File: | build/gcc/rtlanal.cc |
Warning: | line 107, column 25 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Analyze RTL for GNU compiler. | ||||
2 | Copyright (C) 1987-2023 Free Software Foundation, Inc. | ||||
3 | |||||
4 | This file is part of GCC. | ||||
5 | |||||
6 | GCC is free software; you can redistribute it and/or modify it under | ||||
7 | the terms of the GNU General Public License as published by the Free | ||||
8 | Software Foundation; either version 3, or (at your option) any later | ||||
9 | version. | ||||
10 | |||||
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | ||||
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | ||||
14 | for more details. | ||||
15 | |||||
16 | You should have received a copy of the GNU General Public License | ||||
17 | along with GCC; see the file COPYING3. If not see | ||||
18 | <http://www.gnu.org/licenses/>. */ | ||||
19 | |||||
20 | |||||
21 | #include "config.h" | ||||
22 | #include "system.h" | ||||
23 | #include "coretypes.h" | ||||
24 | #include "backend.h" | ||||
25 | #include "target.h" | ||||
26 | #include "rtl.h" | ||||
27 | #include "rtlanal.h" | ||||
28 | #include "tree.h" | ||||
29 | #include "predict.h" | ||||
30 | #include "df.h" | ||||
31 | #include "memmodel.h" | ||||
32 | #include "tm_p.h" | ||||
33 | #include "insn-config.h" | ||||
34 | #include "regs.h" | ||||
35 | #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */ | ||||
36 | #include "recog.h" | ||||
37 | #include "addresses.h" | ||||
38 | #include "rtl-iter.h" | ||||
39 | #include "hard-reg-set.h" | ||||
40 | #include "function-abi.h" | ||||
41 | |||||
42 | /* Forward declarations */ | ||||
43 | static void set_of_1 (rtx, const_rtx, void *); | ||||
44 | static bool covers_regno_p (const_rtx, unsigned int); | ||||
45 | static bool covers_regno_no_parallel_p (const_rtx, unsigned int); | ||||
46 | static int computed_jump_p_1 (const_rtx); | ||||
47 | static void parms_set (rtx, const_rtx, void *); | ||||
48 | |||||
49 | static unsigned HOST_WIDE_INTlong cached_nonzero_bits (const_rtx, scalar_int_mode, | ||||
50 | const_rtx, machine_mode, | ||||
51 | unsigned HOST_WIDE_INTlong); | ||||
52 | static unsigned HOST_WIDE_INTlong nonzero_bits1 (const_rtx, scalar_int_mode, | ||||
53 | const_rtx, machine_mode, | ||||
54 | unsigned HOST_WIDE_INTlong); | ||||
55 | static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode, | ||||
56 | const_rtx, machine_mode, | ||||
57 | unsigned int); | ||||
58 | static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode, | ||||
59 | const_rtx, machine_mode, | ||||
60 | unsigned int); | ||||
61 | |||||
62 | rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; | ||||
63 | rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE((int) LAST_AND_UNUSED_RTX_CODE)]; | ||||
64 | |||||
65 | /* Truncation narrows the mode from SOURCE mode to DESTINATION mode. | ||||
66 | If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is | ||||
67 | SIGN_EXTEND then while narrowing we also have to enforce the | ||||
68 | representation and sign-extend the value to mode DESTINATION_REP. | ||||
69 | |||||
70 | If the value is already sign-extended to DESTINATION_REP mode we | ||||
71 | can just switch to DESTINATION mode on it. For each pair of | ||||
72 | integral modes SOURCE and DESTINATION, when truncating from SOURCE | ||||
73 | to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION] | ||||
74 | contains the number of high-order bits in SOURCE that have to be | ||||
75 | copies of the sign-bit so that we can do this mode-switch to | ||||
76 | DESTINATION. */ | ||||
77 | |||||
78 | static unsigned int | ||||
79 | num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1]; | ||||
80 | |||||
81 | /* Store X into index I of ARRAY. ARRAY is known to have at least I | ||||
82 | elements. Return the new base of ARRAY. */ | ||||
83 | |||||
84 | template <typename T> | ||||
85 | typename T::value_type * | ||||
86 | generic_subrtx_iterator <T>::add_single_to_queue (array_type &array, | ||||
87 | value_type *base, | ||||
88 | size_t i, value_type x) | ||||
89 | { | ||||
90 | if (base
| ||||
91 | { | ||||
92 | if (i < LOCAL_ELEMS) | ||||
93 | { | ||||
94 | base[i] = x; | ||||
95 | return base; | ||||
96 | } | ||||
97 | gcc_checking_assert (i == LOCAL_ELEMS)((void)(!(i == LOCAL_ELEMS) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 97, __FUNCTION__), 0 : 0)); | ||||
98 | /* A previous iteration might also have moved from the stack to the | ||||
99 | heap, in which case the heap array will already be big enough. */ | ||||
100 | if (vec_safe_length (array.heap) <= i) | ||||
101 | vec_safe_grow (array.heap, i + 1, true); | ||||
102 | base = array.heap->address (); | ||||
103 | memcpy (base, array.stack, sizeof (array.stack)); | ||||
104 | base[LOCAL_ELEMS] = x; | ||||
105 | return base; | ||||
106 | } | ||||
107 | unsigned int length = array.heap->length (); | ||||
| |||||
108 | if (length > i) | ||||
109 | { | ||||
110 | gcc_checking_assert (base == array.heap->address ())((void)(!(base == array.heap->address ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 110, __FUNCTION__), 0 : 0)); | ||||
111 | base[i] = x; | ||||
112 | return base; | ||||
113 | } | ||||
114 | else | ||||
115 | { | ||||
116 | gcc_checking_assert (i == length)((void)(!(i == length) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 116, __FUNCTION__), 0 : 0)); | ||||
117 | vec_safe_push (array.heap, x); | ||||
118 | return array.heap->address (); | ||||
119 | } | ||||
120 | } | ||||
121 | |||||
122 | /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the | ||||
123 | number of elements added to the worklist. */ | ||||
124 | |||||
125 | template <typename T> | ||||
126 | size_t | ||||
127 | generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array, | ||||
128 | value_type *base, | ||||
129 | size_t end, rtx_type x) | ||||
130 | { | ||||
131 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
132 | const char *format = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
133 | size_t orig_end = end; | ||||
134 | if (UNLIKELY (INSN_P (x))(__builtin_expect (((((((enum rtx_code) (x)->code) == INSN ) || (((enum rtx_code) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code) == CALL_INSN)) || (((enum rtx_code) ( x)->code) == DEBUG_INSN))), 0))) | ||||
135 | { | ||||
136 | /* Put the pattern at the top of the queue, since that's what | ||||
137 | we're likely to want most. It also allows for the SEQUENCE | ||||
138 | code below. */ | ||||
139 | for (int i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; --i) | ||||
140 | if (format[i] == 'e') | ||||
141 | { | ||||
142 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); | ||||
143 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) | ||||
144 | base[end++] = subx; | ||||
145 | else | ||||
146 | base = add_single_to_queue (array, base, end++, subx); | ||||
147 | } | ||||
148 | } | ||||
149 | else | ||||
150 | for (int i = 0; format[i]; ++i) | ||||
151 | if (format[i] == 'e') | ||||
152 | { | ||||
153 | value_type subx = T::get_value (x->u.fld[i].rt_rtx); | ||||
154 | if (LIKELY (end < LOCAL_ELEMS)(__builtin_expect ((end < LOCAL_ELEMS), 1))) | ||||
155 | base[end++] = subx; | ||||
156 | else | ||||
157 | base = add_single_to_queue (array, base, end++, subx); | ||||
158 | } | ||||
159 | else if (format[i] == 'E') | ||||
160 | { | ||||
161 | unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec)((x->u.fld[i].rt_rtvec)->num_elem); | ||||
162 | rtx *vec = x->u.fld[i].rt_rtvec->elem; | ||||
163 | if (LIKELY (end + length <= LOCAL_ELEMS)(__builtin_expect ((end + length <= LOCAL_ELEMS), 1))) | ||||
164 | for (unsigned int j = 0; j < length; j++) | ||||
165 | base[end++] = T::get_value (vec[j]); | ||||
166 | else | ||||
167 | for (unsigned int j = 0; j
| ||||
168 | base = add_single_to_queue (array, base, end++, | ||||
169 | T::get_value (vec[j])); | ||||
170 | if (code == SEQUENCE && end == length) | ||||
171 | /* If the subrtxes of the sequence fill the entire array then | ||||
172 | we know that no other parts of a containing insn are queued. | ||||
173 | The caller is therefore iterating over the sequence as a | ||||
174 | PATTERN (...), so we also want the patterns of the | ||||
175 | subinstructions. */ | ||||
176 | for (unsigned int j = 0; j < length; j++) | ||||
177 | { | ||||
178 | typename T::rtx_type x = T::get_rtx (base[j]); | ||||
179 | if (INSN_P (x)(((((enum rtx_code) (x)->code) == INSN) || (((enum rtx_code ) (x)->code) == JUMP_INSN) || (((enum rtx_code) (x)->code ) == CALL_INSN)) || (((enum rtx_code) (x)->code) == DEBUG_INSN ))) | ||||
180 | base[j] = T::get_value (PATTERN (x)); | ||||
181 | } | ||||
182 | } | ||||
183 | return end - orig_end; | ||||
184 | } | ||||
185 | |||||
186 | template <typename T> | ||||
187 | void | ||||
188 | generic_subrtx_iterator <T>::free_array (array_type &array) | ||||
189 | { | ||||
190 | vec_free (array.heap); | ||||
191 | } | ||||
192 | |||||
193 | template <typename T> | ||||
194 | const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS; | ||||
195 | |||||
196 | template class generic_subrtx_iterator <const_rtx_accessor>; | ||||
197 | template class generic_subrtx_iterator <rtx_var_accessor>; | ||||
198 | template class generic_subrtx_iterator <rtx_ptr_accessor>; | ||||
199 | |||||
200 | /* Return 1 if the value of X is unstable | ||||
201 | (would be different at a different point in the program). | ||||
202 | The frame pointer, arg pointer, etc. are considered stable | ||||
203 | (within one function) and so is anything marked `unchanging'. */ | ||||
204 | |||||
205 | int | ||||
206 | rtx_unstable_p (const_rtx x) | ||||
207 | { | ||||
208 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
209 | int i; | ||||
210 | const char *fmt; | ||||
211 | |||||
212 | switch (code) | ||||
213 | { | ||||
214 | case MEM: | ||||
215 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 215, __FUNCTION__); _rtx; })->unchanging) || rtx_unstable_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
216 | |||||
217 | case CONST: | ||||
218 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
219 | case SYMBOL_REF: | ||||
220 | case LABEL_REF: | ||||
221 | return 0; | ||||
222 | |||||
223 | case REG: | ||||
224 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ | ||||
225 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | ||||
226 | /* The arg pointer varies if it is not a fixed register. */ | ||||
227 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | ||||
228 | return 0; | ||||
229 | /* ??? When call-clobbered, the value is stable modulo the restore | ||||
230 | that must happen after a call. This currently screws up local-alloc | ||||
231 | into believing that the restore is not needed. */ | ||||
232 | if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 && x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx)) | ||||
233 | return 0; | ||||
234 | return 1; | ||||
235 | |||||
236 | case ASM_OPERANDS: | ||||
237 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 237, __FUNCTION__); _rtx; })->volatil)) | ||||
238 | return 1; | ||||
239 | |||||
240 | /* Fall through. */ | ||||
241 | |||||
242 | default: | ||||
243 | break; | ||||
244 | } | ||||
245 | |||||
246 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
247 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
248 | if (fmt[i] == 'e') | ||||
249 | { | ||||
250 | if (rtx_unstable_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | ||||
251 | return 1; | ||||
252 | } | ||||
253 | else if (fmt[i] == 'E') | ||||
254 | { | ||||
255 | int j; | ||||
256 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
257 | if (rtx_unstable_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
258 | return 1; | ||||
259 | } | ||||
260 | |||||
261 | return 0; | ||||
262 | } | ||||
263 | |||||
264 | /* Return 1 if X has a value that can vary even between two | ||||
265 | executions of the program. 0 means X can be compared reliably | ||||
266 | against certain constants or near-constants. | ||||
267 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is | ||||
268 | zero, we are slightly more conservative. | ||||
269 | The frame pointer and the arg pointer are considered constant. */ | ||||
270 | |||||
271 | bool | ||||
272 | rtx_varies_p (const_rtx x, bool for_alias) | ||||
273 | { | ||||
274 | RTX_CODEenum rtx_code code; | ||||
275 | int i; | ||||
276 | const char *fmt; | ||||
277 | |||||
278 | if (!x) | ||||
279 | return 0; | ||||
280 | |||||
281 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
282 | switch (code) | ||||
283 | { | ||||
284 | case MEM: | ||||
285 | return !MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 285, __FUNCTION__); _rtx; })->unchanging) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); | ||||
286 | |||||
287 | case CONST: | ||||
288 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
289 | case SYMBOL_REF: | ||||
290 | case LABEL_REF: | ||||
291 | return 0; | ||||
292 | |||||
293 | case REG: | ||||
294 | /* Note that we have to test for the actual rtx used for the frame | ||||
295 | and arg pointers and not just the register number in case we have | ||||
296 | eliminated the frame and/or arg pointer and are using it | ||||
297 | for pseudos. */ | ||||
298 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | ||||
299 | /* The arg pointer varies if it is not a fixed register. */ | ||||
300 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | ||||
301 | return 0; | ||||
302 | if (x == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | ||||
303 | /* ??? When call-clobbered, the value is stable modulo the restore | ||||
304 | that must happen after a call. This currently screws up | ||||
305 | local-alloc into believing that the restore is not needed, so we | ||||
306 | must return 0 only if we are called from alias analysis. */ | ||||
307 | && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED0 || for_alias)) | ||||
308 | return 0; | ||||
309 | return 1; | ||||
310 | |||||
311 | case LO_SUM: | ||||
312 | /* The operand 0 of a LO_SUM is considered constant | ||||
313 | (in fact it is related specifically to operand 1) | ||||
314 | during alias analysis. */ | ||||
315 | return (! for_alias && rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias)) | ||||
316 | || rtx_varies_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), for_alias); | ||||
317 | |||||
318 | case ASM_OPERANDS: | ||||
319 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 319, __FUNCTION__); _rtx; })->volatil)) | ||||
320 | return 1; | ||||
321 | |||||
322 | /* Fall through. */ | ||||
323 | |||||
324 | default: | ||||
325 | break; | ||||
326 | } | ||||
327 | |||||
328 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
329 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
330 | if (fmt[i] == 'e') | ||||
331 | { | ||||
332 | if (rtx_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) | ||||
333 | return 1; | ||||
334 | } | ||||
335 | else if (fmt[i] == 'E') | ||||
336 | { | ||||
337 | int j; | ||||
338 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
339 | if (rtx_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) | ||||
340 | return 1; | ||||
341 | } | ||||
342 | |||||
343 | return 0; | ||||
344 | } | ||||
345 | |||||
346 | /* Compute an approximation for the offset between the register | ||||
347 | FROM and TO for the current function, as it was at the start | ||||
348 | of the routine. */ | ||||
349 | |||||
350 | static poly_int64 | ||||
351 | get_initial_register_offset (int from, int to) | ||||
352 | { | ||||
353 | static const struct elim_table_t | ||||
354 | { | ||||
355 | const int from; | ||||
356 | const int to; | ||||
357 | } table[] = ELIMINABLE_REGS{{ 16, 7}, { 16, 6}, { 19, 7}, { 19, 6}}; | ||||
358 | poly_int64 offset1, offset2; | ||||
359 | unsigned int i, j; | ||||
360 | |||||
361 | if (to == from) | ||||
362 | return 0; | ||||
363 | |||||
364 | /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue | ||||
365 | is completed, but we need to give at least an estimate for the stack | ||||
366 | pointer based on the frame size. */ | ||||
367 | if (!epilogue_completed) | ||||
368 | { | ||||
369 | offset1 = crtl(&x_rtl)->outgoing_args_size + get_frame_size (); | ||||
370 | #if !STACK_GROWS_DOWNWARD1 | ||||
371 | offset1 = - offset1; | ||||
372 | #endif | ||||
373 | if (to == STACK_POINTER_REGNUM7) | ||||
374 | return offset1; | ||||
375 | else if (from == STACK_POINTER_REGNUM7) | ||||
376 | return - offset1; | ||||
377 | else | ||||
378 | return 0; | ||||
379 | } | ||||
380 | |||||
381 | for (i = 0; i < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); i++) | ||||
382 | if (table[i].from == from) | ||||
383 | { | ||||
384 | if (table[i].to == to) | ||||
385 | { | ||||
386 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
387 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
388 | return offset1; | ||||
389 | } | ||||
390 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) | ||||
391 | { | ||||
392 | if (table[j].to == to | ||||
393 | && table[j].from == table[i].to) | ||||
394 | { | ||||
395 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
396 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
397 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | ||||
398 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | ||||
399 | return offset1 + offset2; | ||||
400 | } | ||||
401 | if (table[j].from == to | ||||
402 | && table[j].to == table[i].to) | ||||
403 | { | ||||
404 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
405 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
406 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | ||||
407 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | ||||
408 | return offset1 - offset2; | ||||
409 | } | ||||
410 | } | ||||
411 | } | ||||
412 | else if (table[i].to == from) | ||||
413 | { | ||||
414 | if (table[i].from == to) | ||||
415 | { | ||||
416 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
417 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
418 | return - offset1; | ||||
419 | } | ||||
420 | for (j = 0; j < ARRAY_SIZE (table)(sizeof (table) / sizeof ((table)[0])); j++) | ||||
421 | { | ||||
422 | if (table[j].to == to | ||||
423 | && table[j].from == table[i].from) | ||||
424 | { | ||||
425 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
426 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
427 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | ||||
428 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | ||||
429 | return - offset1 + offset2; | ||||
430 | } | ||||
431 | if (table[j].from == to | ||||
432 | && table[j].to == table[i].from) | ||||
433 | { | ||||
434 | INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))) | ||||
435 | offset1)((offset1) = ix86_initial_elimination_offset ((table[i].from) , (table[i].to))); | ||||
436 | INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))) | ||||
437 | offset2)((offset2) = ix86_initial_elimination_offset ((table[j].from) , (table[j].to))); | ||||
438 | return - offset1 - offset2; | ||||
439 | } | ||||
440 | } | ||||
441 | } | ||||
442 | |||||
443 | /* If the requested register combination was not found, | ||||
444 | try a different more simple combination. */ | ||||
445 | if (from == ARG_POINTER_REGNUM16) | ||||
446 | return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM6, to); | ||||
447 | else if (to == ARG_POINTER_REGNUM16) | ||||
448 | return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM6); | ||||
449 | else if (from == HARD_FRAME_POINTER_REGNUM6) | ||||
450 | return get_initial_register_offset (FRAME_POINTER_REGNUM19, to); | ||||
451 | else if (to == HARD_FRAME_POINTER_REGNUM6) | ||||
452 | return get_initial_register_offset (from, FRAME_POINTER_REGNUM19); | ||||
453 | else | ||||
454 | return 0; | ||||
455 | } | ||||
456 | |||||
457 | /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE | ||||
458 | bytes can cause a trap. MODE is the mode of the MEM (not that of X) and | ||||
459 | UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory | ||||
460 | references on strict alignment machines. */ | ||||
461 | |||||
462 | static int | ||||
463 | rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size, | ||||
464 | machine_mode mode, bool unaligned_mems) | ||||
465 | { | ||||
466 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
