_rtx (*expr, dest, src);
1441 if (old == *expr)
1442 return;
1443 replace_single_def_regs (expr);
1444}
1445
1446/* Checks whether A implies B. */
1447
1448static bool
1449implies_p (rtx a, rtx b)
1450{
1451 rtx op0, op1, opb0, opb1;
1452 machine_mode mode;
1453
1454 if (rtx_equal_p (a, b))
1455 return true;
1456
1457 if (GET_CODE (a)((enum rtx_code) (a)->code) == EQ)
1458 {
1459 op0 = XEXP (a, 0)(((a)->u.fld[0]).rt_rtx);
1460 op1 = XEXP (a, 1)(((a)->u.fld[1]).rt_rtx);
1461
1462 if (REG_P (op0)(((enum rtx_code) (op0)->code) == REG)
1463 || (GET_CODE (op0)((enum rtx_code) (op0)->code) == SUBREG
1464 && REG_P (SUBREG_REG (op0))(((enum rtx_code) ((((op0)->u.fld[0]).rt_rtx))->code) ==
REG)
))
1465 {
1466 rtx r = simplify_replace_rtx (b, op0, op1);
1467 if (r == const_true_rtx)
1468 return true;
1469 }
1470
1471 if (REG_P (op1)(((enum rtx_code) (op1)->code) == REG)
1472 || (GET_CODE (op1)((enum rtx_code) (op1)->code) == SUBREG
1473 && REG_P (SUBREG_REG (op1))(((enum rtx_code) ((((op1)->u.fld[0]).rt_rtx))->code) ==
REG)
))
1474 {
1475 rtx r = simplify_replace_rtx (b, op1, op0);
1476 if (r == const_true_rtx)
1477 return true;
1478 }
1479 }
1480
1481 if (b == const_true_rtx)
1482 return true;
1483
1484 if ((GET_RTX_CLASS (GET_CODE (a))(rtx_class[(int) (((enum rtx_code) (a)->code))]) != RTX_COMM_COMPARE
1485 && GET_RTX_CLASS (GET_CODE (a))(rtx_class[(int) (((enum rtx_code) (a)->code))]) != RTX_COMPARE)
1486 || (GET_RTX_CLASS (GET_CODE (b))(rtx_class[(int) (((enum rtx_code) (b)->code))]) != RTX_COMM_COMPARE
1487 && GET_RTX_CLASS (GET_CODE (b))(rtx_class[(int) (((enum rtx_code) (b)->code))]) != RTX_COMPARE))
1488 return false;
1489
1490 op0 = XEXP (a, 0)(((a)->u.fld[0]).rt_rtx);
1491 op1 = XEXP (a, 1)(((a)->u.fld[1]).rt_rtx);
1492 opb0 = XEXP (b, 0)(((b)->u.fld[0]).rt_rtx);
1493 opb1 = XEXP (b, 1)(((b)->u.fld[1]).rt_rtx);
1494
1495 mode = GET_MODE (op0)((machine_mode) (op0)->mode);
1496 if (mode != GET_MODE (opb0)((machine_mode) (opb0)->mode))
1497 mode = VOIDmode((void) 0, E_VOIDmode);
1498 else if (mode == VOIDmode((void) 0, E_VOIDmode))
1499 {
1500 mode = GET_MODE (op1)((machine_mode) (op1)->mode);
1501 if (mode != GET_MODE (opb1)((machine_mode) (opb1)->mode))
1502 mode = VOIDmode((void) 0, E_VOIDmode);
1503 }
1504
1505 /* A < B implies A + 1 <= B. */
1506 if ((GET_CODE (a)((enum rtx_code) (a)->code) == GT || GET_CODE (a)((enum rtx_code) (a)->code) == LT)
1507 && (GET_CODE (b)((enum rtx_code) (b)->code) == GE || GET_CODE (b)((enum rtx_code) (b)->code) == LE))
1508 {
1509
1510 if (GET_CODE (a)((enum rtx_code) (a)->code) == GT)
1511 std::swap (op0, op1);
1512
1513 if (GET_CODE (b)((enum rtx_code) (b)->code) == GE)
1514 std::swap (opb0, opb1);
1515
1516 if (SCALAR_INT_MODE_P (mode)(((enum mode_class) mode_class[mode]) == MODE_INT || ((enum mode_class
) mode_class[mode]) == MODE_PARTIAL_INT)
1517 && rtx_equal_p (op1, opb1)
1518 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx(const_int_rtx[64 +1]))
1519 return true;
1520 return false;
1521 }
1522
1523 /* A < B or A > B imply A != B. TODO: Likewise
1524 A + n < B implies A != B + n if neither wraps. */
1525 if (GET_CODE (b)((enum rtx_code) (b)->code) == NE
1526 && (GET_CODE (a)((enum rtx_code) (a)->code) == GT || GET_CODE (a)((enum rtx_code) (a)->code) == GTU
1527 || GET_CODE (a)((enum rtx_code) (a)->code) == LT || GET_CODE (a)((enum rtx_code) (a)->code) == LTU))
1528 {
1529 if (rtx_equal_p (op0, opb0)
1530 && rtx_equal_p (op1, opb1))
1531 return true;
1532 }
1533
1534 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1535 if (GET_CODE (a)((enum rtx_code) (a)->code) == NE
1536 && op1 == const0_rtx(const_int_rtx[64]))
1537 {
1538 if ((GET_CODE (b)((enum rtx_code) (b)->code) == GTU
1539 && opb1 == const0_rtx(const_int_rtx[64]))
1540 || (GET_CODE (b)((enum rtx_code) (b)->code) == GEU
1541 && opb1 == const1_rtx(const_int_rtx[64 +1])))
1542 return rtx_equal_p (op0, opb0);
1543 }
1544
1545 /* A != N is equivalent to A - (N + 1) <u -1. */
1546 if (GET_CODE (a)((enum rtx_code) (a)->code) == NE
1547 && CONST_INT_P (op1)(((enum rtx_code) (op1)->code) == CONST_INT)
1548 && GET_CODE (b)((enum rtx_code) (b)->code) == LTU
1549 && opb1 == constm1_rtx(const_int_rtx[64 -1])
1550 && GET_CODE (opb0)((enum rtx_code) (opb0)->code) == PLUS
1551 && CONST_INT_P (XEXP (opb0, 1))(((enum rtx_code) ((((opb0)->u.fld[1]).rt_rtx))->code) ==
CONST_INT)
1552 /* Avoid overflows. */
1553 && ((unsigned HOST_WIDE_INTlong) INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0])
1554 != ((unsigned HOST_WIDE_INTlong)1
1555 << (HOST_BITS_PER_WIDE_INT64 - 1)) - 1)
1556 && INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0]) + 1 == -INTVAL (op1)((op1)->u.hwint[0]))
1557 return rtx_equal_p (op0, XEXP (opb0, 0)(((opb0)->u.fld[0]).rt_rtx));
1558
1559 /* Likewise, A != N implies A - N > 0. */
1560 if (GET_CODE (a)((enum rtx_code) (a)->code) == NE
1561 && CONST_INT_P (op1)(((enum rtx_code) (op1)->code) == CONST_INT))
1562 {
1563 if (GET_CODE (b)((enum rtx_code) (b)->code) == GTU
1564 && GET_CODE (opb0)((enum rtx_code) (opb0)->code) == PLUS
1565 && opb1 == const0_rtx(const_int_rtx[64])
1566 && CONST_INT_P (XEXP (opb0, 1))(((enum rtx_code) ((((opb0)->u.fld[1]).rt_rtx))->code) ==
CONST_INT)
1567 /* Avoid overflows. */
1568 && ((unsigned HOST_WIDE_INTlong) INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0])
1569 != (HOST_WIDE_INT_1U1UL << (HOST_BITS_PER_WIDE_INT64 - 1)))
1570 && rtx_equal_p (XEXP (opb0, 0)(((opb0)->u.fld[0]).rt_rtx), op0))
1571 return INTVAL (op1)((op1)->u.hwint[0]) == -INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0]);
1572 if (GET_CODE (b)((enum rtx_code) (b)->code) == GEU
1573 && GET_CODE (opb0)((enum rtx_code) (opb0)->code) == PLUS
1574 && opb1 == const1_rtx(const_int_rtx[64 +1])
1575 && CONST_INT_P (XEXP (opb0, 1))(((enum rtx_code) ((((opb0)->u.fld[1]).rt_rtx))->code) ==
CONST_INT)
1576 /* Avoid overflows. */
1577 && ((unsigned HOST_WIDE_INTlong) INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0])
1578 != (HOST_WIDE_INT_1U1UL << (HOST_BITS_PER_WIDE_INT64 - 1)))
1579 && rtx_equal_p (XEXP (opb0, 0)(((opb0)->u.fld[0]).rt_rtx), op0))
1580 return INTVAL (op1)((op1)->u.hwint[0]) == -INTVAL (XEXP (opb0, 1))(((((opb0)->u.fld[1]).rt_rtx))->u.hwint[0]);
1581 }
1582
1583 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1584 if ((GET_CODE (a)((enum rtx_code) (a)->code) == GT || GET_CODE (a)((enum rtx_code) (a)->code) == GE)
1585 && CONST_INT_P (op1)(((enum rtx_code) (op1)->code) == CONST_INT)
1586 && ((GET_CODE (a)((enum rtx_code) (a)->code) == GT && op1 == constm1_rtx(const_int_rtx[64 -1]))
1587 || INTVAL (op1)((op1)->u.hwint[0]) >= 0)
1588 && GET_CODE (b)((enum rtx_code) (b)->code) == LTU
1589 && CONST_INT_P (opb1)(((enum rtx_code) (opb1)->code) == CONST_INT)
1590 && rtx_equal_p (op0, opb0))
1591 return INTVAL (opb1)((opb1)->u.hwint[0]) < 0;
1592
1593 return false;
1594}
1595
1596/* Canonicalizes COND so that
1597
1598 (1) Ensure that operands are ordered according to
1599 swap_commutative_operands_p.