467 | gcc_checking_assert (mode == BLKmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) | ||||
468 | || mode == VOIDmode((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)) | ||||
469 | || known_size_p (size))((void)(!(mode == ((void) 0, E_BLKmode) || mode == ((void) 0, E_VOIDmode) || known_size_p (size)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 469, __FUNCTION__), 0 : 0)); | ||||
470 | poly_int64 const_x1; | ||||
471 | |||||
472 | /* The offset must be a multiple of the mode size if we are considering | ||||
473 | unaligned memory references on strict alignment machines. */ | ||||
474 | if (STRICT_ALIGNMENT0 | ||||
475 | && unaligned_mems | ||||
476 | && mode != BLKmode((void) 0, E_BLKmode) | ||||
477 | && mode != VOIDmode((void) 0, E_VOIDmode)) | ||||
478 | { | ||||
479 | poly_int64 actual_offset = offset; | ||||
480 | |||||
481 | #ifdef SPARC_STACK_BOUNDARY_HACK | ||||
482 | /* ??? The SPARC port may claim a STACK_BOUNDARY higher than | ||||
483 | the real alignment of %sp. However, when it does this, the | ||||
484 | alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ | ||||
485 | if (SPARC_STACK_BOUNDARY_HACK | ||||
486 | && (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]))) | ||||
487 | actual_offset -= STACK_POINTER_OFFSET0; | ||||
488 | #endif | ||||
489 | |||||
490 | if (!multiple_p (actual_offset, GET_MODE_SIZE (mode))) | ||||
491 | return 1; | ||||
492 | } | ||||
493 | |||||
494 | switch (code) | ||||
495 | { | ||||
496 | case SYMBOL_REF: | ||||
497 | if (SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 497, __FUNCTION__); _rtx; })->return_val)) | ||||
498 | return 1; | ||||
499 | if (!CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; })->unchanging) && !SYMBOL_REF_FUNCTION_P (x)(((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if ((( enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 499, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 0)) != 0)) | ||||
500 | { | ||||
501 | tree decl; | ||||
502 | poly_int64 decl_size; | ||||
503 | |||||
504 | if (maybe_lt (offset, 0)) | ||||
505 | return 1; | ||||
506 | if (!known_size_p (size)) | ||||
507 | return maybe_ne (offset, 0); | ||||
508 | |||||
509 | /* If the size of the access or of the symbol is unknown, | ||||
510 | assume the worst. */ | ||||
511 | decl = SYMBOL_REF_DECL (x)((__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 511, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((x))->u.fld[1]).rt_tree)); | ||||
512 | |||||
513 | /* Else check that the access is in bounds. TODO: restructure | ||||
514 | expr_size/tree_expr_size/int_expr_size and just use the latter. */ | ||||
515 | if (!decl) | ||||
516 | decl_size = -1; | ||||
517 | else if (DECL_P (decl)(tree_code_type_tmpl <0>::tree_code_type[(int) (((enum tree_code ) (decl)->base.code))] == tcc_declaration) && DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 517, __FUNCTION__))->decl_common.size_unit)) | ||||
518 | { | ||||
519 | if (!poly_int_tree_p (DECL_SIZE_UNIT (decl)((contains_struct_check ((decl), (TS_DECL_COMMON), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 519, __FUNCTION__))->decl_common.size_unit), &decl_size)) | ||||
520 | decl_size = -1; | ||||
521 | } | ||||
522 | else if (TREE_CODE (decl)((enum tree_code) (decl)->base.code) == STRING_CST) | ||||
523 | decl_size = TREE_STRING_LENGTH (decl)((tree_check ((decl), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 523, __FUNCTION__, (STRING_CST)))->string.length); | ||||
524 | else if (TYPE_SIZE_UNIT (TREE_TYPE (decl))((tree_class_check ((((contains_struct_check ((decl), (TS_TYPED ), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 524, __FUNCTION__))->type_common.size_unit)) | ||||
525 | decl_size = int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 525, __FUNCTION__))->typed.type)); | ||||
526 | else | ||||
527 | decl_size = -1; | ||||
528 | |||||
529 | return (!known_size_p (decl_size) || known_eq (decl_size, 0)(!maybe_ne (decl_size, 0)) | ||||
530 | ? maybe_ne (offset, 0) | ||||
531 | : !known_subrange_p (offset, size, 0, decl_size)); | ||||
532 | } | ||||
533 | |||||
534 | return 0; | ||||
535 | |||||
536 | case LABEL_REF: | ||||
537 | return 0; | ||||
538 | |||||
539 | case REG: | ||||
540 | /* Stack references are assumed not to trap, but we need to deal with | ||||
541 | nonsensical offsets. */ | ||||
542 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | ||||
543 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | ||||
544 | /* The arg pointer varies if it is not a fixed register. */ | ||||
545 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | ||||
546 | { | ||||
547 | #ifdef RED_ZONE_SIZE128 | ||||
548 | poly_int64 red_zone_size = RED_ZONE_SIZE128; | ||||
549 | #else | ||||
550 | poly_int64 red_zone_size = 0; | ||||
551 | #endif | ||||
552 | poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARYix86_preferred_stack_boundary / BITS_PER_UNIT(8); | ||||
553 | poly_int64 low_bound, high_bound; | ||||
554 | |||||
555 | if (!known_size_p (size)) | ||||
556 | return 1; | ||||
557 | |||||
558 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER])) | ||||
559 | { | ||||
560 | if (FRAME_GROWS_DOWNWARD1) | ||||
561 | { | ||||
562 | high_bound = targetm.starting_frame_offset (); | ||||
563 | low_bound = high_bound - get_frame_size (); | ||||
564 | } | ||||
565 | else | ||||
566 | { | ||||
567 | low_bound = targetm.starting_frame_offset (); | ||||
568 | high_bound = low_bound + get_frame_size (); | ||||
569 | } | ||||
570 | } | ||||
571 | else if (x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER])) | ||||
572 | { | ||||
573 | poly_int64 sp_offset | ||||
574 | = get_initial_register_offset (STACK_POINTER_REGNUM7, | ||||
575 | HARD_FRAME_POINTER_REGNUM6); | ||||
576 | poly_int64 ap_offset | ||||
577 | = get_initial_register_offset (ARG_POINTER_REGNUM16, | ||||
578 | HARD_FRAME_POINTER_REGNUM6); | ||||
579 | |||||
580 | #if STACK_GROWS_DOWNWARD1 | ||||
581 | low_bound = sp_offset - red_zone_size - stack_boundary; | ||||
582 | high_bound = ap_offset | ||||
583 | + FIRST_PARM_OFFSET (current_function_decl)0 | ||||
584 | #if !ARGS_GROW_DOWNWARD0 | ||||
585 | + crtl(&x_rtl)->args.size | ||||
586 | #endif | ||||
587 | + stack_boundary; | ||||
588 | #else | ||||
589 | high_bound = sp_offset + red_zone_size + stack_boundary; | ||||
590 | low_bound = ap_offset | ||||
591 | + FIRST_PARM_OFFSET (current_function_decl)0 | ||||
592 | #if ARGS_GROW_DOWNWARD0 | ||||
593 | - crtl(&x_rtl)->args.size | ||||
594 | #endif | ||||
595 | - stack_boundary; | ||||
596 | #endif | ||||
597 | } | ||||
598 | else if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | ||||
599 | { | ||||
600 | poly_int64 ap_offset | ||||
601 | = get_initial_register_offset (ARG_POINTER_REGNUM16, | ||||
602 | STACK_POINTER_REGNUM7); | ||||
603 | |||||
604 | #if STACK_GROWS_DOWNWARD1 | ||||
605 | low_bound = - red_zone_size - stack_boundary; | ||||
606 | high_bound = ap_offset | ||||
607 | + FIRST_PARM_OFFSET (current_function_decl)0 | ||||
608 | #if !ARGS_GROW_DOWNWARD0 | ||||
609 | + crtl(&x_rtl)->args.size | ||||
610 | #endif | ||||
611 | + stack_boundary; | ||||
612 | #else | ||||
613 | high_bound = red_zone_size + stack_boundary; | ||||
614 | low_bound = ap_offset | ||||
615 | + FIRST_PARM_OFFSET (current_function_decl)0 | ||||
616 | #if ARGS_GROW_DOWNWARD0 | ||||
617 | - crtl(&x_rtl)->args.size | ||||
618 | #endif | ||||
619 | - stack_boundary; | ||||
620 | #endif | ||||
621 | } | ||||
622 | else | ||||
623 | { | ||||
624 | /* We assume that accesses are safe to at least the | ||||
625 | next stack boundary. | ||||
626 | Examples are varargs and __builtin_return_address. */ | ||||
627 | #if ARGS_GROW_DOWNWARD0 | ||||
628 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 | ||||
629 | + stack_boundary; | ||||
630 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 | ||||
631 | - crtl(&x_rtl)->args.size - stack_boundary; | ||||
632 | #else | ||||
633 | low_bound = FIRST_PARM_OFFSET (current_function_decl)0 | ||||
634 | - stack_boundary; | ||||
635 | high_bound = FIRST_PARM_OFFSET (current_function_decl)0 | ||||
636 | + crtl(&x_rtl)->args.size + stack_boundary; | ||||
637 | #endif | ||||
638 | } | ||||
639 | |||||
640 | if (known_ge (offset, low_bound)(!maybe_lt (offset, low_bound)) | ||||
641 | && known_le (offset, high_bound - size)(!maybe_lt (high_bound - size, offset))) | ||||
642 | return 0; | ||||
643 | return 1; | ||||
644 | } | ||||
645 | /* All of the virtual frame registers are stack references. */ | ||||
646 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) | ||||
647 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | ||||
648 | return 0; | ||||
649 | return 1; | ||||
650 | |||||
651 | case CONST: | ||||
652 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, | ||||
653 | mode, unaligned_mems); | ||||
654 | |||||
655 | case PLUS: | ||||
656 | /* An address is assumed not to trap if: | ||||
657 | - it is the pic register plus a const unspec without offset. */ | ||||
658 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | ||||
659 | && GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST | ||||
660 | && GET_CODE (XEXP (XEXP (x, 1), 0))((enum rtx_code) (((((((x)->u.fld[1]).rt_rtx))->u.fld[0 ]).rt_rtx))->code) == UNSPEC | ||||
661 | && known_eq (offset, 0)(!maybe_ne (offset, 0))) | ||||
662 | return 0; | ||||
663 | |||||
664 | /* - or it is an address that can't trap plus a constant integer. */ | ||||
665 | if (poly_int_rtx_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), &const_x1) | ||||
666 | && !rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset + const_x1, | ||||
667 | size, mode, unaligned_mems)) | ||||
668 | return 0; | ||||
669 | |||||
670 | return 1; | ||||
671 | |||||
672 | case LO_SUM: | ||||
673 | case PRE_MODIFY: | ||||
674 | return rtx_addr_can_trap_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), offset, size, | ||||
675 | mode, unaligned_mems); | ||||
676 | |||||
677 | case PRE_DEC: | ||||
678 | case PRE_INC: | ||||
679 | case POST_DEC: | ||||
680 | case POST_INC: | ||||
681 | case POST_MODIFY: | ||||
682 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), offset, size, | ||||
683 | mode, unaligned_mems); | ||||
684 | |||||
685 | default: | ||||
686 | break; | ||||
687 | } | ||||
688 | |||||
689 | /* If it isn't one of the case above, it can cause a trap. */ | ||||
690 | return 1; | ||||
691 | } | ||||
692 | |||||
693 | /* Return nonzero if the use of X as an address in a MEM can cause a trap. */ | ||||
694 | |||||
695 | int | ||||
696 | rtx_addr_can_trap_p (const_rtx x) | ||||
697 | { | ||||
698 | return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode((void) 0, E_BLKmode), false); | ||||
699 | } | ||||
700 | |||||
701 | /* Return true if X contains a MEM subrtx. */ | ||||
702 | |||||
703 | bool | ||||
704 | contains_mem_rtx_p (rtx x) | ||||
705 | { | ||||
706 | subrtx_iterator::array_type array; | ||||
707 | FOR_EACH_SUBRTX (iter, array, x, ALL)for (subrtx_iterator iter (array, x, rtx_all_subrtx_bounds); ! iter.at_end (); iter.next ()) | ||||
708 | if (MEM_P (*iter)(((enum rtx_code) (*iter)->code) == MEM)) | ||||
709 | return true; | ||||
710 | |||||
711 | return false; | ||||
712 | } | ||||
713 | |||||
714 | /* Return true if X is an address that is known to not be zero. */ | ||||
715 | |||||
716 | bool | ||||
717 | nonzero_address_p (const_rtx x) | ||||
718 | { | ||||
719 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
720 | |||||
721 | switch (code) | ||||
722 | { | ||||
723 | case SYMBOL_REF: | ||||
724 | return flag_delete_null_pointer_checksglobal_options.x_flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_WEAK", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 724, __FUNCTION__); _rtx; })->return_val); | ||||
725 | |||||
726 | case LABEL_REF: | ||||
727 | return true; | ||||
728 | |||||
729 | case REG: | ||||
730 | /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ | ||||
731 | if (x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) || x == hard_frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_HARD_FRAME_POINTER]) | ||||
732 | || x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | ||||
733 | || (x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER]) && fixed_regs(this_target_hard_regs->x_fixed_regs)[ARG_POINTER_REGNUM16])) | ||||
734 | return true; | ||||
735 | /* All of the virtual frame registers are stack references. */ | ||||
736 | if (REGNO (x)(rhs_regno(x)) >= FIRST_VIRTUAL_REGISTER(76) | ||||
737 | && REGNO (x)(rhs_regno(x)) <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | ||||
738 | return true; | ||||
739 | return false; | ||||
740 | |||||
741 | case CONST: | ||||
742 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
743 | |||||
744 | case PLUS: | ||||
745 | /* Handle PIC references. */ | ||||
746 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == pic_offset_table_rtx(this_target_rtl->x_pic_offset_table_rtx) | ||||
747 | && CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) | ||||
748 | return true; | ||||
749 | return false; | ||||
750 | |||||
751 | case PRE_MODIFY: | ||||
752 | /* Similar to the above; allow positive offsets. Further, since | ||||
753 | auto-inc is only allowed in memories, the register must be a | ||||
754 | pointer. */ | ||||
755 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
756 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) > 0) | ||||
757 | return true; | ||||
758 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
759 | |||||
760 | case PRE_INC: | ||||
761 | /* Similarly. Further, the offset is always positive. */ | ||||
762 | return true; | ||||
763 | |||||
764 | case PRE_DEC: | ||||
765 | case POST_DEC: | ||||
766 | case POST_INC: | ||||
767 | case POST_MODIFY: | ||||
768 | return nonzero_address_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
769 | |||||
770 | case LO_SUM: | ||||
771 | return nonzero_address_p (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)); | ||||
772 | |||||
773 | default: | ||||
774 | break; | ||||
775 | } | ||||
776 | |||||
777 | /* If it isn't one of the case above, might be zero. */ | ||||
778 | return false; | ||||
779 | } | ||||
780 | |||||
781 | /* Return 1 if X refers to a memory location whose address | ||||
782 | cannot be compared reliably with constant addresses, | ||||
783 | or if X refers to a BLKmode memory object. | ||||
784 | FOR_ALIAS is nonzero if we are called from alias analysis; if it is | ||||
785 | zero, we are slightly more conservative. */ | ||||
786 | |||||
787 | bool | ||||
788 | rtx_addr_varies_p (const_rtx x, bool for_alias) | ||||
789 | { | ||||
790 | enum rtx_code code; | ||||
791 | int i; | ||||
792 | const char *fmt; | ||||
793 | |||||
794 | if (x == 0) | ||||
795 | return 0; | ||||
796 | |||||
797 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
798 | if (code == MEM) | ||||
799 | return GET_MODE (x)((machine_mode) (x)->mode) == BLKmode((void) 0, E_BLKmode) || rtx_varies_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), for_alias); | ||||
800 | |||||
801 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
802 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
803 | if (fmt[i] == 'e') | ||||
804 | { | ||||
805 | if (rtx_addr_varies_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), for_alias)) | ||||
806 | return 1; | ||||
807 | } | ||||
808 | else if (fmt[i] == 'E') | ||||
809 | { | ||||
810 | int j; | ||||
811 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
812 | if (rtx_addr_varies_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), for_alias)) | ||||
813 | return 1; | ||||
814 | } | ||||
815 | return 0; | ||||
816 | } | ||||
817 | |||||
818 | /* Return the CALL in X if there is one. */ | ||||
819 | |||||
820 | rtx | ||||
821 | get_call_rtx_from (const rtx_insn *insn) | ||||
822 | { | ||||
823 | rtx x = PATTERN (insn); | ||||
824 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) | ||||
825 | x = XVECEXP (x, 0, 0)(((((x)->u.fld[0]).rt_rtvec))->elem[0]); | ||||
826 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) | ||||
827 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); | ||||
828 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CALL && MEM_P (XEXP (x, 0))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | ||||
829 | return x; | ||||
830 | return NULL_RTX(rtx) 0; | ||||
831 | } | ||||
832 | |||||
833 | /* Get the declaration of the function called by INSN. */ | ||||
834 | |||||
835 | tree | ||||
836 | get_call_fndecl (const rtx_insn *insn) | ||||
837 | { | ||||
838 | rtx note, datum; | ||||
839 | |||||
840 | note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX(rtx) 0); | ||||
841 | if (note == NULL_RTX(rtx) 0) | ||||
842 | return NULL_TREE(tree) nullptr; | ||||
843 | |||||
844 | datum = XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); | ||||
845 | if (datum != NULL_RTX(rtx) 0) | ||||
846 | return SYMBOL_REF_DECL (datum)((__extension__ ({ __typeof ((datum)) const _rtx = ((datum)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 846, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((datum))->u.fld[1]).rt_tree)); | ||||
847 | |||||
848 | return NULL_TREE(tree) nullptr; | ||||
849 | } | ||||
850 | |||||
851 | /* Return the value of the integer term in X, if one is apparent; | ||||
852 | otherwise return 0. | ||||
853 | Only obvious integer terms are detected. | ||||
854 | This is used in cse.cc with the `related_value' field. */ | ||||
855 | |||||
856 | HOST_WIDE_INTlong | ||||
857 | get_integer_term (const_rtx x) | ||||
858 | { | ||||
859 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) | ||||
860 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
861 | |||||
862 | if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS | ||||
863 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
864 | return - INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | ||||
865 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS | ||||
866 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
867 | return INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | ||||
868 | return 0; | ||||
869 | } | ||||
870 | |||||
871 | /* If X is a constant, return the value sans apparent integer term; | ||||
872 | otherwise return 0. | ||||
873 | Only obvious integer terms are detected. */ | ||||
874 | |||||
875 | rtx | ||||
876 | get_related_value (const_rtx x) | ||||
877 | { | ||||
878 | if (GET_CODE (x)((enum rtx_code) (x)->code) != CONST) | ||||
879 | return 0; | ||||
880 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
881 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS | ||||
882 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
883 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
884 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == MINUS | ||||
885 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
886 | return XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
887 | return 0; | ||||
888 | } | ||||
889 | |||||
890 | /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points | ||||
891 | to somewhere in the same object or object_block as SYMBOL. */ | ||||
892 | |||||
893 | bool | ||||
894 | offset_within_block_p (const_rtx symbol, HOST_WIDE_INTlong offset) | ||||
895 | { | ||||
896 | tree decl; | ||||
897 | |||||
898 | if (GET_CODE (symbol)((enum rtx_code) (symbol)->code) != SYMBOL_REF) | ||||
899 | return false; | ||||
900 | |||||
901 | if (offset == 0) | ||||
902 | return true; | ||||
903 | |||||
904 | if (offset > 0) | ||||
905 | { | ||||
906 | if (CONSTANT_POOL_ADDRESS_P (symbol)(__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol)) ; if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 906, __FUNCTION__); _rtx; })->unchanging) | ||||
907 | && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol))) | ||||
908 | return true; | ||||
909 | |||||
910 | decl = SYMBOL_REF_DECL (symbol)((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol) ); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 910, __FUNCTION__); _rtx; })->unchanging) ? nullptr : (( ((symbol))->u.fld[1]).rt_tree)); | ||||
911 | if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)((contains_struct_check ((decl), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 911, __FUNCTION__))->typed.type))) | ||||
912 | return true; | ||||
913 | } | ||||
914 | |||||
915 | if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)(((__extension__ ({ __typeof ((symbol)) const _rtx = ((symbol )); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("SYMBOL_REF_FLAGS", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 915, __FUNCTION__); _rtx; }) ->u2.symbol_ref_flags) & (1 << 7)) != 0) | ||||
916 | && SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block) | ||||
917 | && SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) >= 0 | ||||
918 | && ((unsigned HOST_WIDE_INTlong) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)((&(symbol)->u.block_sym)->offset) | ||||
919 | < (unsigned HOST_WIDE_INTlong) SYMBOL_REF_BLOCK (symbol)((&(symbol)->u.block_sym)->block)->size)) | ||||
920 | return true; | ||||
921 | |||||
922 | return false; | ||||
923 | } | ||||
924 | |||||
925 | /* Split X into a base and a constant offset, storing them in *BASE_OUT | ||||
926 | and *OFFSET_OUT respectively. */ | ||||
927 | |||||
928 | void | ||||
929 | split_const (rtx x, rtx *base_out, rtx *offset_out) | ||||
930 | { | ||||
931 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CONST) | ||||
932 | { | ||||
933 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
934 | if (GET_CODE (x)((enum rtx_code) (x)->code) == PLUS && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
935 | { | ||||
936 | *base_out = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
937 | *offset_out = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | ||||
938 | return; | ||||
939 | } | ||||
940 | } | ||||
941 | *base_out = x; | ||||
942 | *offset_out = const0_rtx(const_int_rtx[64]); | ||||
943 | } | ||||
944 | |||||
945 | /* Express integer value X as some value Y plus a polynomial offset, | ||||
946 | where Y is either const0_rtx, X or something within X (as opposed | ||||
947 | to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */ | ||||
948 | |||||
949 | rtx | ||||
950 | strip_offset (rtx x, poly_int64_pod *offset_out) | ||||
951 | { | ||||
952 | rtx base = const0_rtx(const_int_rtx[64]); | ||||
953 | rtx test = x; | ||||
954 | if (GET_CODE (test)((enum rtx_code) (test)->code) == CONST) | ||||
955 | test = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); | ||||
956 | if (GET_CODE (test)((enum rtx_code) (test)->code) == PLUS) | ||||
957 | { | ||||
958 | base = XEXP (test, 0)(((test)->u.fld[0]).rt_rtx); | ||||
959 | test = XEXP (test, 1)(((test)->u.fld[1]).rt_rtx); | ||||
960 | } | ||||
961 | if (poly_int_rtx_p (test, offset_out)) | ||||
962 | return base; | ||||
963 | *offset_out = 0; | ||||
964 | return x; | ||||
965 | } | ||||
966 | |||||
967 | /* Return the argument size in REG_ARGS_SIZE note X. */ | ||||
968 | |||||
969 | poly_int64 | ||||
970 | get_args_size (const_rtx x) | ||||
971 | { | ||||
972 | gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE)((void)(!(((enum reg_note) ((machine_mode) (x)->mode)) == REG_ARGS_SIZE ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 972, __FUNCTION__), 0 : 0)); | ||||
973 | return rtx_to_poly_int64 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
974 | } | ||||
975 | |||||
976 | /* Return the number of places FIND appears within X. If COUNT_DEST is | ||||
977 | zero, we do not count occurrences inside the destination of a SET. */ | ||||
978 | |||||
979 | int | ||||
980 | count_occurrences (const_rtx x, const_rtx find, int count_dest) | ||||
981 | { | ||||
982 | int i, j; | ||||
983 | enum rtx_code code; | ||||
984 | const char *format_ptr; | ||||
985 | int count; | ||||
986 | |||||
987 | if (x == find) | ||||
988 | return 1; | ||||
989 | |||||
990 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
991 | |||||
992 | switch (code) | ||||
993 | { | ||||
994 | case REG: | ||||
995 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
996 | case SYMBOL_REF: | ||||
997 | case CODE_LABEL: | ||||
998 | case PC: | ||||
999 | return 0; | ||||
1000 | |||||
1001 | case EXPR_LIST: | ||||
1002 | count = count_occurrences (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), find, count_dest); | ||||
1003 | if (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | ||||
1004 | count += count_occurrences (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), find, count_dest); | ||||
1005 | return count; | ||||
1006 | |||||
1007 | case MEM: | ||||
1008 | if (MEM_P (find)(((enum rtx_code) (find)->code) == MEM) && rtx_equal_p (x, find)) | ||||
1009 | return 1; | ||||
1010 | break; | ||||
1011 | |||||
1012 | case SET: | ||||
1013 | if (SET_DEST (x)(((x)->u.fld[0]).rt_rtx) == find && ! count_dest) | ||||
1014 | return count_occurrences (SET_SRC (x)(((x)->u.fld[1]).rt_rtx), find, count_dest); | ||||
1015 | break; | ||||
1016 | |||||
1017 | default: | ||||
1018 | break; | ||||
1019 | } | ||||
1020 | |||||
1021 | format_ptr = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
1022 | count = 0; | ||||
1023 | |||||
1024 | for (i = 0; i < GET_RTX_LENGTH (code)(rtx_length[(int) (code)]); i++) | ||||
1025 | { | ||||
1026 | switch (*format_ptr++) | ||||
1027 | { | ||||
1028 | case 'e': | ||||
1029 | count += count_occurrences (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), find, count_dest); | ||||
1030 | break; | ||||
1031 | |||||
1032 | case 'E': | ||||
1033 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
1034 | count += count_occurrences (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), find, count_dest); | ||||
1035 | break; | ||||
1036 | } | ||||
1037 | } | ||||
1038 | return count; | ||||
1039 | } | ||||
1040 | |||||
1041 | |||||
1042 | /* Return TRUE if OP is a register or subreg of a register that | ||||
1043 | holds an unsigned quantity. Otherwise, return FALSE. */ | ||||
1044 | |||||
1045 | bool | ||||
1046 | unsigned_reg_p (rtx op) | ||||
1047 | { | ||||
1048 | if (REG_P (op)(((enum rtx_code) (op)->code) == REG) | ||||
1049 | && REG_EXPR (op)(((&(op)->u.reg)->attrs) == 0 ? 0 : ((&(op)-> u.reg)->attrs)->decl) | ||||
1050 | && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op)))((tree_class_check ((((contains_struct_check (((((&(op)-> u.reg)->attrs) == 0 ? 0 : ((&(op)->u.reg)->attrs )->decl)), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->typed.type)), (tcc_type), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1050, __FUNCTION__))->base.u.bits.unsigned_flag)) | ||||
1051 | return true; | ||||
1052 | |||||
1053 | if (GET_CODE (op)((enum rtx_code) (op)->code) == SUBREG | ||||
1054 | && SUBREG_PROMOTED_SIGN (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ("SUBREG_PROMOTED_SIGN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1054, __FUNCTION__); _rtx; })->volatil) ? 1 : (op)->unchanging - 1)) | ||||
1055 | return true; | ||||
1056 | |||||
1057 | return false; | ||||
1058 | } | ||||
1059 | |||||
1060 | |||||
1061 | /* Nonzero if register REG appears somewhere within IN. | ||||
1062 | Also works if REG is not a register; in this case it checks | ||||
1063 | for a subexpression of IN that is Lisp "equal" to REG. */ | ||||
1064 | |||||
1065 | int | ||||
1066 | reg_mentioned_p (const_rtx reg, const_rtx in) | ||||
1067 | { | ||||
1068 | const char *fmt; | ||||
1069 | int i; | ||||
1070 | enum rtx_code code; | ||||
1071 | |||||
1072 | if (in == 0) | ||||
1073 | return 0; | ||||
1074 | |||||
1075 | if (reg == in) | ||||
1076 | return 1; | ||||
1077 | |||||
1078 | if (GET_CODE (in)((enum rtx_code) (in)->code) == LABEL_REF) | ||||
1079 | return reg == label_ref_label (in); | ||||
1080 | |||||
1081 | code = GET_CODE (in)((enum rtx_code) (in)->code); | ||||
1082 | |||||
1083 | switch (code) | ||||
1084 | { | ||||
1085 | /* Compare registers by number. */ | ||||
1086 | case REG: | ||||
1087 | return REG_P (reg)(((enum rtx_code) (reg)->code) == REG) && REGNO (in)(rhs_regno(in)) == REGNO (reg)(rhs_regno(reg)); | ||||
1088 | |||||
1089 | /* These codes have no constituent expressions | ||||
1090 | and are unique. */ | ||||
1091 | case SCRATCH: | ||||
1092 | case PC: | ||||
1093 | return 0; | ||||
1094 | |||||
1095 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
1096 | /* These are kept unique for a given value. */ | ||||
1097 | return 0; | ||||
1098 | |||||
1099 | default: | ||||
1100 | break; | ||||
1101 | } | ||||
1102 | |||||
1103 | if (GET_CODE (reg)((enum rtx_code) (reg)->code) == code && rtx_equal_p (reg, in)) | ||||
1104 | return 1; | ||||
1105 | |||||
1106 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
1107 | |||||
1108 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
1109 | { | ||||
1110 | if (fmt[i] == 'E') | ||||
1111 | { | ||||
1112 | int j; | ||||
1113 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
1114 | if (reg_mentioned_p (reg, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
1115 | return 1; | ||||
1116 | } | ||||
1117 | else if (fmt[i] == 'e' | ||||
1118 | && reg_mentioned_p (reg, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | ||||
1119 | return 1; | ||||
1120 | } | ||||
1121 | return 0; | ||||
1122 | } | ||||
1123 | |||||
1124 | /* Return 1 if in between BEG and END, exclusive of BEG and END, there is | ||||
1125 | no CODE_LABEL insn. */ | ||||
1126 | |||||
1127 | int | ||||
1128 | no_labels_between_p (const rtx_insn *beg, const rtx_insn *end) | ||||
1129 | { | ||||
1130 | rtx_insn *p; | ||||
1131 | if (beg == end) | ||||
1132 | return 0; | ||||
1133 | for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p)) | ||||
1134 | if (LABEL_P (p)(((enum rtx_code) (p)->code) == CODE_LABEL)) | ||||
1135 | return 0; | ||||
1136 | return 1; | ||||
1137 | } | ||||
1138 | |||||
1139 | /* Nonzero if register REG is used in an insn between | ||||
1140 | FROM_INSN and TO_INSN (exclusive of those two). */ | ||||
1141 | |||||
1142 | int | ||||
1143 | reg_used_between_p (const_rtx reg, const rtx_insn *from_insn, | ||||
1144 | const rtx_insn *to_insn) | ||||
1145 | { | ||||
1146 | rtx_insn *insn; | ||||
1147 | |||||
1148 | if (from_insn == to_insn) | ||||
1149 | return 0; | ||||
1150 | |||||
1151 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) | ||||
1152 | if (NONDEBUG_INSN_P (insn)((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) | ||||
1153 | && (reg_overlap_mentioned_p (reg, PATTERN (insn)) | ||||
1154 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && find_reg_fusage (insn, USE, reg)))) | ||||
1155 | return 1; | ||||
1156 | return 0; | ||||
1157 | } | ||||
1158 | |||||
1159 | /* Nonzero if the old value of X, a register, is referenced in BODY. If X | ||||
1160 | is entirely replaced by a new value and the only use is as a SET_DEST, | ||||
1161 | we do not consider it a reference. */ | ||||
1162 | |||||
1163 | int | ||||
1164 | reg_referenced_p (const_rtx x, const_rtx body) | ||||
1165 | { | ||||
1166 | int i; | ||||
1167 | |||||
1168 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) | ||||
1169 | { | ||||
1170 | case SET: | ||||
1171 | if (reg_overlap_mentioned_p (x, SET_SRC (body)(((body)->u.fld[1]).rt_rtx))) | ||||
1172 | return 1; | ||||
1173 | |||||
1174 | /* If the destination is anything other than PC, a REG or a SUBREG | ||||
1175 | of a REG that occupies all of the REG, the insn references X if | ||||
1176 | it is mentioned in the destination. */ | ||||
1177 | if (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) != PC | ||||
1178 | && !REG_P (SET_DEST (body))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == REG) | ||||
1179 | && ! (GET_CODE (SET_DEST (body))((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == SUBREG | ||||
1180 | && REG_P (SUBREG_REG (SET_DEST (body)))(((enum rtx_code) (((((((body)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))->code) == REG) | ||||
1181 | && !read_modify_subreg_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) | ||||
1182 | && reg_overlap_mentioned_p (x, SET_DEST (body)(((body)->u.fld[0]).rt_rtx))) | ||||
1183 | return 1; | ||||
1184 | return 0; | ||||
1185 | |||||
1186 | case ASM_OPERANDS: | ||||
1187 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1188 | if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]))) | ||||
1189 | return 1; | ||||
1190 | return 0; | ||||
1191 | |||||
1192 | case CALL: | ||||
1193 | case USE: | ||||
1194 | case IF_THEN_ELSE: | ||||
1195 | return reg_overlap_mentioned_p (x, body); | ||||
1196 | |||||
1197 | case TRAP_IF: | ||||
1198 | return reg_overlap_mentioned_p (x, TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx)); | ||||
1199 | |||||
1200 | case PREFETCH: | ||||
1201 | return reg_overlap_mentioned_p (x, XEXP (body, 0)(((body)->u.fld[0]).rt_rtx)); | ||||
1202 | |||||
1203 | case UNSPEC: | ||||
1204 | case UNSPEC_VOLATILE: | ||||
1205 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1206 | if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) | ||||
1207 | return 1; | ||||
1208 | return 0; | ||||
1209 | |||||
1210 | case PARALLEL: | ||||
1211 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1212 | if (reg_referenced_p (x, XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]))) | ||||
1213 | return 1; | ||||
1214 | return 0; | ||||
1215 | |||||
1216 | case CLOBBER: | ||||
1217 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) | ||||
1218 | if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) | ||||
1219 | return 1; | ||||
1220 | return 0; | ||||
1221 | |||||
1222 | case COND_EXEC: | ||||
1223 | if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx))) | ||||
1224 | return 1; | ||||
1225 | return reg_referenced_p (x, COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx)); | ||||
1226 | |||||
1227 | default: | ||||
1228 | return 0; | ||||
1229 | } | ||||
1230 | } | ||||
1231 | |||||
1232 | /* Nonzero if register REG is set or clobbered in an insn between | ||||
1233 | FROM_INSN and TO_INSN (exclusive of those two). */ | ||||
1234 | |||||
1235 | int | ||||
1236 | reg_set_between_p (const_rtx reg, const rtx_insn *from_insn, | ||||
1237 | const rtx_insn *to_insn) | ||||
1238 | { | ||||
1239 | const rtx_insn *insn; | ||||
1240 | |||||
1241 | if (from_insn == to_insn) | ||||
1242 | return 0; | ||||
1243 | |||||
1244 | for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) | ||||
1245 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && reg_set_p (reg, insn)) | ||||
1246 | return 1; | ||||
1247 | return 0; | ||||
1248 | } | ||||
1249 | |||||
1250 | /* Return true if REG is set or clobbered inside INSN. */ | ||||
1251 | |||||
1252 | int | ||||
1253 | reg_set_p (const_rtx reg, const_rtx insn) | ||||
1254 | { | ||||
1255 | /* After delay slot handling, call and branch insns might be in a | ||||
1256 | sequence. Check all the elements there. */ | ||||
1257 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == SEQUENCE) | ||||
1258 | { | ||||
1259 | for (int i = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); ++i) | ||||
1260 | if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->elem[i]))) | ||||
1261 | return true; | ||||
1262 | |||||
1263 | return false; | ||||
1264 | } | ||||
1265 | |||||
1266 | /* We can be passed an insn or part of one. If we are passed an insn, | ||||
1267 | check if a side-effect of the insn clobbers REG. */ | ||||
1268 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) | ||||
1269 | && (FIND_REG_INC_NOTE (insn, reg)0 | ||||
1270 | || (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) | ||||
1271 | && ((REG_P (reg)(((enum rtx_code) (reg)->code) == REG) | ||||
1272 | && REGNO (reg)(rhs_regno(reg)) < FIRST_PSEUDO_REGISTER76 | ||||
1273 | && (insn_callee_abi (as_a<const rtx_insn *> (insn)) | ||||
1274 | .clobbers_reg_p (GET_MODE (reg)((machine_mode) (reg)->mode), REGNO (reg)(rhs_regno(reg))))) | ||||
1275 | || MEM_P (reg)(((enum rtx_code) (reg)->code) == MEM) | ||||
1276 | || find_reg_fusage (insn, CLOBBER, reg))))) | ||||
1277 | return true; | ||||
1278 | |||||
1279 | /* There are no REG_INC notes for SP autoinc. */ | ||||
1280 | if (reg == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | ||||
1281 | { | ||||
1282 | subrtx_var_iterator::array_type array; | ||||
1283 | FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)for (subrtx_var_iterator iter (array, PATTERN (insn), rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
1284 | { | ||||
1285 | rtx mem = *iter; | ||||
1286 | if (mem | ||||
1287 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) | ||||
1288 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) | ||||
1289 | { | ||||
1290 | if (XEXP (XEXP (mem, 0), 0)((((((mem)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | ||||
1291 | return true; | ||||
1292 | iter.skip_subrtxes (); | ||||
1293 | } | ||||
1294 | } | ||||
1295 | } | ||||
1296 | |||||
1297 | return set_of (reg, insn) != NULL_RTX(rtx) 0; | ||||
1298 | } | ||||
1299 | |||||
1300 | /* Similar to reg_set_between_p, but check all registers in X. Return 0 | ||||
1301 | only if none of them are modified between START and END. Return 1 if | ||||
1302 | X contains a MEM; this routine does use memory aliasing. */ | ||||
1303 | |||||
1304 | int | ||||
1305 | modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end) | ||||
1306 | { | ||||
1307 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
1308 | const char *fmt; | ||||
1309 | int i, j; | ||||
1310 | rtx_insn *insn; | ||||
1311 | |||||
1312 | if (start == end) | ||||
1313 | return 0; | ||||
1314 | |||||
1315 | switch (code) | ||||
1316 | { | ||||
1317 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
1318 | case CONST: | ||||
1319 | case SYMBOL_REF: | ||||
1320 | case LABEL_REF: | ||||
1321 | return 0; | ||||
1322 | |||||
1323 | case PC: | ||||
1324 | return 1; | ||||
1325 | |||||
1326 | case MEM: | ||||
1327 | if (modified_between_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), start, end)) | ||||
1328 | return 1; | ||||
1329 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1329, __FUNCTION__); _rtx; })->unchanging)) | ||||
1330 | return 0; | ||||
1331 | for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn)) | ||||
1332 | if (memory_modified_in_insn_p (x, insn)) | ||||
1333 | return 1; | ||||
1334 | return 0; | ||||
1335 | |||||
1336 | case REG: | ||||
1337 | return reg_set_between_p (x, start, end); | ||||
1338 | |||||
1339 | default: | ||||
1340 | break; | ||||
1341 | } | ||||
1342 | |||||
1343 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
1344 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
1345 | { | ||||
1346 | if (fmt[i] == 'e' && modified_between_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), start, end)) | ||||
1347 | return 1; | ||||
1348 | |||||
1349 | else if (fmt[i] == 'E') | ||||
1350 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
1351 | if (modified_between_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), start, end)) | ||||
1352 | return 1; | ||||
1353 | } | ||||
1354 | |||||
1355 | return 0; | ||||
1356 | } | ||||
1357 | |||||
1358 | /* Similar to reg_set_p, but check all registers in X. Return 0 only if none | ||||
1359 | of them are modified in INSN. Return 1 if X contains a MEM; this routine | ||||
1360 | does use memory aliasing. */ | ||||
1361 | |||||
1362 | int | ||||
1363 | modified_in_p (const_rtx x, const_rtx insn) | ||||
1364 | { | ||||
1365 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
1366 | const char *fmt; | ||||
1367 | int i, j; | ||||
1368 | |||||
1369 | switch (code) | ||||
1370 | { | ||||
1371 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
1372 | case CONST: | ||||
1373 | case SYMBOL_REF: | ||||
1374 | case LABEL_REF: | ||||
1375 | return 0; | ||||
1376 | |||||
1377 | case PC: | ||||
1378 | return 1; | ||||
1379 | |||||
1380 | case MEM: | ||||
1381 | if (modified_in_p (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), insn)) | ||||
1382 | return 1; | ||||
1383 | if (MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1383, __FUNCTION__); _rtx; })->unchanging)) | ||||
1384 | return 0; | ||||
1385 | if (memory_modified_in_insn_p (x, insn)) | ||||
1386 | return 1; | ||||
1387 | return 0; | ||||
1388 | |||||
1389 | case REG: | ||||
1390 | return reg_set_p (x, insn); | ||||
1391 | |||||
1392 | default: | ||||
1393 | break; | ||||
1394 | } | ||||
1395 | |||||
1396 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
1397 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
1398 | { | ||||
1399 | if (fmt[i] == 'e' && modified_in_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), insn)) | ||||
1400 | return 1; | ||||
1401 | |||||
1402 | else if (fmt[i] == 'E') | ||||
1403 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