1600 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1601 for GE, GEU, and LEU. */
1602
1603rtx
1604canon_condition (rtx cond)
1605{
1606 rtx op0, op1;
1607 enum rtx_code code;
1608 machine_mode mode;
1609
1610 code = GET_CODE (cond)((enum rtx_code) (cond)->code);
1611 op0 = XEXP (cond, 0)(((cond)->u.fld[0]).rt_rtx);
1612 op1 = XEXP (cond, 1)(((cond)->u.fld[1]).rt_rtx);
1613
1614 if (swap_commutative_operands_p (op0, op1))
1615 {
1616 code = swap_condition (code);
1617 std::swap (op0, op1);
1618 }
1619
1620 mode = GET_MODE (op0)((machine_mode) (op0)->mode);
1621 if (mode == VOIDmode((void) 0, E_VOIDmode))
1622 mode = GET_MODE (op1)((machine_mode) (op1)->mode);
1623 gcc_assert (mode != VOIDmode)((void)(!(mode != ((void) 0, E_VOIDmode)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1623, __FUNCTION__), 0 : 0))
;
1624
1625 if (CONST_SCALAR_INT_P (op1)((((enum rtx_code) (op1)->code) == CONST_INT) || (((enum rtx_code
) (op1)->code) == CONST_WIDE_INT))
&& GET_MODE_CLASS (mode)((enum mode_class) mode_class[mode]) != MODE_CC)
1626 {
1627 rtx_mode_t const_val (op1, mode);
1628
1629 switch (code)
1630 {
1631 case LE:
1632 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1633 {
1634 code = LT;
1635 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1636 }
1637 break;
1638
1639 case GE:
1640 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1641 {
1642 code = GT;
1643 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1644 }
1645 break;
1646
1647 case LEU:
1648 if (wi::ne_p (const_val, -1))
1649 {
1650 code = LTU;
1651 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1652 }
1653 break;
1654
1655 case GEU:
1656 if (wi::ne_p (const_val, 0))
1657 {
1658 code = GTU;
1659 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1660 }
1661 break;
1662
1663 default:
1664 break;
1665 }
1666 }
1667
1668 if (op0 != XEXP (cond, 0)(((cond)->u.fld[0]).rt_rtx)
1669 || op1 != XEXP (cond, 1)(((cond)->u.fld[1]).rt_rtx)
1670 || code != GET_CODE (cond)((enum rtx_code) (cond)->code)
1671 || GET_MODE (cond)((machine_mode) (cond)->mode) != SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)))
1672 cond = gen_rtx_fmt_ee (code, SImode, op0, op1)gen_rtx_fmt_ee_stat ((code), ((scalar_int_mode ((scalar_int_mode
::from_int) E_SImode))), (op0), (op1) )
;
1673
1674 return cond;
1675}
1676
1677/* Reverses CONDition; returns NULL if we cannot. */
1678
1679static rtx
1680reversed_condition (rtx cond)
1681{
1682 enum rtx_code reversed;
1683 reversed = reversed_comparison_code (cond, NULL__null);
1684 if (reversed == UNKNOWN)
1685 return NULL_RTX(rtx) 0;
1686 else
1687 return gen_rtx_fmt_ee (reversed,gen_rtx_fmt_ee_stat ((reversed), (((machine_mode) (cond)->
mode)), ((((cond)->u.fld[0]).rt_rtx)), ((((cond)->u.fld
[1]).rt_rtx)) )
1688 GET_MODE (cond), XEXP (cond, 0),gen_rtx_fmt_ee_stat ((reversed), (((machine_mode) (cond)->
mode)), ((((cond)->u.fld[0]).rt_rtx)), ((((cond)->u.fld
[1]).rt_rtx)) )
1689 XEXP (cond, 1))gen_rtx_fmt_ee_stat ((reversed), (((machine_mode) (cond)->
mode)), ((((cond)->u.fld[0]).rt_rtx)), ((((cond)->u.fld
[1]).rt_rtx)) )
;
1690}
1691
1692/* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1693 set of altered regs. */
1694
1695void
1696simplify_using_condition (rtx cond, rtx *expr, regset altered)
1697{
1698 rtx rev, reve, exp = *expr;
1699
1700 /* If some register gets altered later, we do not really speak about its
1701 value at the time of comparison. */
1702 if (altered && altered_reg_used (cond, altered))
1703 return;
1704
1705 if (GET_CODE (cond)((enum rtx_code) (cond)->code) == EQ
1706 && REG_P (XEXP (cond, 0))(((enum rtx_code) ((((cond)->u.fld[0]).rt_rtx))->code) ==
REG)
&& CONSTANT_P (XEXP (cond, 1))((rtx_class[(int) (((enum rtx_code) ((((cond)->u.fld[1]).rt_rtx
))->code))]) == RTX_CONST_OBJ)
)
1707 {
1708 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0)(((cond)->u.fld[0]).rt_rtx), XEXP (cond, 1)(((cond)->u.fld[1]).rt_rtx));
1709 return;
1710 }
1711
1712 if (!COMPARISON_P (exp)(((rtx_class[(int) (((enum rtx_code) (exp)->code))]) &
(~1)) == (RTX_COMPARE & (~1)))
)
1713 return;
1714
1715 rev = reversed_condition (cond);
1716 reve = reversed_condition (exp);
1717
1718 cond = canon_condition (cond);
1719 exp = canon_condition (exp);
1720 if (rev)
1721 rev = canon_condition (rev);
1722 if (reve)
1723 reve = canon_condition (reve);
1724
1725 if (rtx_equal_p (exp, cond))
1726 {
1727 *expr = const_true_rtx;
1728 return;
1729 }
1730
1731 if (rev && rtx_equal_p (exp, rev))
1732 {
1733 *expr = const0_rtx(const_int_rtx[64]);
1734 return;
1735 }
1736
1737 if (implies_p (cond, exp))
1738 {
1739 *expr = const_true_rtx;
1740 return;
1741 }
1742
1743 if (reve && implies_p (cond, reve))
1744 {
1745 *expr = const0_rtx(const_int_rtx[64]);
1746 return;
1747 }
1748
1749 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1750 be false. */
1751 if (rev && implies_p (exp, rev))
1752 {
1753 *expr = const0_rtx(const_int_rtx[64]);
1754 return;
1755 }
1756
1757 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1758 if (rev && reve && implies_p (reve, rev))
1759 {
1760 *expr = const_true_rtx;
1761 return;
1762 }
1763
1764 /* We would like to have some other tests here. TODO. */
1765
1766 return;
1767}
1768
1769/* Use relationship between A and *B to eventually eliminate *B.
1770 OP is the operation we consider. */
1771
1772static void
1773eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1774{
1775 switch (op)
1776 {
1777 case AND:
1778 /* If A implies *B, we may replace *B by true. */
1779 if (implies_p (a, *b))
1780 *b = const_true_rtx;
1781 break;
1782
1783 case IOR:
1784 /* If *B implies A, we may replace *B by false. */
1785 if (implies_p (*b, a))
1786 *b = const0_rtx(const_int_rtx[64]);
1787 break;
1788
1789 default:
1790 gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1790, __FUNCTION__))
;
1791 }
1792}
1793
1794/* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1795 operation we consider. */
1796
1797static void
1798eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1799{
1800 rtx elt;
1801
1802 for (elt = tail; elt; elt = XEXP (elt, 1)(((elt)->u.fld[1]).rt_rtx))
1803 eliminate_implied_condition (op, *head, &XEXP (elt, 0)(((elt)->u.fld[0]).rt_rtx));
1804 for (elt = tail; elt; elt = XEXP (elt, 1)(((elt)->u.fld[1]).rt_rtx))
1805 eliminate_implied_condition (op, XEXP (elt, 0)(((elt)->u.fld[0]).rt_rtx), head);
1806}
1807
1808/* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1809 is a list, its elements are assumed to be combined using OP. */
1810
1811static void
1812simplify_using_initial_values (class loop *loop, enum rtx_code op, rtx *expr)
1813{
1814 bool expression_valid;
1815 rtx head, tail, last_valid_expr;
1816 rtx_expr_list *cond_list;
1817 rtx_insn *insn;
1818 rtx neutral, aggr;
1819 regset altered, this_altered;
1820 edge e;
1821
1822 if (!*expr)
1823 return;
1824
1825 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
1826 return;
1827
1828 if (GET_CODE (*expr)((enum rtx_code) (*expr)->code) == EXPR_LIST)
1829 {
1830 head = XEXP (*expr, 0)(((*expr)->u.fld[0]).rt_rtx);
1831 tail = XEXP (*expr, 1)(((*expr)->u.fld[1]).rt_rtx);
1832
1833 eliminate_implied_conditions (op, &head, tail);
1834
1835 switch (op)
1836 {
1837 case AND:
1838 neutral = const_true_rtx;
1839 aggr = const0_rtx(const_int_rtx[64]);
1840 break;
1841
1842 case IOR:
1843 neutral = const0_rtx(const_int_rtx[64]);
1844 aggr = const_true_rtx;
1845 break;
1846
1847 default:
1848 gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1848, __FUNCTION__))
;
1849 }
1850
1851 simplify_using_initial_values (loop, UNKNOWN, &head);
1852 if (head == aggr)
1853 {
1854 XEXP (*expr, 0)(((*expr)->u.fld[0]).rt_rtx) = aggr;
1855 XEXP (*expr, 1)(((*expr)->u.fld[1]).rt_rtx) = NULL_RTX(rtx) 0;
1856 return;
1857 }
1858 else if (head == neutral)
1859 {
1860 *expr = tail;
1861 simplify_using_initial_values (loop, op, expr);
1862 return;
1863 }
1864 simplify_using_initial_values (loop, op, &tail);
1865
1866 if (tail && XEXP (tail, 0)(((tail)->u.fld[0]).rt_rtx) == aggr)
1867 {
1868 *expr = tail;
1869 return;
1870 }
1871
1872 XEXP (*expr, 0)(((*expr)->u.fld[0]).rt_rtx) = head;
1873 XEXP (*expr, 1)(((*expr)->u.fld[1]).rt_rtx) = tail;
1874 return;
1875 }
1876
1877 gcc_assert (op == UNKNOWN)((void)(!(op == UNKNOWN) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 1877, __FUNCTION__), 0 : 0))
;
1878
1879 replace_single_def_regs (expr);
1880 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
1881 return;
1882
1883 e = loop_preheader_edge (loop);
1884 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr))
1885 return;
1886
1887 altered = ALLOC_REG_SET (&reg_obstack)bitmap_alloc (&reg_obstack);
1888 this_altered = ALLOC_REG_SET (&reg_obstack)bitmap_alloc (&reg_obstack);
1889
1890 expression_valid = true;
1891 last_valid_expr = *expr;
1892 cond_list = NULL__null;
1893 while (1)
1894 {
1895 insn = BB_END (e->src)(e->src)->il.x.rtl->end_;
1896 if (any_condjump_p (insn) && onlyjump_p (insn))
1897 {
1898 rtx cond = get_condition (BB_END (e->src)(e->src)->il.x.rtl->end_, NULL__null, false, true);
1899
1900 if (cond && (e->flags & EDGE_FALLTHRU))
1901 cond = reversed_condition (cond);
1902 if (cond)
1903 {
1904 rtx old = *expr;
1905 simplify_using_condition (cond, expr, altered);
1906 if (old != *expr)
1907 {
1908 rtx note;
1909 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
1910 goto out;
1911 for (note = cond_list; note; note = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx))
1912 {
1913 simplify_using_condition (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), expr, altered);
1914 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
1915 goto out;
1916 }
1917 }
1918 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1919 }
1920 }
1921
1922 FOR_BB_INSNS_REVERSE (e->src, insn)for ((insn) = (e->src)->il.x.rtl->end_; (insn) &&
(insn) != PREV_INSN ((e->src)->il.x.head_); (insn) = PREV_INSN
(insn))
1923 {
1924 rtx src, dest;
1925 rtx old = *expr;
1926
1927 if (!INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code
) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)->
code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) ==
DEBUG_INSN))
)
1928 continue;
1929
1930 CLEAR_REG_SET (this_altered)bitmap_clear (this_altered);
1931 note_stores (insn, mark_altered, this_altered);
1932 if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN))
1933 {
1934 /* Kill all registers that might be clobbered by the call.