1404 | if (modified_in_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), insn)) | ||||
1405 | return 1; | ||||
1406 | } | ||||
1407 | |||||
1408 | return 0; | ||||
1409 | } | ||||
1410 | |||||
1411 | /* Return true if X is a SUBREG and if storing a value to X would | ||||
1412 | preserve some of its SUBREG_REG. For example, on a normal 32-bit | ||||
1413 | target, using a SUBREG to store to one half of a DImode REG would | ||||
1414 | preserve the other half. */ | ||||
1415 | |||||
1416 | bool | ||||
1417 | read_modify_subreg_p (const_rtx x) | ||||
1418 | { | ||||
1419 | if (GET_CODE (x)((enum rtx_code) (x)->code) != SUBREG) | ||||
1420 | return false; | ||||
1421 | poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | ||||
1422 | poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x)((machine_mode) (x)->mode)); | ||||
1423 | poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)))ix86_regmode_natural_size (((machine_mode) ((((x)->u.fld[0 ]).rt_rtx))->mode)); | ||||
1424 | /* The inner and outer modes of a subreg must be ordered, so that we | ||||
1425 | can tell whether they're paradoxical or partial. */ | ||||
1426 | gcc_checking_assert (ordered_p (isize, osize))((void)(!(ordered_p (isize, osize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1426, __FUNCTION__), 0 : 0)); | ||||
1427 | return (maybe_gt (isize, osize)maybe_lt (osize, isize) && maybe_gt (isize, regsize)maybe_lt (regsize, isize)); | ||||
1428 | } | ||||
1429 | |||||
1430 | /* Helper function for set_of. */ | ||||
1431 | struct set_of_data | ||||
1432 | { | ||||
1433 | const_rtx found; | ||||
1434 | const_rtx pat; | ||||
1435 | }; | ||||
1436 | |||||
1437 | static void | ||||
1438 | set_of_1 (rtx x, const_rtx pat, void *data1) | ||||
1439 | { | ||||
1440 | struct set_of_data *const data = (struct set_of_data *) (data1); | ||||
1441 | if (rtx_equal_p (x, data->pat) | ||||
1442 | || (!MEM_P (x)(((enum rtx_code) (x)->code) == MEM) && reg_overlap_mentioned_p (data->pat, x))) | ||||
1443 | data->found = pat; | ||||
1444 | } | ||||
1445 | |||||
1446 | /* Give an INSN, return a SET or CLOBBER expression that does modify PAT | ||||
1447 | (either directly or via STRICT_LOW_PART and similar modifiers). */ | ||||
1448 | const_rtx | ||||
1449 | set_of (const_rtx pat, const_rtx insn) | ||||
1450 | { | ||||
1451 | struct set_of_data data; | ||||
1452 | data.found = NULL_RTX(rtx) 0; | ||||
1453 | data.pat = pat; | ||||
1454 | note_pattern_stores (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) ? PATTERN (insn) : insn, set_of_1, &data); | ||||
1455 | return data.found; | ||||
1456 | } | ||||
1457 | |||||
1458 | /* Check whether instruction pattern PAT contains a SET with the following | ||||
1459 | properties: | ||||
1460 | |||||
1461 | - the SET is executed unconditionally; and | ||||
1462 | - either: | ||||
1463 | - the destination of the SET is a REG that contains REGNO; or | ||||
1464 | - both: | ||||
1465 | - the destination of the SET is a SUBREG of such a REG; and | ||||
1466 | - writing to the subreg clobbers all of the SUBREG_REG | ||||
1467 | (in other words, read_modify_subreg_p is false). | ||||
1468 | |||||
1469 | If PAT does have a SET like that, return the set, otherwise return null. | ||||
1470 | |||||
1471 | This is intended to be an alternative to single_set for passes that | ||||
1472 | can handle patterns with multiple_sets. */ | ||||
1473 | rtx | ||||
1474 | simple_regno_set (rtx pat, unsigned int regno) | ||||
1475 | { | ||||
1476 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | ||||
1477 | { | ||||
1478 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; | ||||
1479 | for (int i = 0; i < last; ++i) | ||||
1480 | if (rtx set = simple_regno_set (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]), regno)) | ||||
1481 | return set; | ||||
1482 | |||||
1483 | pat = XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last]); | ||||
1484 | } | ||||
1485 | |||||
1486 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET | ||||
1487 | && covers_regno_no_parallel_p (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx), regno)) | ||||
1488 | return pat; | ||||
1489 | |||||
1490 | return nullptr; | ||||
1491 | } | ||||
1492 | |||||
1493 | /* Add all hard register in X to *PSET. */ | ||||
1494 | void | ||||
1495 | find_all_hard_regs (const_rtx x, HARD_REG_SET *pset) | ||||
1496 | { | ||||
1497 | subrtx_iterator::array_type array; | ||||
1498 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
1499 | { | ||||
1500 | const_rtx x = *iter; | ||||
1501 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76) | ||||
1502 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); | ||||
1503 | } | ||||
1504 | } | ||||
1505 | |||||
1506 | /* This function, called through note_stores, collects sets and | ||||
1507 | clobbers of hard registers in a HARD_REG_SET, which is pointed to | ||||
1508 | by DATA. */ | ||||
1509 | void | ||||
1510 | record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) | ||||
1511 | { | ||||
1512 | HARD_REG_SET *pset = (HARD_REG_SET *)data; | ||||
1513 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && HARD_REGISTER_P (x)((((rhs_regno(x))) < 76))) | ||||
1514 | add_to_hard_reg_set (pset, GET_MODE (x)((machine_mode) (x)->mode), REGNO (x)(rhs_regno(x))); | ||||
1515 | } | ||||
1516 | |||||
1517 | /* Examine INSN, and compute the set of hard registers written by it. | ||||
1518 | Store it in *PSET. Should only be called after reload. | ||||
1519 | |||||
1520 | IMPLICIT is true if we should include registers that are fully-clobbered | ||||
1521 | by calls. This should be used with caution, since it doesn't include | ||||
1522 | partially-clobbered registers. */ | ||||
1523 | void | ||||
1524 | find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit) | ||||
1525 | { | ||||
1526 | rtx link; | ||||
1527 | |||||
1528 | CLEAR_HARD_REG_SET (*pset); | ||||
1529 | note_stores (insn, record_hard_reg_sets, pset); | ||||
1530 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) && implicit) | ||||
1531 | *pset |= insn_callee_abi (insn).full_reg_clobbers (); | ||||
1532 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
1533 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_INC) | ||||
1534 | record_hard_reg_sets (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), NULLnullptr, pset); | ||||
1535 | } | ||||
1536 | |||||
1537 | /* Like record_hard_reg_sets, but called through note_uses. */ | ||||
1538 | void | ||||
1539 | record_hard_reg_uses (rtx *px, void *data) | ||||
1540 | { | ||||
1541 | find_all_hard_regs (*px, (HARD_REG_SET *) data); | ||||
1542 | } | ||||
1543 | |||||
1544 | /* Given an INSN, return a SET expression if this insn has only a single SET. | ||||
1545 | It may also have CLOBBERs, USEs, or SET whose output | ||||
1546 | will not be used, which we ignore. */ | ||||
1547 | |||||
1548 | rtx | ||||
1549 | single_set_2 (const rtx_insn *insn, const_rtx pat) | ||||
1550 | { | ||||
1551 | rtx set = NULLnullptr; | ||||
1552 | int set_verified = 1; | ||||
1553 | int i; | ||||
1554 | |||||
1555 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | ||||
1556 | { | ||||
1557 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) | ||||
1558 | { | ||||
1559 | rtx sub = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); | ||||
1560 | switch (GET_CODE (sub)((enum rtx_code) (sub)->code)) | ||||
1561 | { | ||||
1562 | case USE: | ||||
1563 | case CLOBBER: | ||||
1564 | break; | ||||
1565 | |||||
1566 | case SET: | ||||
1567 | /* We can consider insns having multiple sets, where all | ||||
1568 | but one are dead as single set insns. In common case | ||||
1569 | only single set is present in the pattern so we want | ||||
1570 | to avoid checking for REG_UNUSED notes unless necessary. | ||||
1571 | |||||
1572 | When we reach set first time, we just expect this is | ||||
1573 | the single set we are looking for and only when more | ||||
1574 | sets are found in the insn, we check them. */ | ||||
1575 | if (!set_verified) | ||||
1576 | { | ||||
1577 | if (find_reg_note (insn, REG_UNUSED, SET_DEST (set)(((set)->u.fld[0]).rt_rtx)) | ||||
1578 | && !side_effects_p (set)) | ||||
1579 | set = NULLnullptr; | ||||
1580 | else | ||||
1581 | set_verified = 1; | ||||
1582 | } | ||||
1583 | if (!set) | ||||
1584 | set = sub, set_verified = 0; | ||||
1585 | else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub)(((sub)->u.fld[0]).rt_rtx)) | ||||
1586 | || side_effects_p (sub)) | ||||
1587 | return NULL_RTX(rtx) 0; | ||||
1588 | break; | ||||
1589 | |||||
1590 | default: | ||||
1591 | return NULL_RTX(rtx) 0; | ||||
1592 | } | ||||
1593 | } | ||||
1594 | } | ||||
1595 | return set; | ||||
1596 | } | ||||
1597 | |||||
1598 | /* Given an INSN, return nonzero if it has more than one SET, else return | ||||
1599 | zero. */ | ||||
1600 | |||||
1601 | int | ||||
1602 | multiple_sets (const_rtx insn) | ||||
1603 | { | ||||
1604 | int found; | ||||
1605 | int i; | ||||
1606 | |||||
1607 | /* INSN must be an insn. */ | ||||
1608 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | ||||
1609 | return 0; | ||||
1610 | |||||
1611 | /* Only a PARALLEL can have multiple SETs. */ | ||||
1612 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL) | ||||
1613 | { | ||||
1614 | for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0)(((((PATTERN (insn))->u.fld[0]).rt_rtvec))->num_elem); i++) | ||||
1615 | if (GET_CODE (XVECEXP (PATTERN (insn), 0, i))((enum rtx_code) ((((((PATTERN (insn))->u.fld[0]).rt_rtvec ))->elem[i]))->code) == SET) | ||||
1616 | { | ||||
1617 | /* If we have already found a SET, then return now. */ | ||||
1618 | if (found) | ||||
1619 | return 1; | ||||
1620 | else | ||||
1621 | found = 1; | ||||
1622 | } | ||||
1623 | } | ||||
1624 | |||||
1625 | /* Either zero or one SET. */ | ||||
1626 | return 0; | ||||
1627 | } | ||||
1628 | |||||
1629 | /* Return nonzero if the destination of SET equals the source | ||||
1630 | and there are no side effects. */ | ||||
1631 | |||||
1632 | int | ||||
1633 | set_noop_p (const_rtx set) | ||||
1634 | { | ||||
1635 | rtx src = SET_SRC (set)(((set)->u.fld[1]).rt_rtx); | ||||
1636 | rtx dst = SET_DEST (set)(((set)->u.fld[0]).rt_rtx); | ||||
1637 | |||||
1638 | if (dst == pc_rtx && src == pc_rtx) | ||||
1639 | return 1; | ||||
1640 | |||||
1641 | if (MEM_P (dst)(((enum rtx_code) (dst)->code) == MEM) && MEM_P (src)(((enum rtx_code) (src)->code) == MEM)) | ||||
1642 | return rtx_equal_p (dst, src) && !side_effects_p (dst); | ||||
1643 | |||||
1644 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == ZERO_EXTRACT) | ||||
1645 | return rtx_equal_p (XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx), src) | ||||
1646 | && !BITS_BIG_ENDIAN0 && XEXP (dst, 2)(((dst)->u.fld[2]).rt_rtx) == const0_rtx(const_int_rtx[64]) | ||||
1647 | && !side_effects_p (src); | ||||
1648 | |||||
1649 | if (GET_CODE (dst)((enum rtx_code) (dst)->code) == STRICT_LOW_PART) | ||||
1650 | dst = XEXP (dst, 0)(((dst)->u.fld[0]).rt_rtx); | ||||
1651 | |||||
1652 | if (GET_CODE (src)((enum rtx_code) (src)->code) == SUBREG && GET_CODE (dst)((enum rtx_code) (dst)->code) == SUBREG) | ||||
1653 | { | ||||
1654 | if (maybe_ne (SUBREG_BYTE (src)(((src)->u.fld[1]).rt_subreg), SUBREG_BYTE (dst)(((dst)->u.fld[1]).rt_subreg))) | ||||
1655 | return 0; | ||||
1656 | src = SUBREG_REG (src)(((src)->u.fld[0]).rt_rtx); | ||||
1657 | dst = SUBREG_REG (dst)(((dst)->u.fld[0]).rt_rtx); | ||||
1658 | if (GET_MODE (src)((machine_mode) (src)->mode) != GET_MODE (dst)((machine_mode) (dst)->mode)) | ||||
1659 | /* It is hard to tell whether subregs refer to the same bits, so act | ||||
1660 | conservatively and return 0. */ | ||||
1661 | return 0; | ||||
1662 | } | ||||
1663 | |||||
1664 | /* It is a NOOP if destination overlaps with selected src vector | ||||
1665 | elements. */ | ||||
1666 | if (GET_CODE (src)((enum rtx_code) (src)->code) == VEC_SELECT | ||||
1667 | && REG_P (XEXP (src, 0))(((enum rtx_code) ((((src)->u.fld[0]).rt_rtx))->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) | ||||
1668 | && HARD_REGISTER_P (XEXP (src, 0))((((rhs_regno((((src)->u.fld[0]).rt_rtx)))) < 76)) | ||||
1669 | && HARD_REGISTER_P (dst)((((rhs_regno(dst))) < 76))) | ||||
1670 | { | ||||
1671 | int i; | ||||
1672 | rtx par = XEXP (src, 1)(((src)->u.fld[1]).rt_rtx); | ||||
1673 | rtx src0 = XEXP (src, 0)(((src)->u.fld[0]).rt_rtx); | ||||
1674 | poly_int64 c0; | ||||
1675 | if (!poly_int_rtx_p (XVECEXP (par, 0, 0)(((((par)->u.fld[0]).rt_rtvec))->elem[0]), &c0)) | ||||
1676 | return 0; | ||||
1677 | poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0))mode_to_unit_size (((machine_mode) (src0)->mode)) * c0; | ||||
1678 | |||||
1679 | for (i = 1; i < XVECLEN (par, 0)(((((par)->u.fld[0]).rt_rtvec))->num_elem); i++) | ||||
1680 | { | ||||
1681 | poly_int64 c0i; | ||||
1682 | if (!poly_int_rtx_p (XVECEXP (par, 0, i)(((((par)->u.fld[0]).rt_rtvec))->elem[i]), &c0i) | ||||
1683 | || maybe_ne (c0i, c0 + i)) | ||||
1684 | return 0; | ||||
1685 | } | ||||
1686 | return | ||||
1687 | REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))(targetm.can_change_mode_class (((machine_mode) (src0)->mode ), ((machine_mode) (dst)->mode), (regclass_map[((rhs_regno (dst)))]))) | ||||
1688 | && simplify_subreg_regno (REGNO (src0)(rhs_regno(src0)), GET_MODE (src0)((machine_mode) (src0)->mode), | ||||
1689 | offset, GET_MODE (dst)((machine_mode) (dst)->mode)) == (int) REGNO (dst)(rhs_regno(dst)); | ||||
1690 | } | ||||
1691 | |||||
1692 | return (REG_P (src)(((enum rtx_code) (src)->code) == REG) && REG_P (dst)(((enum rtx_code) (dst)->code) == REG) | ||||
1693 | && REGNO (src)(rhs_regno(src)) == REGNO (dst)(rhs_regno(dst))); | ||||
1694 | } | ||||
1695 | |||||
1696 | /* Return nonzero if an insn consists only of SETs, each of which only sets a | ||||
1697 | value to itself. */ | ||||
1698 | |||||
1699 | int | ||||
1700 | noop_move_p (const rtx_insn *insn) | ||||
1701 | { | ||||
1702 | rtx pat = PATTERN (insn); | ||||
1703 | |||||
1704 | if (INSN_CODE (insn)(((insn)->u.fld[5]).rt_int) == NOOP_MOVE_INSN_CODE2147483647) | ||||
1705 | return 1; | ||||
1706 | |||||
1707 | /* Check the code to be executed for COND_EXEC. */ | ||||
1708 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == COND_EXEC) | ||||
1709 | pat = COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx); | ||||
1710 | |||||
1711 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET && set_noop_p (pat)) | ||||
1712 | return 1; | ||||
1713 | |||||
1714 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | ||||
1715 | { | ||||
1716 | int i; | ||||
1717 | /* If nothing but SETs of registers to themselves, | ||||
1718 | this insn can also be deleted. */ | ||||
1719 | for (i = 0; i < XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); i++) | ||||
1720 | { | ||||
1721 | rtx tem = XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i]); | ||||
1722 | |||||
1723 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) == USE || GET_CODE (tem)((enum rtx_code) (tem)->code) == CLOBBER) | ||||
1724 | continue; | ||||
1725 | |||||
1726 | if (GET_CODE (tem)((enum rtx_code) (tem)->code) != SET || ! set_noop_p (tem)) | ||||
1727 | return 0; | ||||
1728 | } | ||||
1729 | |||||
1730 | return 1; | ||||
1731 | } | ||||
1732 | return 0; | ||||
1733 | } | ||||
1734 | |||||
1735 | |||||
1736 | /* Return nonzero if register in range [REGNO, ENDREGNO) | ||||
1737 | appears either explicitly or implicitly in X | ||||
1738 | other than being stored into. | ||||
1739 | |||||
1740 | References contained within the substructure at LOC do not count. | ||||
1741 | LOC may be zero, meaning don't ignore anything. */ | ||||
1742 | |||||
1743 | bool | ||||
1744 | refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x, | ||||
1745 | rtx *loc) | ||||
1746 | { | ||||
1747 | int i; | ||||
1748 | unsigned int x_regno; | ||||
1749 | RTX_CODEenum rtx_code code; | ||||
1750 | const char *fmt; | ||||
1751 | |||||
1752 | repeat: | ||||
1753 | /* The contents of a REG_NONNEG note is always zero, so we must come here | ||||
1754 | upon repeat in case the last REG_NOTE is a REG_NONNEG note. */ | ||||
1755 | if (x == 0) | ||||
1756 | return false; | ||||
1757 | |||||
1758 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
1759 | |||||
1760 | switch (code) | ||||
1761 | { | ||||
1762 | case REG: | ||||
1763 | x_regno = REGNO (x)(rhs_regno(x)); | ||||
1764 | |||||
1765 | /* If we modifying the stack, frame, or argument pointer, it will | ||||
1766 | clobber a virtual register. In fact, we could be more precise, | ||||
1767 | but it isn't worth it. */ | ||||
1768 | if ((x_regno == STACK_POINTER_REGNUM7 | ||||
1769 | || (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 | ||||
1770 | && x_regno == ARG_POINTER_REGNUM16) | ||||
1771 | || x_regno == FRAME_POINTER_REGNUM19) | ||||
1772 | && regno >= FIRST_VIRTUAL_REGISTER(76) && regno <= LAST_VIRTUAL_REGISTER(((76)) + 5)) | ||||
1773 | return true; | ||||
1774 | |||||
1775 | return endregno > x_regno && regno < END_REGNO (x); | ||||
1776 | |||||
1777 | case SUBREG: | ||||
1778 | /* If this is a SUBREG of a hard reg, we can see exactly which | ||||
1779 | registers are being modified. Otherwise, handle normally. */ | ||||
1780 | if (REG_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) | ||||
1781 | && REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76) | ||||
1782 | { | ||||
1783 | unsigned int inner_regno = subreg_regno (x); | ||||
1784 | unsigned int inner_endregno | ||||
1785 | = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER76 | ||||
1786 | ? subreg_nregs (x) : 1); | ||||
1787 | |||||
1788 | return endregno > inner_regno && regno < inner_endregno; | ||||
1789 | } | ||||
1790 | break; | ||||
1791 | |||||
1792 | case CLOBBER: | ||||
1793 | case SET: | ||||
1794 | if (&SET_DEST (x)(((x)->u.fld[0]).rt_rtx) != loc | ||||
1795 | /* Note setting a SUBREG counts as referring to the REG it is in for | ||||
1796 | a pseudo but not for hard registers since we can | ||||
1797 | treat each word individually. */ | ||||
1798 | && ((GET_CODE (SET_DEST (x))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SUBREG | ||||
1799 | && loc != &SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx) | ||||
1800 | && REG_P (SUBREG_REG (SET_DEST (x)))(((enum rtx_code) (((((((x)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) | ||||
1801 | && REGNO (SUBREG_REG (SET_DEST (x)))(rhs_regno(((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx ))) >= FIRST_PSEUDO_REGISTER76 | ||||
1802 | && refers_to_regno_p (regno, endregno, | ||||
1803 | SUBREG_REG (SET_DEST (x))((((((x)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), loc)) | ||||
1804 | || (!REG_P (SET_DEST (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == REG ) | ||||
1805 | && refers_to_regno_p (regno, endregno, SET_DEST (x)(((x)->u.fld[0]).rt_rtx), loc)))) | ||||
1806 | return true; | ||||
1807 | |||||
1808 | if (code == CLOBBER || loc == &SET_SRC (x)(((x)->u.fld[1]).rt_rtx)) | ||||
1809 | return false; | ||||
1810 | x = SET_SRC (x)(((x)->u.fld[1]).rt_rtx); | ||||
1811 | goto repeat; | ||||
1812 | |||||
1813 | default: | ||||
1814 | break; | ||||
1815 | } | ||||
1816 | |||||
1817 | /* X does not match, so try its subexpressions. */ | ||||
1818 | |||||
1819 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
1820 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
1821 | { | ||||
1822 | if (fmt[i] == 'e' && loc != &XEXP (x, i)(((x)->u.fld[i]).rt_rtx)) | ||||
1823 | { | ||||
1824 | if (i == 0) | ||||
1825 | { | ||||
1826 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
1827 | goto repeat; | ||||
1828 | } | ||||
1829 | else | ||||
1830 | if (refers_to_regno_p (regno, endregno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx), loc)) | ||||
1831 | return true; | ||||
1832 | } | ||||
1833 | else if (fmt[i] == 'E') | ||||
1834 | { | ||||
1835 | int j; | ||||
1836 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
1837 | if (loc != &XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) | ||||
1838 | && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), loc)) | ||||
1839 | return true; | ||||
1840 | } | ||||
1841 | } | ||||
1842 | return false; | ||||
1843 | } | ||||
1844 | |||||
1845 | /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG, | ||||
1846 | we check if any register number in X conflicts with the relevant register | ||||
1847 | numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN | ||||