1935 We don't track modes of hard registers, so we need to be
1936 conservative and assume that partial kills are full kills. */
1937 function_abi callee_abi = insn_callee_abi (insn);
1938 IOR_REG_SET_HRS (this_altered,bitmap_ior_into (this_altered, bitmap_view<HARD_REG_SET>
(callee_abi.full_and_partial_reg_clobbers ()))
1939 callee_abi.full_and_partial_reg_clobbers ())bitmap_ior_into (this_altered, bitmap_view<HARD_REG_SET>
(callee_abi.full_and_partial_reg_clobbers ()))
;
1940 }
1941
1942 if (suitable_set_for_replacement (insn, &dest, &src))
1943 {
1944 rtx_expr_list **pnote, **pnote_next;
1945
1946 replace_in_expr (expr, dest, src);
1947 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
1948 goto out;
1949
1950 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1951 {
1952 rtx_expr_list *note = *pnote;
1953 rtx old_cond = XEXP (note, 0)(((note)->u.fld[0]).rt_rtx);
1954
1955 pnote_next = (rtx_expr_list **)&XEXP (note, 1)(((note)->u.fld[1]).rt_rtx);
1956 replace_in_expr (&XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), dest, src);
1957
1958 /* We can no longer use a condition that has been simplified
1959 to a constant, and simplify_using_condition will abort if
1960 we try. */
1961 if (CONSTANT_P (XEXP (note, 0))((rtx_class[(int) (((enum rtx_code) ((((note)->u.fld[0]).rt_rtx
))->code))]) == RTX_CONST_OBJ)
)
1962 {
1963 *pnote = *pnote_next;
1964 pnote_next = pnote;
1965 free_EXPR_LIST_node (note);
1966 }
1967 /* Retry simplifications with this condition if either the
1968 expression or the condition changed. */
1969 else if (old_cond != XEXP (note, 0)(((note)->u.fld[0]).rt_rtx) || old != *expr)
1970 simplify_using_condition (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), expr, altered);
1971 }
1972 }
1973 else
1974 {
1975 rtx_expr_list **pnote, **pnote_next;
1976
1977 /* If we did not use this insn to make a replacement, any overlap
1978 between stores in this insn and our expression will cause the
1979 expression to become invalid. */
1980 if (altered_reg_used (*expr, this_altered))
1981 goto out;
1982
1983 /* Likewise for the conditions. */
1984 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1985 {
1986 rtx_expr_list *note = *pnote;
1987 rtx old_cond = XEXP (note, 0)(((note)->u.fld[0]).rt_rtx);
1988
1989 pnote_next = (rtx_expr_list **)&XEXP (note, 1)(((note)->u.fld[1]).rt_rtx);
1990 if (altered_reg_used (old_cond, this_altered))
1991 {
1992 *pnote = *pnote_next;
1993 pnote_next = pnote;
1994 free_EXPR_LIST_node (note);
1995 }
1996 }
1997 }
1998
1999 if (CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
2000 goto out;
2001
2002 IOR_REG_SET (altered, this_altered)bitmap_ior_into (altered, this_altered);
2003
2004 /* If the expression now contains regs that have been altered, we
2005 can't return it to the caller. However, it is still valid for
2006 further simplification, so keep searching to see if we can
2007 eventually turn it into a constant. */
2008 if (altered_reg_used (*expr, altered))
2009 expression_valid = false;
2010 if (expression_valid)
2011 last_valid_expr = *expr;
2012 }
2013
2014 if (!single_pred_p (e->src)
2015 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun)(((cfun + 0))->cfg->x_entry_block_ptr))
2016 break;
2017 e = single_pred_edge (e->src);
2018 }
2019
2020 out:
2021 free_EXPR_LIST_list (&cond_list);
2022 if (!CONSTANT_P (*expr)((rtx_class[(int) (((enum rtx_code) (*expr)->code))]) == RTX_CONST_OBJ
)
)
2023 *expr = last_valid_expr;
2024 FREE_REG_SET (altered)((void) (bitmap_obstack_free ((bitmap) altered), (altered) = (
bitmap) __null))
;
2025 FREE_REG_SET (this_altered)((void) (bitmap_obstack_free ((bitmap) this_altered), (this_altered
) = (bitmap) __null))
;
2026}
2027
2028/* Transforms invariant IV into MODE. Adds assumptions based on the fact
2029 that IV occurs as left operands of comparison COND and its signedness
2030 is SIGNED_P to DESC. */
2031
2032static void
2033shorten_into_mode (class rtx_iv *iv, scalar_int_mode mode,
2034 enum rtx_code cond, bool signed_p, class niter_desc *desc)
2035{
2036 rtx mmin, mmax, cond_over, cond_under;
2037
2038 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2039 cond_under = simplify_gen_relational (LT, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), iv->extend_mode,
2040 iv->base, mmin);
2041 cond_over = simplify_gen_relational (GT, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), iv->extend_mode,
2042 iv->base, mmax);
2043
2044 switch (cond)
2045 {
2046 case LE:
2047 case LT:
2048 case LEU:
2049 case LTU:
2050 if (cond_under != const0_rtx(const_int_rtx[64]))
2051 desc->infinite =
2052 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2053 if (cond_over != const0_rtx(const_int_rtx[64]))
2054 desc->noloop_assumptions =
2055 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2056 break;
2057
2058 case GE:
2059 case GT:
2060 case GEU:
2061 case GTU:
2062 if (cond_over != const0_rtx(const_int_rtx[64]))
2063 desc->infinite =
2064 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2065 if (cond_under != const0_rtx(const_int_rtx[64]))
2066 desc->noloop_assumptions =
2067 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2068 break;
2069
2070 case NE:
2071 if (cond_over != const0_rtx(const_int_rtx[64]))
2072 desc->infinite =
2073 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2074 if (cond_under != const0_rtx(const_int_rtx[64]))
2075 desc->infinite =
2076 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2077 break;
2078
2079 default:
2080 gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2080, __FUNCTION__))
;
2081 }
2082
2083 iv->mode = mode;
2084 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2085}
2086
2087/* Transforms IV0 and IV1 compared by COND so that they are both compared as
2088 subregs of the same mode if possible (sometimes it is necessary to add
2089 some assumptions to DESC). */
2090
2091static bool
2092canonicalize_iv_subregs (class rtx_iv *iv0, class rtx_iv *iv1,
2093 enum rtx_code cond, class niter_desc *desc)
2094{
2095 scalar_int_mode comp_mode;
2096 bool signed_p;
2097
2098 /* If the ivs behave specially in the first iteration, or are
2099 added/multiplied after extending, we ignore them. */
2100 if (iv0->first_special || iv0->mult != const1_rtx(const_int_rtx[64 +1]) || iv0->delta != const0_rtx(const_int_rtx[64]))
2101 return false;
2102 if (iv1->first_special || iv1->mult != const1_rtx(const_int_rtx[64 +1]) || iv1->delta != const0_rtx(const_int_rtx[64]))
2103 return false;
2104
2105 /* If there is some extend, it must match signedness of the comparison. */
2106 switch (cond)
2107 {
2108 case LE:
2109 case LT:
2110 if (iv0->extend == IV_ZERO_EXTEND
2111 || iv1->extend == IV_ZERO_EXTEND)
2112 return false;
2113 signed_p = true;
2114 break;
2115
2116 case LEU:
2117 case LTU:
2118 if (iv0->extend == IV_SIGN_EXTEND
2119 || iv1->extend == IV_SIGN_EXTEND)
2120 return false;
2121 signed_p = false;
2122 break;
2123
2124 case NE:
2125 if (iv0->extend != IV_UNKNOWN_EXTEND
2126 && iv1->extend != IV_UNKNOWN_EXTEND
2127 && iv0->extend != iv1->extend)
2128 return false;
2129
2130 signed_p = false;
2131 if (iv0->extend != IV_UNKNOWN_EXTEND)
2132 signed_p = iv0->extend == IV_SIGN_EXTEND;
2133 if (iv1->extend != IV_UNKNOWN_EXTEND)
2134 signed_p = iv1->extend == IV_SIGN_EXTEND;
2135 break;
2136
2137 default:
2138 gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2138, __FUNCTION__))
;
2139 }
2140
2141 /* Values of both variables should be computed in the same mode. These
2142 might indeed be different, if we have comparison like
2143
2144 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2145
2146 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2147 in different modes. This does not seem impossible to handle, but
2148 it hardly ever occurs in practice.
2149
2150 The only exception is the case when one of operands is invariant.
2151 For example pentium 3 generates comparisons like
2152 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2153 definitely do not want this prevent the optimization. */
2154 comp_mode = iv0->extend_mode;
2155 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2156 comp_mode = iv1->extend_mode;
2157
2158 if (iv0->extend_mode != comp_mode)
2159 {
2160 if (iv0->mode != iv0->extend_mode
2161 || iv0->step != const0_rtx(const_int_rtx[64]))
2162 return false;
2163
2164 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2165 comp_mode, iv0->base, iv0->mode);
2166 iv0->extend_mode = comp_mode;
2167 }
2168
2169 if (iv1->extend_mode != comp_mode)
2170 {
2171 if (iv1->mode != iv1->extend_mode
2172 || iv1->step != const0_rtx(const_int_rtx[64]))
2173 return false;
2174
2175 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2176 comp_mode, iv1->base, iv1->mode);
2177 iv1->extend_mode = comp_mode;
2178 }
2179
2180 /* Check that both ivs belong to a range of a single mode. If one of the
2181 operands is an invariant, we may need to shorten it into the common
2182 mode. */
2183 if (iv0->mode == iv0->extend_mode
2184 && iv0->step == const0_rtx(const_int_rtx[64])
2185 && iv0->mode != iv1->mode)
2186 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2187
2188 if (iv1->mode == iv1->extend_mode
2189 && iv1->step == const0_rtx(const_int_rtx[64])
2190 && iv0->mode != iv1->mode)
2191 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2192
2193 if (iv0->mode != iv1->mode)
2194 return false;
2195
2196 desc->mode = iv0->mode;
2197 desc->signed_p = signed_p;
2198
2199 return true;
2200}
2201
2202/* Tries to estimate the maximum number of iterations in LOOP, and return the
2203 result. This function is called from iv_number_of_iterations with
2204 a number of fields in DESC already filled in. OLD_NITER is the original
2205 expression for the number of iterations, before we tried to simplify it. */
2206
2207static uint64_t
2208determine_max_iter (class loop *loop, class niter_desc *desc, rtx old_niter)
2209{
2210 rtx niter = desc->niter_expr;
2211 rtx mmin, mmax, cmp;
2212 uint64_t nmax, inc;
2213 uint64_t andmax = 0;
2214
2215 /* We used to look for constant operand 0 of AND,
2216 but canonicalization should always make this impossible. */
2217 gcc_checking_assert (GET_CODE (niter) != AND((void)(!(((enum rtx_code) (niter)->code) != AND || !(((enum
rtx_code) ((((niter)->u.fld[0]).rt_rtx))->code) == CONST_INT
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2218, __FUNCTION__), 0 : 0))
2218 || !CONST_INT_P (XEXP (niter, 0)))((void)(!(((enum rtx_code) (niter)->code) != AND || !(((enum
rtx_code) ((((niter)->u.fld[0]).rt_rtx))->code) == CONST_INT
)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2218, __FUNCTION__), 0 : 0))
;
2219
2220 if (GET_CODE (niter)((enum rtx_code) (niter)->code) == AND
2221 && CONST_INT_P (XEXP (niter, 1))(((enum rtx_code) ((((niter)->u.fld[1]).rt_rtx))->code)
== CONST_INT)
)
2222 {
2223 andmax = UINTVAL (XEXP (niter, 1))((unsigned long) (((((niter)->u.fld[1]).rt_rtx))->u.hwint
[0]))
;
2224 niter = XEXP (niter, 0)(((niter)->u.fld[0]).rt_rtx);
2225 }
2226
2227 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2228 nmax = UINTVAL (mmax)((unsigned long) ((mmax)->u.hwint[0])) - UINTVAL (mmin)((unsigned long) ((mmin)->u.hwint[0]));
2229
2230 if (GET_CODE (niter)((enum rtx_code) (niter)->code) == UDIV)
2231 {
2232 if (!CONST_INT_P (XEXP (niter, 1))(((enum rtx_code) ((((niter)->u.fld[1]).rt_rtx))->code)
== CONST_INT)
)
2233 return nmax;
2234 inc = INTVAL (XEXP (niter, 1))(((((niter)->u.fld[1]).rt_rtx))->u.hwint[0]);
2235 niter = XEXP (niter, 0)(((niter)->u.fld[0]).rt_rtx);
2236 }
2237 else
2238 inc = 1;
2239
2240 /* We could use a binary search here, but for now improving the upper
2241 bound by just one eliminates one important corner case. */
2242 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode((void) 0, E_VOIDmode),
2243 desc->mode, old_niter, mmax);
2244 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2245 if (cmp == const_true_rtx)
2246 {
2247 nmax--;
2248
2249 if (dump_file)
2250 fprintf (dump_file, ";; improved upper bound by one.\n");
2251 }
2252 nmax /= inc;
2253 if (andmax)
2254 nmax = MIN (nmax, andmax)((nmax) < (andmax) ? (nmax) : (andmax));
2255 if (dump_file)
2256 fprintf (dump_file, ";; Determined upper bound %" PRId64"l" "d"".\n",
2257 nmax);
2258 return nmax;
2259}
2260
2261/* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2262 the result into DESC. Very similar to determine_number_of_iterations
2263 (basically its rtl version), complicated by things like subregs. */
2264
2265static void
2266iv_number_of_iterations (class loop *loop, rtx_insn *insn, rtx condition,
2267 class niter_desc *desc)
2268{
2269 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2270 class rtx_iv iv0, iv1;
2271 rtx assumption, may_not_xform;
2272 enum rtx_code cond;
2273 machine_mode nonvoid_mode;
2274 scalar_int_mode comp_mode;
2275 rtx mmin, mmax, mode_mmin, mode_mmax;
2276 uint64_t s, size, d, inv, max, up, down;
2277 int64_t inc, step_val;
2278 int was_sharp = false;
2279 rtx old_niter;
2280 bool step_is_pow2;
2281
2282 /* The meaning of these assumptions is this:
2283 if !assumptions
2284 then the rest of information does not have to be valid
2285 if noloop_assumptions then the loop does not roll
2286 if infinite then this exit is never used */
2287
2288 desc->assumptions = NULL_RTX(rtx) 0;
2289 desc->noloop_assumptions = NULL_RTX(rtx) 0;
2290 desc->infinite = NULL_RTX(rtx) 0;
2291 desc->simple_p = true;
2292
2293 desc->const_iter = false;
2294 desc->niter_expr = NULL_RTX(rtx) 0;
2295
2296 cond = GET_CODE (condition)((enum rtx_code) (condition)->code);
2297 gcc_assert (COMPARISON_P (condition))((void)(!((((rtx_class[(int) (((enum rtx_code) (condition)->
code))]) & (~1)) == (RTX_COMPARE & (~1)))) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2297, __FUNCTION__), 0 : 0))
;
2298
2299 nonvoid_mode = GET_MODE (XEXP (condition, 0))((machine_mode) ((((condition)->u.fld[0]).rt_rtx))->mode
)
;
2300 if (nonvoid_mode == VOIDmode((void) 0, E_VOIDmode))
2301 nonvoid_mode = GET_MODE (XEXP (condition, 1))((machine_mode) ((((condition)->u.fld[1]).rt_rtx))->mode
)
;
2302 /* The constant comparisons should be folded. */
2303 gcc_assert (nonvoid_mode != VOIDmode)((void)(!(nonvoid_mode != ((void) 0, E_VOIDmode)) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/loop-iv.cc"
, 2303, __FUNCTION__), 0 : 0))
;
2304
2305 /* We only handle integers or pointers. */
2306 scalar_int_mode mode;
2307 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
2308 goto fail;
2309
2310 op0 = XEXP (condition, 0)(((condition)->u.fld[0]).rt_rtx);
2311 if (!iv_analyze (insn, mode, op0, &iv0))
2312 goto fail;
2313
2314 op1 = XEXP (condition, 1)(((condition)->u.fld[1]).rt_rtx);
2315 if (!iv_analyze (insn, mode, op1, &iv1))
2316 goto fail;
2317
2318 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT64
2319 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT64)
2320 goto fail;
2321
2322 /* Check condition and normalize it. */
2323
2324 switch (cond)
2325 {
2326 case GE:
2327 case GT:
2328 case GEU:
2329 case GTU:
2330 std::swap (iv0, iv1);
2331 cond = swap_condition (cond);
2332 break;
2333 case NE:
2334 case LE:
2335 case LEU:
2336 case LT:
2337 case LTU:
2338 break;
2339 default:
2340 goto fail;
2341 }
2342
2343 /* Handle extends. This is relatively nontrivial, so we only try in some
2344 easy cases, when we can canonicalize the ivs (possibly by adding some
2345 assumptions) to shape subreg (base + i * step). This function also fills
2346 in desc->mode and desc->signed_p. */
2347
2348 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2349 goto fail;
2350
2351 comp_mode = iv0.extend_mode;
2352 mode = iv0.mode;
2353 size = GET_MODE_PRECISION (mode);