1848 | contains a MEM (we don't bother checking for memory addresses that can't | ||||
1849 | conflict because we expect this to be a rare case. */ | ||||
1850 | |||||
1851 | int | ||||
1852 | reg_overlap_mentioned_p (const_rtx x, const_rtx in) | ||||
1853 | { | ||||
1854 | unsigned int regno, endregno; | ||||
1855 | |||||
1856 | /* If either argument is a constant, then modifying X cannot | ||||
1857 | affect IN. Here we look at IN, we can profitably combine | ||||
1858 | CONSTANT_P (x) with the switch statement below. */ | ||||
1859 | if (CONSTANT_P (in)((rtx_class[(int) (((enum rtx_code) (in)->code))]) == RTX_CONST_OBJ )) | ||||
1860 | return 0; | ||||
1861 | |||||
1862 | recurse: | ||||
1863 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | ||||
1864 | { | ||||
1865 | case CLOBBER: | ||||
1866 | case STRICT_LOW_PART: | ||||
1867 | case ZERO_EXTRACT: | ||||
1868 | case SIGN_EXTRACT: | ||||
1869 | /* Overly conservative. */ | ||||
1870 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
1871 | goto recurse; | ||||
1872 | |||||
1873 | case SUBREG: | ||||
1874 | regno = REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))); | ||||
1875 | if (regno < FIRST_PSEUDO_REGISTER76) | ||||
1876 | regno = subreg_regno (x); | ||||
1877 | endregno = regno + (regno < FIRST_PSEUDO_REGISTER76 | ||||
1878 | ? subreg_nregs (x) : 1); | ||||
1879 | goto do_reg; | ||||
1880 | |||||
1881 | case REG: | ||||
1882 | regno = REGNO (x)(rhs_regno(x)); | ||||
1883 | endregno = END_REGNO (x); | ||||
1884 | do_reg: | ||||
1885 | return refers_to_regno_p (regno, endregno, in, (rtx*) 0); | ||||
1886 | |||||
1887 | case MEM: | ||||
1888 | { | ||||
1889 | const char *fmt; | ||||
1890 | int i; | ||||
1891 | |||||
1892 | if (MEM_P (in)(((enum rtx_code) (in)->code) == MEM)) | ||||
1893 | return 1; | ||||
1894 | |||||
1895 | fmt = GET_RTX_FORMAT (GET_CODE (in))(rtx_format[(int) (((enum rtx_code) (in)->code))]); | ||||
1896 | for (i = GET_RTX_LENGTH (GET_CODE (in))(rtx_length[(int) (((enum rtx_code) (in)->code))]) - 1; i >= 0; i--) | ||||
1897 | if (fmt[i] == 'e') | ||||
1898 | { | ||||
1899 | if (reg_overlap_mentioned_p (x, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | ||||
1900 | return 1; | ||||
1901 | } | ||||
1902 | else if (fmt[i] == 'E') | ||||
1903 | { | ||||
1904 | int j; | ||||
1905 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; --j) | ||||
1906 | if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
1907 | return 1; | ||||
1908 | } | ||||
1909 | |||||
1910 | return 0; | ||||
1911 | } | ||||
1912 | |||||
1913 | case SCRATCH: | ||||
1914 | case PC: | ||||
1915 | return reg_mentioned_p (x, in); | ||||
1916 | |||||
1917 | case PARALLEL: | ||||
1918 | { | ||||
1919 | int i; | ||||
1920 | |||||
1921 | /* If any register in here refers to it we return true. */ | ||||
1922 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1923 | if (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx) != 0 | ||||
1924 | && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx), in)) | ||||
1925 | return 1; | ||||
1926 | return 0; | ||||
1927 | } | ||||
1928 | |||||
1929 | default: | ||||
1930 | gcc_assert (CONSTANT_P (x))((void)(!(((rtx_class[(int) (((enum rtx_code) (x)->code))] ) == RTX_CONST_OBJ)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 1930, __FUNCTION__), 0 : 0)); | ||||
1931 | return 0; | ||||
1932 | } | ||||
1933 | } | ||||
1934 | |||||
1935 | /* Call FUN on each register or MEM that is stored into or clobbered by X. | ||||
1936 | (X would be the pattern of an insn). DATA is an arbitrary pointer, | ||||
1937 | ignored by note_stores, but passed to FUN. | ||||
1938 | |||||
1939 | FUN receives three arguments: | ||||
1940 | 1. the REG, MEM or PC being stored in or clobbered, | ||||
1941 | 2. the SET or CLOBBER rtx that does the store, | ||||
1942 | 3. the pointer DATA provided to note_stores. | ||||
1943 | |||||
1944 | If the item being stored in or clobbered is a SUBREG of a hard register, | ||||
1945 | the SUBREG will be passed. */ | ||||
1946 | |||||
1947 | void | ||||
1948 | note_pattern_stores (const_rtx x, | ||||
1949 | void (*fun) (rtx, const_rtx, void *), void *data) | ||||
1950 | { | ||||
1951 | int i; | ||||
1952 | |||||
1953 | if (GET_CODE (x)((enum rtx_code) (x)->code) == COND_EXEC) | ||||
1954 | x = COND_EXEC_CODE (x)(((x)->u.fld[1]).rt_rtx); | ||||
1955 | |||||
1956 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET || GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) | ||||
1957 | { | ||||
1958 | rtx dest = SET_DEST (x)(((x)->u.fld[0]).rt_rtx); | ||||
1959 | |||||
1960 | while ((GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG | ||||
1961 | && (!REG_P (SUBREG_REG (dest))(((enum rtx_code) ((((dest)->u.fld[0]).rt_rtx))->code) == REG) | ||||
1962 | || REGNO (SUBREG_REG (dest))(rhs_regno((((dest)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76)) | ||||
1963 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT | ||||
1964 | || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) | ||||
1965 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); | ||||
1966 | |||||
1967 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, | ||||
1968 | each of whose first operand is a register. */ | ||||
1969 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) | ||||
1970 | { | ||||
1971 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1972 | if (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) != 0) | ||||
1973 | (*fun) (XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx), x, data); | ||||
1974 | } | ||||
1975 | else | ||||
1976 | (*fun) (dest, x, data); | ||||
1977 | } | ||||
1978 | |||||
1979 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == PARALLEL) | ||||
1980 | for (i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
1981 | note_pattern_stores (XVECEXP (x, 0, i)(((((x)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); | ||||
1982 | } | ||||
1983 | |||||
1984 | /* Same, but for an instruction. If the instruction is a call, include | ||||
1985 | any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */ | ||||
1986 | |||||
1987 | void | ||||
1988 | note_stores (const rtx_insn *insn, | ||||
1989 | void (*fun) (rtx, const_rtx, void *), void *data) | ||||
1990 | { | ||||
1991 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | ||||
1992 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); | ||||
1993 | link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
1994 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == CLOBBER) | ||||
1995 | note_pattern_stores (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx), fun, data); | ||||
1996 | note_pattern_stores (PATTERN (insn), fun, data); | ||||
1997 | } | ||||
1998 | |||||
1999 | /* Like notes_stores, but call FUN for each expression that is being | ||||
2000 | referenced in PBODY, a pointer to the PATTERN of an insn. We only call | ||||
2001 | FUN for each expression, not any interior subexpressions. FUN receives a | ||||
2002 | pointer to the expression and the DATA passed to this function. | ||||
2003 | |||||
2004 | Note that this is not quite the same test as that done in reg_referenced_p | ||||
2005 | since that considers something as being referenced if it is being | ||||
2006 | partially set, while we do not. */ | ||||
2007 | |||||
2008 | void | ||||
2009 | note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data) | ||||
2010 | { | ||||
2011 | rtx body = *pbody; | ||||
2012 | int i; | ||||
2013 | |||||
2014 | switch (GET_CODE (body)((enum rtx_code) (body)->code)) | ||||
2015 | { | ||||
2016 | case COND_EXEC: | ||||
2017 | (*fun) (&COND_EXEC_TEST (body)(((body)->u.fld[0]).rt_rtx), data); | ||||
2018 | note_uses (&COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx), fun, data); | ||||
2019 | return; | ||||
2020 | |||||
2021 | case PARALLEL: | ||||
2022 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2023 | note_uses (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), fun, data); | ||||
2024 | return; | ||||
2025 | |||||
2026 | case SEQUENCE: | ||||
2027 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2028 | note_uses (&PATTERN (XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i])), fun, data); | ||||
2029 | return; | ||||
2030 | |||||
2031 | case USE: | ||||
2032 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); | ||||
2033 | return; | ||||
2034 | |||||
2035 | case ASM_OPERANDS: | ||||
2036 | for (i = ASM_OPERANDS_INPUT_LENGTH (body)(((((body)->u.fld[3]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2037 | (*fun) (&ASM_OPERANDS_INPUT (body, i)(((((body)->u.fld[3]).rt_rtvec))->elem[i]), data); | ||||
2038 | return; | ||||
2039 | |||||
2040 | case TRAP_IF: | ||||
2041 | (*fun) (&TRAP_CONDITION (body)(((body)->u.fld[0]).rt_rtx), data); | ||||
2042 | return; | ||||
2043 | |||||
2044 | case PREFETCH: | ||||
2045 | (*fun) (&XEXP (body, 0)(((body)->u.fld[0]).rt_rtx), data); | ||||
2046 | return; | ||||
2047 | |||||
2048 | case UNSPEC: | ||||
2049 | case UNSPEC_VOLATILE: | ||||
2050 | for (i = XVECLEN (body, 0)(((((body)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2051 | (*fun) (&XVECEXP (body, 0, i)(((((body)->u.fld[0]).rt_rtvec))->elem[i]), data); | ||||
2052 | return; | ||||
2053 | |||||
2054 | case CLOBBER: | ||||
2055 | if (MEM_P (XEXP (body, 0))(((enum rtx_code) ((((body)->u.fld[0]).rt_rtx))->code) == MEM)) | ||||
2056 | (*fun) (&XEXP (XEXP (body, 0), 0)((((((body)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx), data); | ||||
2057 | return; | ||||
2058 | |||||
2059 | case SET: | ||||
2060 | { | ||||
2061 | rtx dest = SET_DEST (body)(((body)->u.fld[0]).rt_rtx); | ||||
2062 | |||||
2063 | /* For sets we replace everything in source plus registers in memory | ||||
2064 | expression in store and operands of a ZERO_EXTRACT. */ | ||||
2065 | (*fun) (&SET_SRC (body)(((body)->u.fld[1]).rt_rtx), data); | ||||
2066 | |||||
2067 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == ZERO_EXTRACT) | ||||
2068 | { | ||||
2069 | (*fun) (&XEXP (dest, 1)(((dest)->u.fld[1]).rt_rtx), data); | ||||
2070 | (*fun) (&XEXP (dest, 2)(((dest)->u.fld[2]).rt_rtx), data); | ||||
2071 | } | ||||
2072 | |||||
2073 | while (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG || GET_CODE (dest)((enum rtx_code) (dest)->code) == STRICT_LOW_PART) | ||||
2074 | dest = XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx); | ||||
2075 | |||||
2076 | if (MEM_P (dest)(((enum rtx_code) (dest)->code) == MEM)) | ||||
2077 | (*fun) (&XEXP (dest, 0)(((dest)->u.fld[0]).rt_rtx), data); | ||||
2078 | } | ||||
2079 | return; | ||||
2080 | |||||
2081 | default: | ||||
2082 | /* All the other possibilities never store. */ | ||||
2083 | (*fun) (pbody, data); | ||||
2084 | return; | ||||
2085 | } | ||||
2086 | } | ||||
2087 | |||||
2088 | /* Try to add a description of REG X to this object, stopping once | ||||
2089 | the REF_END limit has been reached. FLAGS is a bitmask of | ||||
2090 | rtx_obj_reference flags that describe the context. */ | ||||
2091 | |||||
2092 | void | ||||
2093 | rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags) | ||||
2094 | { | ||||
2095 | if (REG_NREGS (x)((&(x)->u.reg)->nregs) != 1) | ||||
2096 | flags |= rtx_obj_flags::IS_MULTIREG; | ||||
2097 | machine_mode mode = GET_MODE (x)((machine_mode) (x)->mode); | ||||
2098 | unsigned int start_regno = REGNO (x)(rhs_regno(x)); | ||||
2099 | unsigned int end_regno = END_REGNO (x); | ||||
2100 | for (unsigned int regno = start_regno; regno < end_regno; ++regno) | ||||
2101 | if (ref_iter != ref_end) | ||||
2102 | *ref_iter++ = rtx_obj_reference (regno, flags, mode, | ||||
2103 | regno - start_regno); | ||||
2104 | } | ||||
2105 | |||||
2106 | /* Add a description of destination X to this object. FLAGS is a bitmask | ||||
2107 | of rtx_obj_reference flags that describe the context. | ||||
2108 | |||||
2109 | This routine accepts all rtxes that can legitimately appear in a | ||||
2110 | SET_DEST. */ | ||||
2111 | |||||
2112 | void | ||||
2113 | rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags) | ||||
2114 | { | ||||
2115 | /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, | ||||
2116 | each of whose first operand is a register. */ | ||||
2117 | if (UNLIKELY (GET_CODE (x) == PARALLEL)(__builtin_expect ((((enum rtx_code) (x)->code) == PARALLEL ), 0))) | ||||
2118 | { | ||||
2119 | for (int i = XVECLEN (x, 0)(((((x)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; --i) | ||||
2120 | if (rtx dest = XEXP (XVECEXP (x, 0, i), 0)((((((((x)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld[0 ]).rt_rtx)) | ||||
2121 | try_to_add_dest (dest, flags); | ||||
2122 | return; | ||||
2123 | } | ||||
2124 | |||||
2125 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; | ||||
2126 | flags |= rtx_obj_flags::IS_WRITE; | ||||
2127 | for (;;) | ||||
2128 | if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTRACT) | ||||
2129 | { | ||||
2130 | try_to_add_src (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), base_flags); | ||||
2131 | try_to_add_src (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), base_flags); | ||||
2132 | flags |= rtx_obj_flags::IS_READ; | ||||
2133 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
2134 | } | ||||
2135 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == STRICT_LOW_PART) | ||||
2136 | { | ||||
2137 | flags |= rtx_obj_flags::IS_READ; | ||||
2138 | x = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
2139 | } | ||||
2140 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) | ||||
2141 | { | ||||
2142 | flags |= rtx_obj_flags::IN_SUBREG; | ||||
2143 | if (read_modify_subreg_p (x)) | ||||
2144 | flags |= rtx_obj_flags::IS_READ; | ||||
2145 | x = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | ||||
2146 | } | ||||
2147 | else | ||||
2148 | break; | ||||
2149 | |||||
2150 | if (MEM_P (x)(((enum rtx_code) (x)->code) == MEM)) | ||||
2151 | { | ||||
2152 | if (ref_iter != ref_end) | ||||
2153 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x)((machine_mode) (x)->mode)); | ||||
2154 | |||||
2155 | unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE; | ||||
2156 | if (flags & rtx_obj_flags::IS_READ) | ||||
2157 | addr_flags |= rtx_obj_flags::IN_MEM_LOAD; | ||||
2158 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); | ||||
2159 | return; | ||||
2160 | } | ||||
2161 | |||||
2162 | if (LIKELY (REG_P (x))(__builtin_expect (((((enum rtx_code) (x)->code) == REG)), 1))) | ||||
2163 | { | ||||
2164 | /* We want to keep sp alive everywhere - by making all | ||||
2165 | writes to sp also use sp. */ | ||||
2166 | if (REGNO (x)(rhs_regno(x)) == STACK_POINTER_REGNUM7) | ||||
2167 | flags |= rtx_obj_flags::IS_READ; | ||||
2168 | try_to_add_reg (x, flags); | ||||
2169 | return; | ||||
2170 | } | ||||
2171 | } | ||||
2172 | |||||
2173 | /* Try to add a description of source X to this object, stopping once | ||||
2174 | the REF_END limit has been reached. FLAGS is a bitmask of | ||||
2175 | rtx_obj_reference flags that describe the context. | ||||
2176 | |||||
2177 | This routine accepts all rtxes that can legitimately appear in a SET_SRC. */ | ||||
2178 | |||||
2179 | void | ||||
2180 | rtx_properties::try_to_add_src (const_rtx x, unsigned int flags) | ||||
2181 | { | ||||
2182 | unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS; | ||||
2183 | subrtx_iterator::array_type array; | ||||
2184 | FOR_EACH_SUBRTX (iter, array, x, NONCONST)for (subrtx_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
2185 | { | ||||
2186 | const_rtx x = *iter; | ||||
2187 | rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
2188 | if (code == REG) | ||||
2189 | try_to_add_reg (x, flags | rtx_obj_flags::IS_READ); | ||||
2190 | else if (code == MEM) | ||||
2191 | { | ||||
2192 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2192, __FUNCTION__); _rtx; })->volatil)) | ||||
2193 | has_volatile_refs = true; | ||||
2194 | |||||
2195 | if (!MEM_READONLY_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_READONLY_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2195, __FUNCTION__); _rtx; })->unchanging) && ref_iter != ref_end) | ||||
2196 | { | ||||
2197 | auto mem_flags = flags | rtx_obj_flags::IS_READ; | ||||
2198 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, | ||||
2199 | GET_MODE (x)((machine_mode) (x)->mode)); | ||||
2200 | } | ||||
2201 | |||||
2202 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), | ||||
2203 | base_flags | rtx_obj_flags::IN_MEM_LOAD); | ||||
2204 | iter.skip_subrtxes (); | ||||
2205 | } | ||||
2206 | else if (code == SUBREG) | ||||
2207 | { | ||||
2208 | try_to_add_src (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), flags | rtx_obj_flags::IN_SUBREG); | ||||
2209 | iter.skip_subrtxes (); | ||||
2210 | } | ||||
2211 | else if (code == UNSPEC_VOLATILE) | ||||
2212 | has_volatile_refs = true; | ||||
2213 | else if (code == ASM_INPUT || code == ASM_OPERANDS) | ||||
2214 | { | ||||
2215 | has_asm = true; | ||||
2216 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2216, __FUNCTION__); _rtx; })->volatil)) | ||||
2217 | has_volatile_refs = true; | ||||
2218 | } | ||||
2219 | else if (code == PRE_INC | ||||
2220 | || code == PRE_DEC | ||||
2221 | || code == POST_INC | ||||
2222 | || code == POST_DEC | ||||
2223 | || code == PRE_MODIFY | ||||
2224 | || code == POST_MODIFY) | ||||
2225 | { | ||||
2226 | has_pre_post_modify = true; | ||||
2227 | |||||
2228 | unsigned int addr_flags = (base_flags | ||||
2229 | | rtx_obj_flags::IS_PRE_POST_MODIFY | ||||
2230 | | rtx_obj_flags::IS_READ); | ||||
2231 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), addr_flags); | ||||
2232 | if (code == PRE_MODIFY || code == POST_MODIFY) | ||||
2233 | iter.substitute (XEXP (XEXP (x, 1), 1)((((((x)->u.fld[1]).rt_rtx))->u.fld[1]).rt_rtx)); | ||||
2234 | else | ||||
2235 | iter.skip_subrtxes (); | ||||
2236 | } | ||||
2237 | else if (code == CALL) | ||||
2238 | has_call = true; | ||||
2239 | } | ||||
2240 | } | ||||
2241 | |||||
2242 | /* Try to add a description of instruction pattern PAT to this object, | ||||
2243 | stopping once the REF_END limit has been reached. */ | ||||
2244 | |||||
2245 | void | ||||
2246 | rtx_properties::try_to_add_pattern (const_rtx pat) | ||||
2247 | { | ||||
2248 | switch (GET_CODE (pat)((enum rtx_code) (pat)->code)) | ||||
2249 | { | ||||
2250 | case COND_EXEC: | ||||
2251 | try_to_add_src (COND_EXEC_TEST (pat)(((pat)->u.fld[0]).rt_rtx)); | ||||
2252 | try_to_add_pattern (COND_EXEC_CODE (pat)(((pat)->u.fld[1]).rt_rtx)); | ||||
2253 | break; | ||||
2254 | |||||
2255 | case PARALLEL: | ||||
2256 | { | ||||
2257 | int last = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem) - 1; | ||||
2258 | for (int i = 0; i < last; ++i) | ||||
2259 | try_to_add_pattern (XVECEXP (pat, 0, i)(((((pat)->u.fld[0]).rt_rtvec))->elem[i])); | ||||
2260 | try_to_add_pattern (XVECEXP (pat, 0, last)(((((pat)->u.fld[0]).rt_rtvec))->elem[last])); | ||||
2261 | break; | ||||
2262 | } | ||||
2263 | |||||
2264 | case ASM_OPERANDS: | ||||
2265 | for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat)(((((pat)->u.fld[3]).rt_rtvec))->num_elem); i < len; ++i) | ||||
2266 | try_to_add_src (ASM_OPERANDS_INPUT (pat, i)(((((pat)->u.fld[3]).rt_rtvec))->elem[i])); | ||||
2267 | break; | ||||
2268 | |||||
2269 | case CLOBBER: | ||||
2270 | try_to_add_dest (XEXP (pat, 0)(((pat)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); | ||||
2271 | break; | ||||
2272 | |||||
2273 | case SET: | ||||
2274 | try_to_add_dest (SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx)); | ||||
2275 | try_to_add_src (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx)); | ||||
2276 | break; | ||||
2277 | |||||
2278 | default: | ||||
2279 | /* All the other possibilities never store and can use a normal | ||||
2280 | rtx walk. This includes: | ||||
2281 | |||||
2282 | - USE | ||||
2283 | - TRAP_IF | ||||
2284 | - PREFETCH | ||||
2285 | - UNSPEC | ||||
2286 | - UNSPEC_VOLATILE. */ | ||||
2287 | try_to_add_src (pat); | ||||
2288 | break; | ||||
2289 | } | ||||
2290 | } | ||||
2291 | |||||
2292 | /* Try to add a description of INSN to this object, stopping once | ||||
2293 | the REF_END limit has been reached. INCLUDE_NOTES is true if the | ||||
2294 | description should include REG_EQUAL and REG_EQUIV notes; all such | ||||
2295 | references will then be marked with rtx_obj_flags::IN_NOTE. | ||||