2354 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2355 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2356 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2357
2358 if (!CONST_INT_P (iv0.step)(((enum rtx_code) (iv0.step)->code) == CONST_INT) || !CONST_INT_P (iv1.step)(((enum rtx_code) (iv1.step)->code) == CONST_INT))
2359 goto fail;
2360
2361 /* We can take care of the case of two induction variables chasing each other
2362 if the test is NE. I have never seen a loop using it, but still it is
2363 cool. */
2364 if (iv0.step != const0_rtx(const_int_rtx[64]) && iv1.step != const0_rtx(const_int_rtx[64]))
2365 {
2366 if (cond != NE)
2367 goto fail;
2368
2369 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2370 iv1.step = const0_rtx(const_int_rtx[64]);
2371 }
2372
2373 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2374 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2375
2376 /* This is either infinite loop or the one that ends immediately, depending
2377 on initial values. Unswitching should remove this kind of conditions. */
2378 if (iv0.step == const0_rtx(const_int_rtx[64]) && iv1.step == const0_rtx(const_int_rtx[64]))
2379 goto fail;
2380
2381 if (cond != NE)
2382 {
2383 if (iv0.step == const0_rtx(const_int_rtx[64]))
2384 step_val = -INTVAL (iv1.step)((iv1.step)->u.hwint[0]);
2385 else
2386 step_val = INTVAL (iv0.step)((iv0.step)->u.hwint[0]);
2387
2388 /* Ignore loops of while (i-- < 10) type. */
2389 if (step_val < 0)
2390 goto fail;
2391
2392 step_is_pow2 = !(step_val & (step_val - 1));
2393 }
2394 else
2395 {
2396 /* We do not care about whether the step is power of two in this
2397 case. */
2398 step_is_pow2 = false;
2399 step_val = 0;
2400 }
2401
2402 /* Some more condition normalization. We must record some assumptions
2403 due to overflows. */
2404 switch (cond)
2405 {
2406 case LT:
2407 case LTU:
2408 /* We want to take care only of non-sharp relationals; this is easy,
2409 as in cases the overflow would make the transformation unsafe
2410 the loop does not roll. Seemingly it would make more sense to want
2411 to take care of sharp relationals instead, as NE is more similar to
2412 them, but the problem is that here the transformation would be more
2413 difficult due to possibly infinite loops. */
2414 if (iv0.step == const0_rtx(const_int_rtx[64]))
2415 {
2416 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2417 assumption = simplify_gen_relational (EQ, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, tmp,
2418 mode_mmax);
2419 if (assumption == const_true_rtx)
2420 goto zero_iter_simplify;
2421 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2422 iv0.base, const1_rtx(const_int_rtx[64 +1]));
2423 }
2424 else
2425 {
2426 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2427 assumption = simplify_gen_relational (EQ, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, tmp,
2428 mode_mmin);
2429 if (assumption == const_true_rtx)
2430 goto zero_iter_simplify;
2431 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2432 iv1.base, constm1_rtx(const_int_rtx[64 -1]));
2433 }
2434
2435 if (assumption != const0_rtx(const_int_rtx[64]))
2436 desc->noloop_assumptions =
2437 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2438 cond = (cond == LT) ? LE : LEU;
2439
2440 /* It will be useful to be able to tell the difference once more in
2441 LE -> NE reduction. */
2442 was_sharp = true;
2443 break;
2444 default: ;
2445 }
2446
2447 /* Take care of trivially infinite loops. */
2448 if (cond != NE)
2449 {
2450 if (iv0.step == const0_rtx(const_int_rtx[64]))
2451 {
2452 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2453 if (rtx_equal_p (tmp, mode_mmin))
2454 {
2455 desc->infinite =
2456 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX(rtx) 0);
2457 /* Fill in the remaining fields somehow. */
2458 goto zero_iter_simplify;
2459 }
2460 }
2461 else
2462 {
2463 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2464 if (rtx_equal_p (tmp, mode_mmax))
2465 {
2466 desc->infinite =
2467 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX(rtx) 0);
2468 /* Fill in the remaining fields somehow. */
2469 goto zero_iter_simplify;
2470 }
2471 }
2472 }
2473
2474 /* If we can we want to take care of NE conditions instead of size
2475 comparisons, as they are much more friendly (most importantly
2476 this takes care of special handling of loops with step 1). We can
2477 do it if we first check that upper bound is greater or equal to
2478 lower bound, their difference is constant c modulo step and that
2479 there is not an overflow. */
2480 if (cond != NE)
2481 {
2482 if (iv0.step == const0_rtx(const_int_rtx[64]))
2483 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2484 else
2485 step = iv0.step;
2486 step = lowpart_subreg (mode, step, comp_mode);
2487 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2488 delta = lowpart_subreg (mode, delta, comp_mode);
2489 delta = simplify_gen_binary (UMOD, mode, delta, step);
2490 may_xform = const0_rtx(const_int_rtx[64]);
2491 may_not_xform = const_true_rtx;
2492
2493 if (CONST_INT_P (delta)(((enum rtx_code) (delta)->code) == CONST_INT))
2494 {
2495 if (was_sharp && INTVAL (delta)((delta)->u.hwint[0]) == INTVAL (step)((step)->u.hwint[0]) - 1)
2496 {
2497 /* A special case. We have transformed condition of type
2498 for (i = 0; i < 4; i += 4)
2499 into
2500 for (i = 0; i <= 3; i += 4)
2501 obviously if the test for overflow during that transformation
2502 passed, we cannot overflow here. Most importantly any
2503 loop with sharp end condition and step 1 falls into this
2504 category, so handling this case specially is definitely
2505 worth the troubles. */
2506 may_xform = const_true_rtx;
2507 }
2508 else if (iv0.step == const0_rtx(const_int_rtx[64]))
2509 {
2510 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2511 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2512 bound = lowpart_subreg (mode, bound, comp_mode);
2513 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2514 may_xform = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2515 bound, tmp);
2516 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2517 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2518 bound, tmp);
2519 }
2520 else
2521 {
2522 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2523 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2524 bound = lowpart_subreg (mode, bound, comp_mode);
2525 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2526 may_xform = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2527 tmp, bound);
2528 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2529 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2530 tmp, bound);
2531 }
2532 }
2533
2534 if (may_xform != const0_rtx(const_int_rtx[64]))
2535 {
2536 /* We perform the transformation always provided that it is not
2537 completely senseless. This is OK, as we would need this assumption
2538 to determine the number of iterations anyway. */
2539 if (may_xform != const_true_rtx)
2540 {
2541 /* If the step is a power of two and the final value we have
2542 computed overflows, the cycle is infinite. Otherwise it
2543 is nontrivial to compute the number of iterations. */
2544 if (step_is_pow2)
2545 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2546 desc->infinite);
2547 else
2548 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2549 desc->assumptions);
2550 }
2551
2552 /* We are going to lose some information about upper bound on
2553 number of iterations in this step, so record the information
2554 here. */
2555 inc = INTVAL (iv0.step)((iv0.step)->u.hwint[0]) - INTVAL (iv1.step)((iv1.step)->u.hwint[0]);
2556 if (CONST_INT_P (iv1.base)(((enum rtx_code) (iv1.base)->code) == CONST_INT))
2557 up = INTVAL (iv1.base)((iv1.base)->u.hwint[0]);
2558 else
2559 up = INTVAL (mode_mmax)((mode_mmax)->u.hwint[0]) - inc;
2560 down = INTVAL (CONST_INT_P (iv0.base)(((((enum rtx_code) (iv0.base)->code) == CONST_INT) ? iv0.