2296 | |||||
2297 | For calls, this description includes all accesses in | ||||
2298 | CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses | ||||
2299 | to global registers by the target function. However, it does not | ||||
2300 | include clobbers performed by the target function; callers that want | ||||
2301 | this information should instead use the function_abi interface. */ | ||||
2302 | |||||
2303 | void | ||||
2304 | rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes) | ||||
2305 | { | ||||
2306 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | ||||
2307 | { | ||||
2308 | /* Non-const functions can read from global registers. Impure | ||||
2309 | functions can also set them. | ||||
2310 | |||||
2311 | Adding the global registers first removes a situation in which | ||||
2312 | a fixed-form clobber of register R could come before a real set | ||||
2313 | of register R. */ | ||||
2314 | if (!hard_reg_set_empty_p (global_reg_set) | ||||
2315 | && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2315, __FUNCTION__); _rtx; })->unchanging)) | ||||
2316 | { | ||||
2317 | unsigned int flags = rtx_obj_flags::IS_READ; | ||||
2318 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2318, __FUNCTION__); _rtx; })->return_val)) | ||||
2319 | flags |= rtx_obj_flags::IS_WRITE; | ||||
2320 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) | ||||
2321 | /* As a special case, the stack pointer is invariant across calls | ||||
2322 | even if it has been marked global; see the corresponding | ||||
2323 | handling in df_get_call_refs. */ | ||||
2324 | if (regno != STACK_POINTER_REGNUM7 | ||||
2325 | && global_regs[regno] | ||||
2326 | && ref_iter != ref_end) | ||||
2327 | *ref_iter++ = rtx_obj_reference (regno, flags, | ||||
2328 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); | ||||
2329 | } | ||||
2330 | /* Untyped calls implicitly set all function value registers. | ||||
2331 | Again, we add them first in case the main pattern contains | ||||
2332 | a fixed-form clobber. */ | ||||
2333 | if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX(rtx) 0)) | ||||
2334 | for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER76; ++regno) | ||||
2335 | if (targetm.calls.function_value_regno_p (regno) | ||||
2336 | && ref_iter != ref_end) | ||||
2337 | *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE, | ||||
2338 | reg_raw_mode(this_target_regs->x_reg_raw_mode)[regno], 0); | ||||
2339 | if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_CONST_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2339, __FUNCTION__); _rtx; })->unchanging)) | ||||
2340 | { | ||||
2341 | auto mem_flags = rtx_obj_flags::IS_READ; | ||||
2342 | if (!RTL_PURE_CALL_P (insn)(__extension__ ({ __typeof ((insn)) const _rtx = ((insn)); if (((enum rtx_code) (_rtx)->code) != CALL_INSN) rtl_check_failed_flag ("RTL_PURE_CALL_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2342, __FUNCTION__); _rtx; })->return_val)) | ||||
2343 | mem_flags |= rtx_obj_flags::IS_WRITE; | ||||
2344 | *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode((void) 0, E_BLKmode)); | ||||
2345 | } | ||||
2346 | try_to_add_pattern (PATTERN (insn)); | ||||
2347 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; | ||||
2348 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2349 | { | ||||
2350 | rtx x = XEXP (link, 0)(((link)->u.fld[0]).rt_rtx); | ||||
2351 | if (GET_CODE (x)((enum rtx_code) (x)->code) == CLOBBER) | ||||
2352 | try_to_add_dest (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), rtx_obj_flags::IS_CLOBBER); | ||||
2353 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == USE) | ||||
2354 | try_to_add_src (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)); | ||||
2355 | } | ||||
2356 | } | ||||
2357 | else | ||||
2358 | try_to_add_pattern (PATTERN (insn)); | ||||
2359 | |||||
2360 | if (include_notes) | ||||
2361 | for (rtx note = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); note; note = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx)) | ||||
2362 | if (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUAL | ||||
2363 | || REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)) == REG_EQUIV) | ||||
2364 | try_to_add_note (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); | ||||
2365 | } | ||||
2366 | |||||
2367 | /* Grow the storage by a bit while keeping the contents of the first | ||||
2368 | START elements. */ | ||||
2369 | |||||
2370 | void | ||||
2371 | vec_rtx_properties_base::grow (ptrdiff_t start) | ||||
2372 | { | ||||
2373 | /* The same heuristic that vec uses. */ | ||||
2374 | ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2; | ||||
2375 | if (ref_begin == m_storage) | ||||
2376 | { | ||||
2377 | ref_begin = XNEWVEC (rtx_obj_reference, new_elems)((rtx_obj_reference *) xmalloc (sizeof (rtx_obj_reference) * ( new_elems))); | ||||
2378 | if (start) | ||||
2379 | memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference)); | ||||
2380 | } | ||||
2381 | else | ||||
2382 | ref_begin = reinterpret_cast<rtx_obj_reference *> | ||||
2383 | (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference))); | ||||
2384 | ref_iter = ref_begin + start; | ||||
2385 | ref_end = ref_begin + new_elems; | ||||
2386 | } | ||||
2387 | |||||
2388 | /* Return nonzero if X's old contents don't survive after INSN. | ||||
2389 | This will be true if X is a register and X dies in INSN or because | ||||
2390 | INSN entirely sets X. | ||||
2391 | |||||
2392 | "Entirely set" means set directly and not through a SUBREG, or | ||||
2393 | ZERO_EXTRACT, so no trace of the old contents remains. | ||||
2394 | Likewise, REG_INC does not count. | ||||
2395 | |||||
2396 | REG may be a hard or pseudo reg. Renumbering is not taken into account, | ||||
2397 | but for this use that makes no difference, since regs don't overlap | ||||
2398 | during their lifetimes. Therefore, this function may be used | ||||
2399 | at any time after deaths have been computed. | ||||
2400 | |||||
2401 | If REG is a hard reg that occupies multiple machine registers, this | ||||
2402 | function will only return 1 if each of those registers will be replaced | ||||
2403 | by INSN. */ | ||||
2404 | |||||
2405 | int | ||||
2406 | dead_or_set_p (const rtx_insn *insn, const_rtx x) | ||||
2407 | { | ||||
2408 | unsigned int regno, end_regno; | ||||
2409 | unsigned int i; | ||||
2410 | |||||
2411 | gcc_assert (REG_P (x))((void)(!((((enum rtx_code) (x)->code) == REG)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2411, __FUNCTION__), 0 : 0)); | ||||
2412 | |||||
2413 | regno = REGNO (x)(rhs_regno(x)); | ||||
2414 | end_regno = END_REGNO (x); | ||||
2415 | for (i = regno; i < end_regno; i++) | ||||
2416 | if (! dead_or_set_regno_p (insn, i)) | ||||
2417 | return 0; | ||||
2418 | |||||
2419 | return 1; | ||||
2420 | } | ||||
2421 | |||||
2422 | /* Return TRUE iff DEST is a register or subreg of a register, is a | ||||
2423 | complete rather than read-modify-write destination, and contains | ||||
2424 | register TEST_REGNO. */ | ||||
2425 | |||||
2426 | static bool | ||||
2427 | covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno) | ||||
2428 | { | ||||
2429 | unsigned int regno, endregno; | ||||
2430 | |||||
2431 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == SUBREG && !read_modify_subreg_p (dest)) | ||||
2432 | dest = SUBREG_REG (dest)(((dest)->u.fld[0]).rt_rtx); | ||||
2433 | |||||
2434 | if (!REG_P (dest)(((enum rtx_code) (dest)->code) == REG)) | ||||
2435 | return false; | ||||
2436 | |||||
2437 | regno = REGNO (dest)(rhs_regno(dest)); | ||||
2438 | endregno = END_REGNO (dest); | ||||
2439 | return (test_regno >= regno && test_regno < endregno); | ||||
2440 | } | ||||
2441 | |||||
2442 | /* Like covers_regno_no_parallel_p, but also handles PARALLELs where | ||||
2443 | any member matches the covers_regno_no_parallel_p criteria. */ | ||||
2444 | |||||
2445 | static bool | ||||
2446 | covers_regno_p (const_rtx dest, unsigned int test_regno) | ||||
2447 | { | ||||
2448 | if (GET_CODE (dest)((enum rtx_code) (dest)->code) == PARALLEL) | ||||
2449 | { | ||||
2450 | /* Some targets place small structures in registers for return | ||||
2451 | values of functions, and those registers are wrapped in | ||||
2452 | PARALLELs that we may see as the destination of a SET. */ | ||||
2453 | int i; | ||||
2454 | |||||
2455 | for (i = XVECLEN (dest, 0)(((((dest)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2456 | { | ||||
2457 | rtx inner = XEXP (XVECEXP (dest, 0, i), 0)((((((((dest)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx); | ||||
2458 | if (inner != NULL_RTX(rtx) 0 | ||||
2459 | && covers_regno_no_parallel_p (inner, test_regno)) | ||||
2460 | return true; | ||||
2461 | } | ||||
2462 | |||||
2463 | return false; | ||||
2464 | } | ||||
2465 | else | ||||
2466 | return covers_regno_no_parallel_p (dest, test_regno); | ||||
2467 | } | ||||
2468 | |||||
2469 | /* Utility function for dead_or_set_p to check an individual register. */ | ||||
2470 | |||||
2471 | int | ||||
2472 | dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno) | ||||
2473 | { | ||||
2474 | const_rtx pattern; | ||||
2475 | |||||
2476 | /* See if there is a death note for something that includes TEST_REGNO. */ | ||||
2477 | if (find_regno_note (insn, REG_DEAD, test_regno)) | ||||
2478 | return 1; | ||||
2479 | |||||
2480 | if (CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) | ||||
2481 | && find_regno_fusage (insn, CLOBBER, test_regno)) | ||||
2482 | return 1; | ||||
2483 | |||||
2484 | pattern = PATTERN (insn); | ||||
2485 | |||||
2486 | /* If a COND_EXEC is not executed, the value survives. */ | ||||
2487 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == COND_EXEC) | ||||
2488 | return 0; | ||||
2489 | |||||
2490 | if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == SET || GET_CODE (pattern)((enum rtx_code) (pattern)->code) == CLOBBER) | ||||
2491 | return covers_regno_p (SET_DEST (pattern)(((pattern)->u.fld[0]).rt_rtx), test_regno); | ||||
2492 | else if (GET_CODE (pattern)((enum rtx_code) (pattern)->code) == PARALLEL) | ||||
2493 | { | ||||
2494 | int i; | ||||
2495 | |||||
2496 | for (i = XVECLEN (pattern, 0)(((((pattern)->u.fld[0]).rt_rtvec))->num_elem) - 1; i >= 0; i--) | ||||
2497 | { | ||||
2498 | rtx body = XVECEXP (pattern, 0, i)(((((pattern)->u.fld[0]).rt_rtvec))->elem[i]); | ||||
2499 | |||||
2500 | if (GET_CODE (body)((enum rtx_code) (body)->code) == COND_EXEC) | ||||
2501 | body = COND_EXEC_CODE (body)(((body)->u.fld[1]).rt_rtx); | ||||
2502 | |||||
2503 | if ((GET_CODE (body)((enum rtx_code) (body)->code) == SET || GET_CODE (body)((enum rtx_code) (body)->code) == CLOBBER) | ||||
2504 | && covers_regno_p (SET_DEST (body)(((body)->u.fld[0]).rt_rtx), test_regno)) | ||||
2505 | return 1; | ||||
2506 | } | ||||
2507 | } | ||||
2508 | |||||
2509 | return 0; | ||||
2510 | } | ||||
2511 | |||||
2512 | /* Return the reg-note of kind KIND in insn INSN, if there is one. | ||||
2513 | If DATUM is nonzero, look for one whose datum is DATUM. */ | ||||
2514 | |||||
2515 | rtx | ||||
2516 | find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum) | ||||
2517 | { | ||||
2518 | rtx link; | ||||
2519 | |||||
2520 | gcc_checking_assert (insn)((void)(!(insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2520, __FUNCTION__), 0 : 0)); | ||||
2521 | |||||
2522 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ | ||||
2523 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | ||||
2524 | return 0; | ||||
2525 | if (datum == 0) | ||||
2526 | { | ||||
2527 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2528 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind) | ||||
2529 | return link; | ||||
2530 | return 0; | ||||
2531 | } | ||||
2532 | |||||
2533 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2534 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind && datum == XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) | ||||
2535 | return link; | ||||
2536 | return 0; | ||||
2537 | } | ||||
2538 | |||||
2539 | /* Return the reg-note of kind KIND in insn INSN which applies to register | ||||
2540 | number REGNO, if any. Return 0 if there is no such reg-note. Note that | ||||
2541 | the REGNO of this NOTE need not be REGNO if REGNO is a hard register; | ||||
2542 | it might be the case that the note overlaps REGNO. */ | ||||
2543 | |||||
2544 | rtx | ||||
2545 | find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno) | ||||
2546 | { | ||||
2547 | rtx link; | ||||
2548 | |||||
2549 | /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ | ||||
2550 | if (! INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | ||||
2551 | return 0; | ||||
2552 | |||||
2553 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2554 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == kind | ||||
2555 | /* Verify that it is a register, so that scratch and MEM won't cause a | ||||
2556 | problem here. */ | ||||
2557 | && REG_P (XEXP (link, 0))(((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == REG) | ||||
2558 | && REGNO (XEXP (link, 0))(rhs_regno((((link)->u.fld[0]).rt_rtx))) <= regno | ||||
2559 | && END_REGNO (XEXP (link, 0)(((link)->u.fld[0]).rt_rtx)) > regno) | ||||
2560 | return link; | ||||
2561 | return 0; | ||||
2562 | } | ||||
2563 | |||||
2564 | /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and | ||||
2565 | has such a note. */ | ||||
2566 | |||||
2567 | rtx | ||||
2568 | find_reg_equal_equiv_note (const_rtx insn) | ||||
2569 | { | ||||
2570 | rtx link; | ||||
2571 | |||||
2572 | if (!INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN))) | ||||
2573 | return 0; | ||||
2574 | |||||
2575 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2576 | if (REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUAL | ||||
2577 | || REG_NOTE_KIND (link)((enum reg_note) ((machine_mode) (link)->mode)) == REG_EQUIV) | ||||
2578 | { | ||||
2579 | /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on | ||||
2580 | insns that have multiple sets. Checking single_set to | ||||
2581 | make sure of this is not the proper check, as explained | ||||
2582 | in the comment in set_unique_reg_note. | ||||
2583 | |||||
2584 | This should be changed into an assert. */ | ||||
2585 | if (GET_CODE (PATTERN (insn))((enum rtx_code) (PATTERN (insn))->code) == PARALLEL && multiple_sets (insn)) | ||||
2586 | return 0; | ||||
2587 | return link; | ||||
2588 | } | ||||
2589 | return NULLnullptr; | ||||
2590 | } | ||||
2591 | |||||
2592 | /* Check whether INSN is a single_set whose source is known to be | ||||
2593 | equivalent to a constant. Return that constant if so, otherwise | ||||
2594 | return null. */ | ||||
2595 | |||||
2596 | rtx | ||||
2597 | find_constant_src (const rtx_insn *insn) | ||||
2598 | { | ||||
2599 | rtx note, set, x; | ||||
2600 | |||||
2601 | set = single_set (insn); | ||||
2602 | if (set) | ||||
2603 | { | ||||
2604 | x = avoid_constant_pool_reference (SET_SRC (set)(((set)->u.fld[1]).rt_rtx)); | ||||
2605 | if (CONSTANT_P (x)((rtx_class[(int) (((enum rtx_code) (x)->code))]) == RTX_CONST_OBJ )) | ||||
2606 | return x; | ||||
2607 | } | ||||
2608 | |||||
2609 | note = find_reg_equal_equiv_note (insn); | ||||
2610 | if (note && CONSTANT_P (XEXP (note, 0))((rtx_class[(int) (((enum rtx_code) ((((note)->u.fld[0]).rt_rtx ))->code))]) == RTX_CONST_OBJ)) | ||||
2611 | return XEXP (note, 0)(((note)->u.fld[0]).rt_rtx); | ||||
2612 | |||||
2613 | return NULL_RTX(rtx) 0; | ||||
2614 | } | ||||
2615 | |||||
2616 | /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found | ||||
2617 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ | ||||
2618 | |||||
2619 | int | ||||
2620 | find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum) | ||||
2621 | { | ||||
2622 | /* If it's not a CALL_INSN, it can't possibly have a | ||||
2623 | CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */ | ||||
2624 | if (!CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN)) | ||||
2625 | return 0; | ||||
2626 | |||||
2627 | gcc_assert (datum)((void)(!(datum) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2627, __FUNCTION__), 0 : 0)); | ||||
2628 | |||||
2629 | if (!REG_P (datum)(((enum rtx_code) (datum)->code) == REG)) | ||||
2630 | { | ||||
2631 | rtx link; | ||||
2632 | |||||
2633 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); | ||||
2634 | link; | ||||
2635 | link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2636 | if (GET_CODE (XEXP (link, 0))((enum rtx_code) ((((link)->u.fld[0]).rt_rtx))->code) == code | ||||
2637 | && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)((((((link)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx))) | ||||
2638 | return 1; | ||||
2639 | } | ||||
2640 | else | ||||
2641 | { | ||||
2642 | unsigned int regno = REGNO (datum)(rhs_regno(datum)); | ||||
2643 | |||||
2644 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references | ||||
2645 | to pseudo registers, so don't bother checking. */ | ||||
2646 | |||||
2647 | if (regno < FIRST_PSEUDO_REGISTER76) | ||||
2648 | { | ||||
2649 | unsigned int end_regno = END_REGNO (datum); | ||||
2650 | unsigned int i; | ||||
2651 | |||||
2652 | for (i = regno; i < end_regno; i++) | ||||
2653 | if (find_regno_fusage (insn, code, i)) | ||||
2654 | return 1; | ||||
2655 | } | ||||
2656 | } | ||||
2657 | |||||
2658 | return 0; | ||||
2659 | } | ||||
2660 | |||||
2661 | /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found | ||||
2662 | in the CALL_INSN_FUNCTION_USAGE information of INSN. */ | ||||
2663 | |||||
2664 | int | ||||
2665 | find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno) | ||||
2666 | { | ||||
2667 | rtx link; | ||||
2668 | |||||
2669 | /* CALL_INSN_FUNCTION_USAGE information cannot contain references | ||||
2670 | to pseudo registers, so don't bother checking. */ | ||||
2671 | |||||
2672 | if (regno >= FIRST_PSEUDO_REGISTER76 | ||||
2673 | || !CALL_P (insn)(((enum rtx_code) (insn)->code) == CALL_INSN) ) | ||||
2674 | return 0; | ||||
2675 | |||||
2676 | for (link = CALL_INSN_FUNCTION_USAGE (insn)(((insn)->u.fld[7]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2677 | { | ||||
2678 | rtx op, reg; | ||||
2679 | |||||
2680 | if (GET_CODE (op = XEXP (link, 0))((enum rtx_code) (op = (((link)->u.fld[0]).rt_rtx))->code ) == code | ||||
2681 | && REG_P (reg = XEXP (op, 0))(((enum rtx_code) (reg = (((op)->u.fld[0]).rt_rtx))->code ) == REG) | ||||
2682 | && REGNO (reg)(rhs_regno(reg)) <= regno | ||||
2683 | && END_REGNO (reg) > regno) | ||||
2684 | return 1; | ||||
2685 | } | ||||
2686 | |||||
2687 | return 0; | ||||
2688 | } | ||||
2689 | |||||
2690 | |||||
2691 | /* Return true if KIND is an integer REG_NOTE. */ | ||||
2692 | |||||
2693 | static bool | ||||
2694 | int_reg_note_p (enum reg_note kind) | ||||
2695 | { | ||||
2696 | return kind == REG_BR_PROB; | ||||
2697 | } | ||||
2698 | |||||
2699 | /* Allocate a register note with kind KIND and datum DATUM. LIST is | ||||
2700 | stored as the pointer to the next register note. */ | ||||
2701 | |||||
2702 | rtx | ||||
2703 | alloc_reg_note (enum reg_note kind, rtx datum, rtx list) | ||||
2704 | { | ||||
2705 | rtx note; | ||||
2706 | |||||
2707 | gcc_checking_assert (!int_reg_note_p (kind))((void)(!(!int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2707, __FUNCTION__), 0 : 0)); | ||||
2708 | switch (kind) | ||||
2709 | { | ||||
2710 | case REG_LABEL_TARGET: | ||||
2711 | case REG_LABEL_OPERAND: | ||||
2712 | case REG_TM: | ||||
2713 | /* These types of register notes use an INSN_LIST rather than an | ||||
2714 | EXPR_LIST, so that copying is done right and dumps look | ||||
2715 | better. */ | ||||
2716 | note = alloc_INSN_LIST (datum, list); | ||||
2717 | PUT_REG_NOTE_KIND (note, kind)((note)->mode = ((machine_mode) (kind))); | ||||
2718 | break; | ||||
2719 | |||||
2720 | default: | ||||
2721 | note = alloc_EXPR_LIST (kind, datum, list); | ||||
2722 | break; | ||||
2723 | } | ||||
2724 | |||||
2725 | return note; | ||||
2726 | } | ||||
2727 | |||||
2728 | /* Add register note with kind KIND and datum DATUM to INSN. */ | ||||
2729 | |||||
2730 | void | ||||
2731 | add_reg_note (rtx insn, enum reg_note kind, rtx datum) | ||||
2732 | { | ||||
2733 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = alloc_reg_note (kind, datum, REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx)); | ||||