base : mode_mmin)->u.hwint[0])
2561 ? iv0.base(((((enum rtx_code) (iv0.base)->code) == CONST_INT) ? iv0.
base : mode_mmin)->u.hwint[0])
2562 : mode_mmin)(((((enum rtx_code) (iv0.base)->code) == CONST_INT) ? iv0.
base : mode_mmin)->u.hwint[0])
;
2563 max = (up - down) / inc + 1;
2564 if (!desc->infinite
2565 && !desc->assumptions)
2566 record_niter_bound (loop, max, false, true);
2567
2568 if (iv0.step == const0_rtx(const_int_rtx[64]))
2569 {
2570 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2571 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2572 }
2573 else
2574 {
2575 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2576 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2577 }
2578
2579 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2580 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2581 assumption = simplify_gen_relational (reverse_condition (cond),
2582 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, tmp0, tmp1);
2583 if (assumption == const_true_rtx)
2584 goto zero_iter_simplify;
2585 else if (assumption != const0_rtx(const_int_rtx[64]))
2586 desc->noloop_assumptions =
2587 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2588 cond = NE;
2589 }
2590 }
2591
2592 /* Count the number of iterations. */
2593 if (cond == NE)
2594 {
2595 /* Everything we do here is just arithmetics modulo size of mode. This
2596 makes us able to do more involved computations of number of iterations
2597 than in other cases. First transform the condition into shape
2598 s * i <> c, with s positive. */
2599 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2600 iv0.base = const0_rtx(const_int_rtx[64]);
2601 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2602 iv1.step = const0_rtx(const_int_rtx[64]);
2603 if (INTVAL (iv0.step)((iv0.step)->u.hwint[0]) < 0)
2604 {
2605 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2606 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2607 }
2608 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2609
2610 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2611 is infinite. Otherwise, the number of iterations is
2612 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2613 s = INTVAL (iv0.step)((iv0.step)->u.hwint[0]); d = 1;
2614 while (s % 2 != 1)
2615 {
2616 s /= 2;
2617 d *= 2;
2618 size--;
2619 }
2620 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1)gen_rtx_CONST_INT (((void) 0, E_VOIDmode), (((uint64_t) 1 <<
(size - 1 ) << 1) - 1))
;
2621
2622 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2623 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2624 assumption = simplify_gen_relational (NE, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, tmp, const0_rtx(const_int_rtx[64]));
2625 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2626
2627 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2628 inv = inverse (s, size);
2629 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2630 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2631 }
2632 else
2633 {
2634 if (iv1.step == const0_rtx(const_int_rtx[64]))
2635 /* Condition in shape a + s * i <= b
2636 We must know that b + s does not overflow and a <= b + s and then we
2637 can compute number of iterations as (b + s - a) / s. (It might
2638 seem that we in fact could be more clever about testing the b + s
2639 overflow condition using some information about b - a mod s,
2640 but it was already taken into account during LE -> NE transform). */
2641 {
2642 step = iv0.step;
2643 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2644 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2645
2646 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2647 lowpart_subreg (mode, step,
2648 comp_mode));
2649 if (step_is_pow2)
2650 {
2651 rtx t0, t1;
2652
2653 /* If s is power of 2, we know that the loop is infinite if
2654 a % s <= b % s and b + s overflows. */
2655 assumption = simplify_gen_relational (reverse_condition (cond),
2656 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2657 tmp1, bound);
2658
2659 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2660 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2661 tmp = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, t0, t1);
2662 assumption = simplify_gen_binary (AND, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), assumption, tmp);
2663 desc->infinite =
2664 alloc_EXPR_LIST (0, assumption, desc->infinite);
2665 }
2666 else
2667 {
2668 assumption = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2669 tmp1, bound);
2670 desc->assumptions =
2671 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2672 }
2673
2674 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2675 tmp = lowpart_subreg (mode, tmp, comp_mode);
2676 assumption = simplify_gen_relational (reverse_condition (cond),
2677 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, tmp0, tmp);
2678
2679 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2680 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2681 }
2682 else
2683 {
2684 /* Condition in shape a <= b - s * i
2685 We must know that a - s does not overflow and a - s <= b and then
2686 we can again compute number of iterations as (b - (a - s)) / s. */
2687 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2688 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2689 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2690
2691 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2692 lowpart_subreg (mode, step, comp_mode));
2693 if (step_is_pow2)
2694 {
2695 rtx t0, t1;
2696
2697 /* If s is power of 2, we know that the loop is infinite if
2698 a % s <= b % s and a - s overflows. */
2699 assumption = simplify_gen_relational (reverse_condition (cond),
2700 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2701 bound, tmp0);
2702
2703 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2704 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2705 tmp = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode, t0, t1);
2706 assumption = simplify_gen_binary (AND, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), assumption, tmp);
2707 desc->infinite =
2708 alloc_EXPR_LIST (0, assumption, desc->infinite);
2709 }
2710 else
2711 {
2712 assumption = simplify_gen_relational (cond, SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2713 bound, tmp0);
2714 desc->assumptions =
2715 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2716 }
2717
2718 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2719 tmp = lowpart_subreg (mode, tmp, comp_mode);
2720 assumption = simplify_gen_relational (reverse_condition (cond),
2721 SImode(scalar_int_mode ((scalar_int_mode::from_int) E_SImode)), mode,
2722 tmp, tmp1);
2723 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2724 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2725 }
2726 if (assumption == const_true_rtx)
2727 goto zero_iter_simplify;
2728 else if (assumption != const0_rtx(const_int_rtx[64]))
2729 desc->noloop_assumptions =
2730 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2731 delta = simplify_gen_binary (UDIV, mode, delta, step);
2732 desc->niter_expr = delta;
2733 }
2734
2735 old_niter = desc->niter_expr;
2736
2737 simplify_using_initial_values (loop, AND, &desc->assumptions);
2738 if (desc->assumptions
2739 && XEXP (desc->assumptions, 0)(((desc->assumptions)->u.fld[0]).rt_rtx) == const0_rtx(const_int_rtx[64]))
2740 goto fail;
2741 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2742 simplify_using_initial_values (loop, IOR, &desc->infinite);
2743 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2744
2745 /* Rerun the simplification. Consider code (created by copying loop headers)
2746
2747 i = 0;
2748
2749 if (0 < n)
2750 {
2751 do
2752 {
2753 i++;
2754 } while (i < n);
2755 }
2756
2757 The first pass determines that i = 0, the second pass uses it to eliminate
2758 noloop assumption. */
2759
2760 simplify_using_initial_values (loop, AND, &desc->assumptions);
2761 if (desc->assumptions
2762 && XEXP (desc->assumptions, 0)(((desc->assumptions)->u.fld[0]).rt_rtx) == const0_rtx(const_int_rtx[64]))
2763 goto fail;
2764 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2765 simplify_using_initial_values (loop, IOR, &desc->infinite);
2766 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2767
2768 if (desc->noloop_assumptions
2769 && XEXP (desc->noloop_assumptions, 0)(((desc->noloop_assumptions)->u.fld[0]).rt_rtx) == const_true_rtx)
2770 goto zero_iter;
2771
2772 if (CONST_INT_P (desc->niter_expr)(((enum rtx_code) (desc->niter_expr)->code) == CONST_INT
)
)
2773 {
2774 uint64_t val = INTVAL (desc->niter_expr)((desc->niter_expr)->u.hwint[0]);
2775
2776 desc->const_iter = true;
2777 desc->niter = val & GET_MODE_MASK (desc->mode)mode_mask_array[desc->mode];
2778 if (!desc->infinite
2779 && !desc->assumptions)
2780 record_niter_bound (loop, desc->niter, false, true);
2781 }
2782 else
2783 {
2784 max = determine_max_iter (loop, desc, old_niter);
2785 if (!max)
2786 goto zero_iter_simplify;
2787 if (!desc->infinite
2788 && !desc->assumptions)
2789 record_niter_bound (loop, max, false, true);
2790
2791 /* simplify_using_initial_values does a copy propagation on the registers
2792 in the expression for the number of iterations. This prolongs life
2793 ranges of registers and increases register pressure, and usually
2794 brings no gain (and if it happens to do, the cse pass will take care
2795 of it anyway). So prevent this behavior, unless it enabled us to
2796 derive that the number of iterations is a constant. */
2797 desc->niter_expr = old_niter;
2798 }
2799
2800 return;
2801
2802zero_iter_simplify:
2803 /* Simplify the assumptions. */
2804 simplify_using_initial_values (loop, AND, &desc->assumptions);
2805 if (desc->assumptions
2806 && XEXP (desc->assumptions, 0)(((desc->assumptions)->u.fld[0]).rt_rtx) == const0_rtx(const_int_rtx[64]))
2807 goto fail;
2808 simplify_using_initial_values (loop, IOR, &desc->infinite);
2809
2810 /* Fallthru. */
2811zero_iter:
2812 desc->const_iter = true;
2813 desc->niter = 0;
2814 record_niter_bound (loop, 0, true, true);
2815 desc->noloop_assumptions = NULL_RTX(rtx) 0;
2816 desc->niter_expr = const0_rtx(const_int_rtx[64]);
2817 return;
2818
2819fail:
2820 desc->simple_p = false;
2821 return;
2822}
2823
2824/* Checks whether E is a simple exit from LOOP and stores its description
2825 into DESC. */
2826
2827static void
2828check_simple_exit (class loop *loop, edge e, class niter_desc *desc)
2829{
2830 basic_block exit_bb;
2831 rtx condition;
2832 rtx_insn *at;
2833 edge ein;
2834
2835 exit_bb = e->src;
2836 desc->simple_p = false;
2837
2838 /* It must belong directly to the loop. */
2839 if (exit_bb->loop_father != loop)
2840 return;
2841
2842 /* It must be tested (at least) once during any iteration. */
2843 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2844 return;
2845
2846 /* It must end in a simple conditional jump. */
2847 if (!any_condjump_p (BB_END (exit_bb)(exit_bb)->il.x.rtl->end_) || !onlyjump_p (BB_END (exit_bb)(exit_bb)->il.x.rtl->end_))
2848 return;
2849
2850 ein = EDGE_SUCC (exit_bb, 0)(*(exit_bb)->succs)[(0)];
2851 if (ein == e)
2852 ein = EDGE_SUCC (exit_bb, 1)(*(exit_bb)->succs)[(1)];
2853
2854 desc->out_edge = e;
2855 desc->in_edge = ein;
2856
2857 /* Test whether the condition is suitable. */
2858 if (!(condition = get_condition (BB_END (ein->src)(ein->src)->il.x.rtl->end_, &at, false, false)))
2859 return;
2860
2861 if (ein->flags & EDGE_FALLTHRU)
2862 {
2863 condition = reversed_condition (condition);
2864 if (!condition)
2865 return;
2866 }
2867
2868 /* Check that we are able to determine number of iterations and fill
2869 in information about it. */
2870 iv_number_of_iterations (loop, at, condition, desc);
2871}
2872
2873/* Finds a simple exit of LOOP and stores its description into DESC. */
2874
2875static void
2876find_simple_exit (class loop *loop, class niter_desc *desc)
2877{
2878 unsigned i;
2879 basic_block *body;
2880 edge e;
2881 class niter_desc act;
2882 bool any = false;
2883 edge_iterator ei;
2884
2885 desc->simple_p = false;
2886 body = get_loop_body (loop);
2887
2888 for (i = 0; i < loop->num_nodes; i++)
2889 {
2890 FOR_EACH_EDGE (e, ei, body[i]->succs)for ((ei) = ei_start_1 (&((body[i]->succs))); ei_cond (
(ei), &(e)); ei_next (&(ei)))
2891 {
2892 if (flow_bb_inside_loop_p (loop, e->dest))
2893 continue;
2894
2895 check_simple_exit (loop, e, &act);
2896 if (!act.simple_p)
2897 continue;
2898
2899 if (!any)
2900 any = true;
2901 else
2902 {
2903 /* Prefer constant iterations; the less the better. */
2904 if (!act.const_iter
2905 || (desc->const_iter && act.niter >= desc->niter))
2906 continue;
2907
2908 /* Also if the actual exit may be infinite, while the old one
2909 not, prefer the old one. */
2910 if (act.infinite && !desc->infinite)
2911 continue;
2912 }
2913
2914 *desc = act;
2915 }
2916 }
2917
2918 if (dump_file)
2919 {
2920 if (desc->simple_p)
2921 {
2922 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2923 fprintf (dump_file, " simple exit %d -> %d\n",
2924 desc->out_edge->src->index,
2925 desc->out_edge->dest->index);
2926 if (desc->assumptions)
2927 {
2928 fprintf (dump_file, " assumptions: ");
2929 print_rtl (dump_file, desc->assumptions);
2930 fprintf (dump_file, "\n");
2931 }
2932 if (desc->noloop_assumptions)
2933 {
2934 fprintf (dump_file, " does not roll if: ");
2935 print_rtl (dump_file, desc->noloop_assumptions);
2936 fprintf (dump_file, "\n");
2937 }
2938 if (desc->infinite)
2939 {
2940 fprintf (dump_file, " infinite if: ");
2941 print_rtl (dump_file, desc->infinite);
2942 fprintf (dump_file, "\n");
2943 }
2944
2945 fprintf (dump_file, " number of iterations: ");
2946 print_rtl (dump_file, desc->niter_expr);
2947 fprintf (dump_file, "\n");
2948
2949 fprintf (dump_file, " upper bound: %li\n",
2950 (long)get_max_loop_iterations_int (loop));
2951 fprintf (dump_file, " likely upper bound: %li\n",
2952 (long)get_likely_max_loop_iterations_int (loop));
2953 fprintf (dump_file, " realistic bound: %li\n",
2954 (long)get_estimated_loop_iterations_int (loop));
2955 }
2956 else
2957 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2958 }
2959
2960 /* Fix up the finiteness if possible. We can only do it for single exit,
2961 since the loop is finite, but it's possible that we predicate one loop
2962 exit to be finite which can not be determined as finite in middle-end as
2963 well. It results in incorrect predicate information on the exit condition
2964 expression. For example, if says [(int) _1 + -8, + , -8] != 0 finite,
2965 it means _1 can exactly divide -8. */
2966 if (desc->infinite && single_exit (loop) && finite_loop_p (loop))
2967 {
2968 desc->infinite = NULL_RTX(rtx) 0;
2969 if (dump_file)
2970 fprintf (dump_file, " infinite updated to finite.\n");
2971 }
2972
2973 free (body);
2974}
2975
2976/* Creates a simple loop description of LOOP if it was not computed
2977 already. */
2978
2979class niter_desc *
2980get_simple_loop_desc (class loop *loop)
2981{
2982 class niter_desc *desc = simple_loop_desc (loop);
2983
2984 if (desc)
2985 return desc;
2986
2987 /* At least desc->infinite is not always initialized by
2988 find_simple_loop_exit. */
2989 desc = ggc_cleared_alloc<niter_desc> ();
2990 iv_analysis_loop_init (loop);
2991 find_simple_exit (loop, desc);
2992 loop->simple_loop_desc = desc;
2993 return desc;
2994}
2995
2996/* Releases simple loop description for LOOP. */
2997
2998void
2999free_simple_loop_desc (class loop *loop)
3000{
3001 class niter_desc *desc = simple_loop_desc (loop);
3002
3003 if (!desc)
3004 return;
3005
3006 ggc_free (desc);
3007 loop->simple_loop_desc = NULL__null;
3008}