2734 | } | ||||
2735 | |||||
2736 | /* Add an integer register note with kind KIND and datum DATUM to INSN. */ | ||||
2737 | |||||
2738 | void | ||||
2739 | add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum) | ||||
2740 | { | ||||
2741 | gcc_checking_assert (int_reg_note_p (kind))((void)(!(int_reg_note_p (kind)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2741, __FUNCTION__), 0 : 0)); | ||||
2742 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = gen_rtx_INT_LIST ((machine_mode) kind,gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ) | ||||
2743 | datum, REG_NOTES (insn))gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((datum )), (((((insn)->u.fld[6]).rt_rtx))) ); | ||||
2744 | } | ||||
2745 | |||||
2746 | /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */ | ||||
2747 | |||||
2748 | void | ||||
2749 | add_args_size_note (rtx_insn *insn, poly_int64 value) | ||||
2750 | { | ||||
2751 | gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX))((void)(!(!find_reg_note (insn, REG_ARGS_SIZE, (rtx) 0)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2751, __FUNCTION__), 0 : 0)); | ||||
2752 | add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))))); | ||||
2753 | } | ||||
2754 | |||||
2755 | /* Add a register note like NOTE to INSN. */ | ||||
2756 | |||||
2757 | void | ||||
2758 | add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note) | ||||
2759 | { | ||||
2760 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) | ||||
2761 | add_int_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XINT (note, 0)(((note)->u.fld[0]).rt_int)); | ||||
2762 | else | ||||
2763 | add_reg_note (insn, REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)), XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)); | ||||
2764 | } | ||||
2765 | |||||
2766 | /* Duplicate NOTE and return the copy. */ | ||||
2767 | rtx | ||||
2768 | duplicate_reg_note (rtx note) | ||||
2769 | { | ||||
2770 | reg_note kind = REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode)); | ||||
2771 | |||||
2772 | if (GET_CODE (note)((enum rtx_code) (note)->code) == INT_LIST) | ||||
2773 | return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX)gen_rtx_fmt_ie_stat ((INT_LIST), (((machine_mode) kind)), ((( ((note)->u.fld[0]).rt_int))), (((rtx) 0)) ); | ||||
2774 | else if (GET_CODE (note)((enum rtx_code) (note)->code) == EXPR_LIST) | ||||
2775 | return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)(((note)->u.fld[0]).rt_rtx)), NULL_RTX(rtx) 0); | ||||
2776 | else | ||||
2777 | return alloc_reg_note (kind, XEXP (note, 0)(((note)->u.fld[0]).rt_rtx), NULL_RTX(rtx) 0); | ||||
2778 | } | ||||
2779 | |||||
2780 | /* Remove register note NOTE from the REG_NOTES of INSN. */ | ||||
2781 | |||||
2782 | void | ||||
2783 | remove_note (rtx_insn *insn, const_rtx note) | ||||
2784 | { | ||||
2785 | rtx link; | ||||
2786 | |||||
2787 | if (note == NULL_RTX(rtx) 0) | ||||
2788 | return; | ||||
2789 | |||||
2790 | if (REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) == note) | ||||
2791 | REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); | ||||
2792 | else | ||||
2793 | for (link = REG_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); link; link = XEXP (link, 1)(((link)->u.fld[1]).rt_rtx)) | ||||
2794 | if (XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) == note) | ||||
2795 | { | ||||
2796 | XEXP (link, 1)(((link)->u.fld[1]).rt_rtx) = XEXP (note, 1)(((note)->u.fld[1]).rt_rtx); | ||||
2797 | break; | ||||
2798 | } | ||||
2799 | |||||
2800 | switch (REG_NOTE_KIND (note)((enum reg_note) ((machine_mode) (note)->mode))) | ||||
2801 | { | ||||
2802 | case REG_EQUAL: | ||||
2803 | case REG_EQUIV: | ||||
2804 | df_notes_rescan (insn); | ||||
2805 | break; | ||||
2806 | default: | ||||
2807 | break; | ||||
2808 | } | ||||
2809 | } | ||||
2810 | |||||
2811 | /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. | ||||
2812 | If NO_RESCAN is false and any notes were removed, call | ||||
2813 | df_notes_rescan. Return true if any note has been removed. */ | ||||
2814 | |||||
2815 | bool | ||||
2816 | remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan) | ||||
2817 | { | ||||
2818 | rtx *loc; | ||||
2819 | bool ret = false; | ||||
2820 | |||||
2821 | loc = ®_NOTES (insn)(((insn)->u.fld[6]).rt_rtx); | ||||
2822 | while (*loc) | ||||
2823 | { | ||||
2824 | enum reg_note kind = REG_NOTE_KIND (*loc)((enum reg_note) ((machine_mode) (*loc)->mode)); | ||||
2825 | if (kind == REG_EQUAL || kind == REG_EQUIV) | ||||
2826 | { | ||||
2827 | *loc = XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); | ||||
2828 | ret = true; | ||||
2829 | } | ||||
2830 | else | ||||
2831 | loc = &XEXP (*loc, 1)(((*loc)->u.fld[1]).rt_rtx); | ||||
2832 | } | ||||
2833 | if (ret && !no_rescan) | ||||
2834 | df_notes_rescan (insn); | ||||
2835 | return ret; | ||||
2836 | } | ||||
2837 | |||||
2838 | /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */ | ||||
2839 | |||||
2840 | void | ||||
2841 | remove_reg_equal_equiv_notes_for_regno (unsigned int regno) | ||||
2842 | { | ||||
2843 | df_ref eq_use; | ||||
2844 | |||||
2845 | if (!df) | ||||
2846 | return; | ||||
2847 | |||||
2848 | /* This loop is a little tricky. We cannot just go down the chain because | ||||
2849 | it is being modified by some actions in the loop. So we just iterate | ||||
2850 | over the head. We plan to drain the list anyway. */ | ||||
2851 | while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)(df->eq_use_regs[(regno)]->reg_chain)) != NULLnullptr) | ||||
2852 | { | ||||
2853 | rtx_insn *insn = DF_REF_INSN (eq_use)((eq_use)->base.insn_info->insn); | ||||
2854 | rtx note = find_reg_equal_equiv_note (insn); | ||||
2855 | |||||
2856 | /* This assert is generally triggered when someone deletes a REG_EQUAL | ||||
2857 | or REG_EQUIV note by hacking the list manually rather than calling | ||||
2858 | remove_note. */ | ||||
2859 | gcc_assert (note)((void)(!(note) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2859, __FUNCTION__), 0 : 0)); | ||||
2860 | |||||
2861 | remove_note (insn, note); | ||||
2862 | } | ||||
2863 | } | ||||
2864 | |||||
2865 | /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and | ||||
2866 | return 1 if it is found. A simple equality test is used to determine if | ||||
2867 | NODE matches. */ | ||||
2868 | |||||
2869 | bool | ||||
2870 | in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node) | ||||
2871 | { | ||||
2872 | const_rtx x; | ||||
2873 | |||||
2874 | for (x = listp; x; x = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | ||||
2875 | if (node == XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | ||||
2876 | return true; | ||||
2877 | |||||
2878 | return false; | ||||
2879 | } | ||||
2880 | |||||
2881 | /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and | ||||
2882 | remove that entry from the list if it is found. | ||||
2883 | |||||
2884 | A simple equality test is used to determine if NODE matches. */ | ||||
2885 | |||||
2886 | void | ||||
2887 | remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp) | ||||
2888 | { | ||||
2889 | rtx_insn_list *temp = *listp; | ||||
2890 | rtx_insn_list *prev = NULLnullptr; | ||||
2891 | |||||
2892 | while (temp) | ||||
2893 | { | ||||
2894 | if (node == temp->insn ()) | ||||
2895 | { | ||||
2896 | /* Splice the node out of the list. */ | ||||
2897 | if (prev) | ||||
2898 | XEXP (prev, 1)(((prev)->u.fld[1]).rt_rtx) = temp->next (); | ||||
2899 | else | ||||
2900 | *listp = temp->next (); | ||||
2901 | |||||
2902 | gcc_checking_assert (!in_insn_list_p (temp->next (), node))((void)(!(!in_insn_list_p (temp->next (), node)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2902, __FUNCTION__), 0 : 0)); | ||||
2903 | return; | ||||
2904 | } | ||||
2905 | |||||
2906 | prev = temp; | ||||
2907 | temp = temp->next (); | ||||
2908 | } | ||||
2909 | } | ||||
2910 | |||||
2911 | /* Nonzero if X contains any volatile instructions. These are instructions | ||||
2912 | which may cause unpredictable machine state instructions, and thus no | ||||
2913 | instructions or register uses should be moved or combined across them. | ||||
2914 | This includes only volatile asms and UNSPEC_VOLATILE instructions. */ | ||||
2915 | |||||
2916 | int | ||||
2917 | volatile_insn_p (const_rtx x) | ||||
2918 | { | ||||
2919 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
2920 | switch (code) | ||||
2921 | { | ||||
2922 | case LABEL_REF: | ||||
2923 | case SYMBOL_REF: | ||||
2924 | case CONST: | ||||
2925 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
2926 | case PC: | ||||
2927 | case REG: | ||||
2928 | case SCRATCH: | ||||
2929 | case CLOBBER: | ||||
2930 | case ADDR_VEC: | ||||
2931 | case ADDR_DIFF_VEC: | ||||
2932 | case CALL: | ||||
2933 | case MEM: | ||||
2934 | return 0; | ||||
2935 | |||||
2936 | case UNSPEC_VOLATILE: | ||||
2937 | return 1; | ||||
2938 | |||||
2939 | case ASM_INPUT: | ||||
2940 | case ASM_OPERANDS: | ||||
2941 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 2941, __FUNCTION__); _rtx; })->volatil)) | ||||
2942 | return 1; | ||||
2943 | |||||
2944 | default: | ||||
2945 | break; | ||||
2946 | } | ||||
2947 | |||||
2948 | /* Recursively scan the operands of this expression. */ | ||||
2949 | |||||
2950 | { | ||||
2951 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
2952 | int i; | ||||
2953 | |||||
2954 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
2955 | { | ||||
2956 | if (fmt[i] == 'e') | ||||
2957 | { | ||||
2958 | if (volatile_insn_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | ||||
2959 | return 1; | ||||
2960 | } | ||||
2961 | else if (fmt[i] == 'E') | ||||
2962 | { | ||||
2963 | int j; | ||||
2964 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
2965 | if (volatile_insn_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
2966 | return 1; | ||||
2967 | } | ||||
2968 | } | ||||
2969 | } | ||||
2970 | return 0; | ||||
2971 | } | ||||
2972 | |||||
2973 | /* Nonzero if X contains any volatile memory references | ||||
2974 | UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */ | ||||
2975 | |||||
2976 | int | ||||
2977 | volatile_refs_p (const_rtx x) | ||||
2978 | { | ||||
2979 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
2980 | switch (code) | ||||
2981 | { | ||||
2982 | case LABEL_REF: | ||||
2983 | case SYMBOL_REF: | ||||
2984 | case CONST: | ||||
2985 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
2986 | case PC: | ||||
2987 | case REG: | ||||
2988 | case SCRATCH: | ||||
2989 | case CLOBBER: | ||||
2990 | case ADDR_VEC: | ||||
2991 | case ADDR_DIFF_VEC: | ||||
2992 | return 0; | ||||
2993 | |||||
2994 | case UNSPEC_VOLATILE: | ||||
2995 | return 1; | ||||
2996 | |||||
2997 | case MEM: | ||||
2998 | case ASM_INPUT: | ||||
2999 | case ASM_OPERANDS: | ||||
3000 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3000, __FUNCTION__); _rtx; })->volatil)) | ||||
3001 | return 1; | ||||
3002 | |||||
3003 | default: | ||||
3004 | break; | ||||
3005 | } | ||||
3006 | |||||
3007 | /* Recursively scan the operands of this expression. */ | ||||
3008 | |||||
3009 | { | ||||
3010 | const char *const fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
3011 | int i; | ||||
3012 | |||||
3013 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
3014 | { | ||||
3015 | if (fmt[i] == 'e') | ||||
3016 | { | ||||
3017 | if (volatile_refs_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | ||||
3018 | return 1; | ||||
3019 | } | ||||
3020 | else if (fmt[i] == 'E') | ||||
3021 | { | ||||
3022 | int j; | ||||
3023 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
3024 | if (volatile_refs_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
3025 | return 1; | ||||
3026 | } | ||||
3027 | } | ||||
3028 | } | ||||
3029 | return 0; | ||||
3030 | } | ||||
3031 | |||||
3032 | /* Similar to above, except that it also rejects register pre- and post- | ||||
3033 | incrementing. */ | ||||
3034 | |||||
3035 | int | ||||
3036 | side_effects_p (const_rtx x) | ||||
3037 | { | ||||
3038 | const RTX_CODEenum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
3039 | switch (code) | ||||
3040 | { | ||||
3041 | case LABEL_REF: | ||||
3042 | case SYMBOL_REF: | ||||
3043 | case CONST: | ||||
3044 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
3045 | case PC: | ||||
3046 | case REG: | ||||
3047 | case SCRATCH: | ||||
3048 | case ADDR_VEC: | ||||
3049 | case ADDR_DIFF_VEC: | ||||
3050 | case VAR_LOCATION: | ||||
3051 | return 0; | ||||
3052 | |||||
3053 | case CLOBBER: | ||||
3054 | /* Reject CLOBBER with a non-VOID mode. These are made by combine.cc | ||||
3055 | when some combination can't be done. If we see one, don't think | ||||
3056 | that we can simplify the expression. */ | ||||
3057 | return (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)); | ||||
3058 | |||||
3059 | case PRE_INC: | ||||
3060 | case PRE_DEC: | ||||
3061 | case POST_INC: | ||||
3062 | case POST_DEC: | ||||
3063 | case PRE_MODIFY: | ||||
3064 | case POST_MODIFY: | ||||
3065 | case CALL: | ||||
3066 | case UNSPEC_VOLATILE: | ||||
3067 | return 1; | ||||
3068 | |||||
3069 | case MEM: | ||||
3070 | case ASM_INPUT: | ||||
3071 | case ASM_OPERANDS: | ||||
3072 | if (MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3072, __FUNCTION__); _rtx; })->volatil)) | ||||
3073 | return 1; | ||||
3074 | |||||
3075 | default: | ||||
3076 | break; | ||||
3077 | } | ||||
3078 | |||||
3079 | /* Recursively scan the operands of this expression. */ | ||||
3080 | |||||
3081 | { | ||||
3082 | const char *fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
3083 | int i; | ||||
3084 | |||||
3085 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
3086 | { | ||||
3087 | if (fmt[i] == 'e') | ||||
3088 | { | ||||
3089 | if (side_effects_p (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | ||||
3090 | return 1; | ||||
3091 | } | ||||
3092 | else if (fmt[i] == 'E') | ||||
3093 | { | ||||
3094 | int j; | ||||
3095 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
3096 | if (side_effects_p (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
3097 | return 1; | ||||
3098 | } | ||||
3099 | } | ||||
3100 | } | ||||
3101 | return 0; | ||||
3102 | } | ||||
3103 | |||||
3104 | /* Return nonzero if evaluating rtx X might cause a trap. | ||||
3105 | FLAGS controls how to consider MEMs. A nonzero means the context | ||||
3106 | of the access may have changed from the original, such that the | ||||
3107 | address may have become invalid. */ | ||||
3108 | |||||
3109 | int | ||||
3110 | may_trap_p_1 (const_rtx x, unsigned flags) | ||||
3111 | { | ||||
3112 | int i; | ||||
3113 | enum rtx_code code; | ||||
3114 | const char *fmt; | ||||
3115 | |||||
3116 | /* We make no distinction currently, but this function is part of | ||||
3117 | the internal target-hooks ABI so we keep the parameter as | ||||
3118 | "unsigned flags". */ | ||||
3119 | bool code_changed = flags != 0; | ||||
3120 | |||||
3121 | if (x == 0) | ||||
3122 | return 0; | ||||
3123 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
3124 | switch (code) | ||||
3125 | { | ||||
3126 | /* Handle these cases quickly. */ | ||||
3127 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
3128 | case SYMBOL_REF: | ||||
3129 | case LABEL_REF: | ||||
3130 | case CONST: | ||||
3131 | case PC: | ||||
3132 | case REG: | ||||
3133 | case SCRATCH: | ||||
3134 | return 0; | ||||
3135 | |||||
3136 | case UNSPEC: | ||||
3137 | return targetm.unspec_may_trap_p (x, flags); | ||||
3138 | |||||
3139 | case UNSPEC_VOLATILE: | ||||
3140 | case ASM_INPUT: | ||||
3141 | case TRAP_IF: | ||||
3142 | return 1; | ||||
3143 | |||||
3144 | case ASM_OPERANDS: | ||||
3145 | return MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3145, __FUNCTION__); _rtx; })->volatil); | ||||
3146 | |||||
3147 | /* Memory ref can trap unless it's a static var or a stack slot. */ | ||||
3148 | case MEM: | ||||
3149 | /* Recognize specific pattern of stack checking probes. */ | ||||
3150 | if (flag_stack_checkglobal_options.x_flag_stack_check | ||||
3151 | && MEM_VOLATILE_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM && ((enum rtx_code ) (_rtx)->code) != ASM_OPERANDS && ((enum rtx_code ) (_rtx)->code) != ASM_INPUT) rtl_check_failed_flag ("MEM_VOLATILE_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3151, __FUNCTION__); _rtx; })->volatil) | ||||
3152 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | ||||
3153 | return 1; | ||||
3154 | if (/* MEM_NOTRAP_P only relates to the actual position of the memory | ||||
3155 | reference; moving it out of context such as when moving code | ||||
3156 | when optimizing, might cause its address to become invalid. */ | ||||
3157 | code_changed | ||||
3158 | || !MEM_NOTRAP_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_NOTRAP_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3158, __FUNCTION__); _rtx; })->call)) | ||||
3159 | { | ||||
3160 | poly_int64 size = MEM_SIZE_KNOWN_P (x)(get_mem_attrs (x)->size_known_p) ? MEM_SIZE (x)(get_mem_attrs (x)->size) : -1; | ||||
3161 | return rtx_addr_can_trap_p_1 (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), 0, size, | ||||
3162 | GET_MODE (x)((machine_mode) (x)->mode), code_changed); | ||||
3163 | } | ||||
3164 | |||||
3165 | return 0; | ||||
3166 | |||||
3167 | /* Division by a non-constant might trap. */ | ||||
3168 | case DIV: | ||||
3169 | case MOD: | ||||
3170 | case UDIV: | ||||
3171 | case UMOD: | ||||
3172 | if (HONOR_SNANS (x)) | ||||
3173 | return 1; | ||||
3174 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT)) | ||||
3175 | return flag_trapping_mathglobal_options.x_flag_trapping_math; | ||||
3176 | if (!CONSTANT_P (XEXP (x, 1))((rtx_class[(int) (((enum rtx_code) ((((x)->u.fld[1]).rt_rtx ))->code))]) == RTX_CONST_OBJ) || (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == const0_rtx(const_int_rtx[64]))) | ||||
3177 | return 1; | ||||
3178 | if (GET_CODE (XEXP (x, 1))((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_VECTOR) | ||||
3179 | { | ||||
3180 | /* For CONST_VECTOR, return 1 if any element is or might be zero. */ | ||||
3181 | unsigned int n_elts; | ||||
3182 | rtx op = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | ||||
3183 | if (!GET_MODE_NUNITS (GET_MODE (op)((machine_mode) (op)->mode)).is_constant (&n_elts)) | ||||
3184 | { | ||||
3185 | if (!CONST_VECTOR_DUPLICATE_P (op)((__extension__ ({ __typeof ((op)) const _rtx = ((op)); if (( (enum rtx_code) (_rtx)->code) != CONST_VECTOR) rtl_check_failed_flag ("CONST_VECTOR_NELTS_PER_PATTERN", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3185, __FUNCTION__); _rtx; }) ->u2.const_vector.nelts_per_pattern ) == 1)) | ||||
3186 | return 1; | ||||
3187 | for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0)(((((op)->u.fld[0]).rt_rtvec))->num_elem); i++) | ||||
3188 | if (CONST_VECTOR_ENCODED_ELT (op, i)(((((op)->u.fld[0]).rt_rtvec))->elem[i]) == const0_rtx(const_int_rtx[64])) | ||||
3189 | return 1; | ||||
3190 | } | ||||
3191 | else | ||||
3192 | for (unsigned i = 0; i < n_elts; i++) | ||||
3193 | if (CONST_VECTOR_ELT (op, i)const_vector_elt (op, i) == const0_rtx(const_int_rtx[64])) | ||||
3194 | return 1; | ||||
3195 | } | ||||
3196 | break; | ||||
3197 | |||||
3198 | case EXPR_LIST: | ||||
3199 | /* An EXPR_LIST is used to represent a function call. This | ||||
3200 | certainly may trap. */ | ||||
3201 | return 1; | ||||
3202 | |||||
3203 | case GE: | ||||
3204 | case GT: | ||||
3205 | case LE: | ||||
3206 | case LT: | ||||
3207 | case LTGT: | ||||
3208 | case COMPARE: | ||||
3209 | /* Some floating point comparisons may trap. */ | ||||
3210 | if (!flag_trapping_mathglobal_options.x_flag_trapping_math) | ||||
3211 | break; | ||||
3212 | /* ??? There is no machine independent way to check for tests that trap | ||||
3213 | when COMPARE is used, though many targets do make this distinction. | ||||
3214 | For instance, sparc uses CCFPE for compares which generate exceptions | ||||
3215 | and CCFP for compares which do not generate exceptions. */ | ||||
3216 | if (HONOR_NANS (x)) | ||||
3217 | return 1; | ||||
3218 | /* But often the compare has some CC mode, so check operand | ||||
3219 | modes as well. */ | ||||
3220 | if (HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | ||||
3221 | || HONOR_NANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) | ||||
3222 | return 1; | ||||
3223 | break; | ||||
3224 | |||||
3225 | case EQ: | ||||
3226 | case NE: | ||||
3227 | if (HONOR_SNANS (x)) | ||||
3228 | return 1; | ||||
3229 | /* Often comparison is CC mode, so check operand modes. */ | ||||
3230 | if (HONOR_SNANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx)) | ||||
3231 | || HONOR_SNANS (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx))) | ||||
3232 | return 1; | ||||
3233 | break; | ||||
3234 | |||||
3235 | case FIX: | ||||
3236 | case UNSIGNED_FIX: | ||||
3237 | /* Conversion of floating point might trap. */ | ||||
3238 | if (flag_trapping_mathglobal_options.x_flag_trapping_math && HONOR_NANS (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx))) | ||||
3239 | return 1; | ||||
3240 | break; | ||||
3241 | |||||
3242 | case NEG: | ||||
3243 | case ABS: | ||||
3244 | case SUBREG: | ||||
3245 | case VEC_MERGE: | ||||
3246 | case VEC_SELECT: | ||||
3247 | case VEC_CONCAT: | ||||
3248 | case VEC_DUPLICATE: | ||||
3249 | /* These operations don't trap even with floating point. */ | ||||
3250 | break; | ||||
3251 | |||||
3252 | default: | ||||
3253 | /* Any floating arithmetic may trap. */ | ||||
3254 | if (FLOAT_MODE_P (GET_MODE (x))(((enum mode_class) mode_class[((machine_mode) (x)->mode)] ) == MODE_FLOAT || ((enum mode_class) mode_class[((machine_mode ) (x)->mode)]) == MODE_DECIMAL_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode)]) == MODE_COMPLEX_FLOAT || ((enum mode_class) mode_class[((machine_mode) (x)->mode )]) == MODE_VECTOR_FLOAT) && flag_trapping_mathglobal_options.x_flag_trapping_math) | ||||
3255 | return 1; | ||||
3256 | } | ||||
3257 | |||||
3258 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
3259 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
3260 | { | ||||
3261 | if (fmt[i] == 'e') | ||||
3262 | { | ||||
3263 | if (may_trap_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), flags)) | ||||
3264 | return 1; | ||||
3265 | } | ||||
3266 | else if (fmt[i] == 'E') | ||||
3267 | { | ||||
3268 | int j; | ||||
3269 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
3270 | if (may_trap_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), flags)) | ||||
3271 | return 1; | ||||
3272 | } | ||||
3273 | } | ||||
3274 | return 0; | ||||
3275 | } | ||||
3276 | |||||
3277 | /* Return nonzero if evaluating rtx X might cause a trap. */ | ||||
3278 | |||||
3279 | int | ||||
3280 | may_trap_p (const_rtx x) | ||||
3281 | { | ||||
3282 | return may_trap_p_1 (x, 0); | ||||
3283 | } | ||||
3284 | |||||
3285 | /* Same as above, but additionally return nonzero if evaluating rtx X might | ||||
3286 | cause a fault. We define a fault for the purpose of this function as a | ||||
3287 | erroneous execution condition that cannot be encountered during the normal | ||||
3288 | execution of a valid program; the typical example is an unaligned memory | ||||
3289 | access on a strict alignment machine. The compiler guarantees that it | ||||
3290 | doesn't generate code that will fault from a valid program, but this | ||||
3291 | guarantee doesn't mean anything for individual instructions. Consider | ||||
3292 | the following example: | ||||
3293 | |||||
3294 | struct S { int d; union { char *cp; int *ip; }; }; | ||||
3295 | |||||
3296 | int foo(struct S *s) | ||||
3297 | { | ||||
3298 | if (s->d == 1) | ||||
3299 | return *s->ip; | ||||
3300 | else | ||||
3301 | return *s->cp; | ||||
3302 | } | ||||
3303 | |||||
3304 | on a strict alignment machine. In a valid program, foo will never be | ||||
3305 | invoked on a structure for which d is equal to 1 and the underlying | ||||
3306 | unique field of the union not aligned on a 4-byte boundary, but the | ||||
3307 | expression *s->ip might cause a fault if considered individually. | ||||
3308 | |||||
3309 | At the RTL level, potentially problematic expressions will almost always | ||||
3310 | verify may_trap_p; for example, the above dereference can be emitted as | ||||
3311 | (mem:SI (reg:P)) and this expression is may_trap_p for a generic register. | ||||
3312 | However, suppose that foo is inlined in a caller that causes s->cp to | ||||
3313 | point to a local character variable and guarantees that s->d is not set | ||||
3314 | to 1; foo may have been effectively translated into pseudo-RTL as: | ||||
3315 | |||||
3316 | if ((reg:SI) == 1) | ||||
3317 | (set (reg:SI) (mem:SI (%fp - 7))) | ||||
3318 | else | ||||
3319 | (set (reg:QI) (mem:QI (%fp - 7))) | ||||
3320 | |||||
3321 | Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a | ||||
3322 | memory reference to a stack slot, but it will certainly cause a fault | ||||
3323 | on a strict alignment machine. */ | ||||
3324 | |||||
3325 | int | ||||
3326 | may_trap_or_fault_p (const_rtx x) | ||||
3327 | { | ||||
3328 | return may_trap_p_1 (x, 1); | ||||
3329 | } | ||||
3330 | |||||
3331 | /* Replace any occurrence of FROM in X with TO. The function does | ||||
3332 | not enter into CONST_DOUBLE for the replace. | ||||
3333 | |||||
3334 | Note that copying is not done so X must not be shared unless all copies | ||||
3335 | are to be modified. | ||||
3336 | |||||
3337 | ALL_REGS is true if we want to replace all REGs equal to FROM, not just | ||||
3338 | those pointer-equal ones. */ | ||||
3339 | |||||
3340 | rtx | ||||
3341 | replace_rtx (rtx x, rtx from, rtx to, bool all_regs) | ||||
3342 | { | ||||
3343 | int i, j; | ||||
3344 | const char *fmt; | ||||
3345 | |||||
3346 | if (x == from) | ||||
3347 | return to; | ||||
3348 | |||||
3349 | /* Allow this function to make replacements in EXPR_LISTs. */ | ||||
3350 | if (x == 0) | ||||
3351 | return 0; | ||||
3352 | |||||
3353 | if (all_regs | ||||
3354 | && REG_P (x)(((enum rtx_code) (x)->code) == REG) | ||||
3355 | && REG_P (from)(((enum rtx_code) (from)->code) == REG) | ||||
3356 | && REGNO (x)(rhs_regno(x)) == REGNO (from)(rhs_regno(from))) | ||||
3357 | { | ||||
3358 | gcc_assert (GET_MODE (x) == GET_MODE (from))((void)(!(((machine_mode) (x)->mode) == ((machine_mode) (from )->mode)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3358, __FUNCTION__), 0 : 0)); | ||||
3359 | return to; | ||||
3360 | } | ||||
3361 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == SUBREG) | ||||
3362 | { | ||||
3363 | rtx new_rtx = replace_rtx (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); | ||||
3364 | |||||
3365 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) | ||||
3366 | { | ||||
3367 | x = simplify_subreg (GET_MODE (x)((machine_mode) (x)->mode), new_rtx, | ||||
3368 | GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), | ||||
3369 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); | ||||
3370 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3370, __FUNCTION__), 0 : 0)); | ||||
3371 | } | ||||
3372 | else | ||||
3373 | SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx) = new_rtx; | ||||
3374 | |||||
3375 | return x; | ||||
3376 | } | ||||
3377 | else if (GET_CODE (x)((enum rtx_code) (x)->code) == ZERO_EXTEND) | ||||
3378 | { | ||||
3379 | rtx new_rtx = replace_rtx (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), from, to, all_regs); | ||||
3380 | |||||
3381 | if (CONST_SCALAR_INT_P (new_rtx)((((enum rtx_code) (new_rtx)->code) == CONST_INT) || (((enum rtx_code) (new_rtx)->code) == CONST_WIDE_INT))) | ||||
3382 | { | ||||
3383 | x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x)((machine_mode) (x)->mode), | ||||
3384 | new_rtx, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | ||||
3385 | gcc_assert (x)((void)(!(x) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3385, __FUNCTION__), 0 : 0)); | ||||
3386 | } | ||||
3387 | else | ||||
3388 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_rtx; | ||||
3389 | |||||
3390 | return x; | ||||
3391 | } | ||||
3392 | |||||
3393 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); | ||||
3394 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) | ||||
3395 | { | ||||
3396 | if (fmt[i] == 'e') | ||||
3397 | XEXP (x, i)(((x)->u.fld[i]).rt_rtx) = replace_rtx (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), from, to, all_regs); | ||||
3398 | else if (fmt[i] == 'E') | ||||
3399 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
3400 | XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]) = replace_rtx (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), | ||||
3401 | from, to, all_regs); | ||||
3402 | } | ||||
3403 | |||||
3404 | return x; | ||||
3405 | } | ||||
3406 | |||||
3407 | /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track | ||||
3408 | the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */ | ||||
3409 | |||||
3410 | void | ||||
3411 | replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses) | ||||
3412 | { | ||||
3413 | /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */ | ||||
3414 | rtx x = *loc; | ||||
3415 | if (JUMP_TABLE_DATA_P (x)(((enum rtx_code) (x)->code) == JUMP_TABLE_DATA)) | ||||
3416 | { | ||||
3417 | x = PATTERN (x); | ||||
3418 | rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC)(((x)->u.fld[((enum rtx_code) (x)->code) == ADDR_DIFF_VEC ]).rt_rtvec); | ||||
3419 | int len = GET_NUM_ELEM (vec)((vec)->num_elem); | ||||
3420 | for (int i = 0; i < len; ++i) | ||||
3421 | { | ||||
3422 | rtx ref = RTVEC_ELT (vec, i)((vec)->elem[i]); | ||||
3423 | if (XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) == old_label) | ||||
3424 | { | ||||
3425 | XEXP (ref, 0)(((ref)->u.fld[0]).rt_rtx) = new_label; | ||||
3426 | if (update_label_nuses) | ||||
3427 | { | ||||
3428 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); | ||||
3429 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); | ||||
3430 | } | ||||
3431 | } | ||||
3432 | } | ||||
3433 | return; | ||||
3434 | } | ||||
3435 | |||||
3436 | /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL | ||||
3437 | field. This is not handled by the iterator because it doesn't | ||||
3438 | handle unprinted ('0') fields. */ | ||||
3439 | if (JUMP_P (x)(((enum rtx_code) (x)->code) == JUMP_INSN) && JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) == old_label) | ||||
3440 | JUMP_LABEL (x)(((x)->u.fld[7]).rt_rtx) = new_label; | ||||
3441 | |||||
3442 | subrtx_ptr_iterator::array_type array; | ||||
3443 | FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)for (subrtx_ptr_iterator iter (array, loc, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
3444 | { | ||||
3445 | rtx *loc = *iter; | ||||
3446 | if (rtx x = *loc) | ||||
3447 | { | ||||
3448 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SYMBOL_REF | ||||
3449 | && CONSTANT_POOL_ADDRESS_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3449, __FUNCTION__); _rtx; })->unchanging)) | ||||
3450 | { | ||||
3451 | rtx c = get_pool_constant (x); | ||||
3452 | if (rtx_referenced_p (old_label, c)) | ||||
3453 | { | ||||
3454 | /* Create a copy of constant C; replace the label inside | ||||
3455 | but do not update LABEL_NUSES because uses in constant pool | ||||
3456 | are not counted. */ | ||||
3457 | rtx new_c = copy_rtx (c); | ||||
3458 | replace_label (&new_c, old_label, new_label, false); | ||||
3459 | |||||
3460 | /* Add the new constant NEW_C to constant pool and replace | ||||
3461 | the old reference to constant by new reference. */ | ||||
3462 | rtx new_mem = force_const_mem (get_pool_mode (x), new_c); | ||||
3463 | *loc = replace_rtx (x, x, XEXP (new_mem, 0)(((new_mem)->u.fld[0]).rt_rtx)); | ||||
3464 | } | ||||
3465 | } | ||||
3466 | |||||
3467 | if ((GET_CODE (x)((enum rtx_code) (x)->code) == LABEL_REF | ||||
3468 | || GET_CODE (x)((enum rtx_code) (x)->code) == INSN_LIST) | ||||
3469 | && XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) == old_label) | ||||
3470 | { | ||||
3471 | XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) = new_label; | ||||
3472 | if (update_label_nuses) | ||||
3473 | { | ||||
3474 | ++LABEL_NUSES (new_label)(((new_label)->u.fld[4]).rt_int); | ||||
3475 | --LABEL_NUSES (old_label)(((old_label)->u.fld[4]).rt_int); | ||||
3476 | } | ||||
3477 | } | ||||
3478 | } | ||||
3479 | } | ||||
3480 | } | ||||
3481 | |||||
3482 | void | ||||
3483 | replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label, | ||||
3484 | rtx_insn *new_label, bool update_label_nuses) | ||||
3485 | { | ||||
3486 | rtx insn_as_rtx = insn; | ||||
3487 | replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses); | ||||
3488 | gcc_checking_assert (insn_as_rtx == insn)((void)(!(insn_as_rtx == insn) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3488, __FUNCTION__), 0 : 0)); | ||||
3489 | } | ||||
3490 | |||||
3491 | /* Return true if X is referenced in BODY. */ | ||||
3492 | |||||
3493 | bool | ||||
3494 | rtx_referenced_p (const_rtx x, const_rtx body) | ||||
3495 | { | ||||
3496 | subrtx_iterator::array_type array; | ||||
3497 | FOR_EACH_SUBRTX (iter, array, body, ALL)for (subrtx_iterator iter (array, body, rtx_all_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
3498 | if (const_rtx y = *iter) | ||||
3499 | { | ||||
3500 | /* Check if a label_ref Y refers to label X. */ | ||||
3501 | if (GET_CODE (y)((enum rtx_code) (y)->code) == LABEL_REF | ||||
3502 | && LABEL_P (x)(((enum rtx_code) (x)->code) == CODE_LABEL) | ||||
3503 | && label_ref_label (y) == x) | ||||
3504 | return true; | ||||
3505 | |||||
3506 | if (rtx_equal_p (x, y)) | ||||
3507 | return true; | ||||
3508 | |||||
3509 | /* If Y is a reference to pool constant traverse the constant. */ | ||||
3510 | if (GET_CODE (y)((enum rtx_code) (y)->code) == SYMBOL_REF | ||||
3511 | && CONSTANT_POOL_ADDRESS_P (y)(__extension__ ({ __typeof ((y)) const _rtx = ((y)); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3511, __FUNCTION__); _rtx; })->unchanging)) | ||||
3512 | iter.substitute (get_pool_constant (y)); | ||||
3513 | } | ||||
3514 | return false; | ||||
3515 | } | ||||
3516 | |||||
3517 | /* If INSN is a tablejump return true and store the label (before jump table) to | ||||
3518 | *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */ | ||||
3519 | |||||
3520 | bool | ||||
3521 | tablejump_p (const rtx_insn *insn, rtx_insn **labelp, | ||||
3522 | rtx_jump_table_data **tablep) | ||||
3523 | { | ||||
3524 | if (!JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) | ||||
3525 | return false; | ||||
3526 | |||||
3527 | rtx target = JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx); | ||||
3528 | if (target == NULL_RTX(rtx) 0 || ANY_RETURN_P (target)(((enum rtx_code) (target)->code) == RETURN || ((enum rtx_code ) (target)->code) == SIMPLE_RETURN)) | ||||
3529 | return false; | ||||
3530 | |||||
3531 | rtx_insn *label = as_a<rtx_insn *> (target); | ||||
3532 | rtx_insn *table = next_insn (label); | ||||
3533 | if (table == NULL_RTX(rtx) 0 || !JUMP_TABLE_DATA_P (table)(((enum rtx_code) (table)->code) == JUMP_TABLE_DATA)) | ||||
3534 | return false; | ||||
3535 | |||||
3536 | if (labelp) | ||||
3537 | *labelp = label; | ||||
3538 | if (tablep) | ||||
3539 | *tablep = as_a <rtx_jump_table_data *> (table); | ||||
3540 | return true; | ||||
3541 | } | ||||
3542 | |||||
3543 | /* For INSN known to satisfy tablejump_p, determine if it actually is a | ||||
3544 | CASESI. Return the insn pattern if so, NULL_RTX otherwise. */ | ||||
3545 | |||||
3546 | rtx | ||||
3547 | tablejump_casesi_pattern (const rtx_insn *insn) | ||||
3548 | { | ||||
3549 | rtx tmp; | ||||
3550 | |||||
3551 | if ((tmp = single_set (insn)) != NULLnullptr | ||||
3552 | && SET_DEST (tmp)(((tmp)->u.fld[0]).rt_rtx) == pc_rtx | ||||
3553 | && GET_CODE (SET_SRC (tmp))((enum rtx_code) ((((tmp)->u.fld[1]).rt_rtx))->code) == IF_THEN_ELSE | ||||
3554 | && GET_CODE (XEXP (SET_SRC (tmp), 2))((enum rtx_code) (((((((tmp)->u.fld[1]).rt_rtx))->u.fld [2]).rt_rtx))->code) == LABEL_REF) | ||||
3555 | return tmp; | ||||
3556 | |||||
3557 | return NULL_RTX(rtx) 0; | ||||
3558 | } | ||||
3559 | |||||
3560 | /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or | ||||
3561 | constant that is not in the constant pool and not in the condition | ||||
3562 | of an IF_THEN_ELSE. */ | ||||
3563 | |||||
3564 | static int | ||||
3565 | computed_jump_p_1 (const_rtx x) | ||||
3566 | { | ||||
3567 | const enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
3568 | int i, j; | ||||
3569 | const char *fmt; | ||||
3570 | |||||
3571 | switch (code) | ||||
3572 | { | ||||
3573 | case LABEL_REF: | ||||
3574 | case PC: | ||||
3575 | return 0; | ||||
3576 | |||||
3577 | case CONST: | ||||
3578 | CASE_CONST_ANYcase CONST_INT: case CONST_WIDE_INT: case CONST_POLY_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: | ||||
3579 | case SYMBOL_REF: | ||||
3580 | case REG: | ||||
3581 | return 1; | ||||
3582 | |||||
3583 | case MEM: | ||||
3584 | return ! (GET_CODE (XEXP (x, 0))((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == SYMBOL_REF | ||||
3585 | && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))(__extension__ ({ __typeof (((((x)->u.fld[0]).rt_rtx))) const _rtx = (((((x)->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code) != SYMBOL_REF) rtl_check_failed_flag ("CONSTANT_POOL_ADDRESS_P" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3585, __FUNCTION__); _rtx; })->unchanging)); | ||||
3586 | |||||
3587 | case IF_THEN_ELSE: | ||||
3588 | return (computed_jump_p_1 (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx)) | ||||
3589 | || computed_jump_p_1 (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx))); | ||||
3590 | |||||
3591 | default: | ||||
3592 | break; | ||||
3593 | } | ||||
3594 | |||||
3595 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
3596 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
3597 | { | ||||
3598 | if (fmt[i] == 'e' | ||||
3599 | && computed_jump_p_1 (XEXP (x, i)(((x)->u.fld[i]).rt_rtx))) | ||||
3600 | return 1; | ||||
3601 | |||||
3602 | else if (fmt[i] == 'E') | ||||
3603 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
3604 | if (computed_jump_p_1 (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
3605 | return 1; | ||||
3606 | } | ||||
3607 | |||||
3608 | return 0; | ||||
3609 | } | ||||
3610 | |||||
3611 | /* Return nonzero if INSN is an indirect jump (aka computed jump). | ||||
3612 | |||||
3613 | Tablejumps and casesi insns are not considered indirect jumps; | ||||
3614 | we can recognize them by a (use (label_ref)). */ | ||||
3615 | |||||
3616 | int | ||||
3617 | computed_jump_p (const rtx_insn *insn) | ||||
3618 | { | ||||
3619 | int i; | ||||
3620 | if (JUMP_P (insn)(((enum rtx_code) (insn)->code) == JUMP_INSN)) | ||||
3621 | { | ||||
3622 | rtx pat = PATTERN (insn); | ||||
3623 | |||||
3624 | /* If we have a JUMP_LABEL set, we're not a computed jump. */ | ||||
3625 | if (JUMP_LABEL (insn)(((insn)->u.fld[7]).rt_rtx) != NULLnullptr) | ||||
3626 | return 0; | ||||
3627 | |||||
3628 | if (GET_CODE (pat)((enum rtx_code) (pat)->code) == PARALLEL) | ||||
3629 | { | ||||
3630 | int len = XVECLEN (pat, 0)(((((pat)->u.fld[0]).rt_rtvec))->num_elem); | ||||
3631 | int has_use_labelref = 0; | ||||
3632 | |||||
3633 | for (i = len - 1; i >= 0; i--) | ||||
3634 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == USE | ||||
3635 | && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))((enum rtx_code) (((((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->u.fld[0]).rt_rtx))->code) | ||||
3636 | == LABEL_REF)) | ||||
3637 | { | ||||
3638 | has_use_labelref = 1; | ||||
3639 | break; | ||||
3640 | } | ||||
3641 | |||||
3642 | if (! has_use_labelref) | ||||
3643 | for (i = len - 1; i >= 0; i--) | ||||
3644 | if (GET_CODE (XVECEXP (pat, 0, i))((enum rtx_code) ((((((pat)->u.fld[0]).rt_rtvec))->elem [i]))->code) == SET | ||||
3645 | && SET_DEST (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [0]).rt_rtx) == pc_rtx | ||||
3646 | && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))((((((((pat)->u.fld[0]).rt_rtvec))->elem[i]))->u.fld [1]).rt_rtx))) | ||||
3647 | return 1; | ||||
3648 | } | ||||
3649 | else if (GET_CODE (pat)((enum rtx_code) (pat)->code) == SET | ||||
3650 | && SET_DEST (pat)(((pat)->u.fld[0]).rt_rtx) == pc_rtx | ||||
3651 | && computed_jump_p_1 (SET_SRC (pat)(((pat)->u.fld[1]).rt_rtx))) | ||||
3652 | return 1; | ||||
3653 | } | ||||
3654 | return 0; | ||||
3655 | } | ||||
3656 | |||||
3657 | |||||
3658 | |||||
3659 | /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of | ||||
3660 | the equivalent add insn and pass the result to FN, using DATA as the | ||||
3661 | final argument. */ | ||||
3662 | |||||
3663 | static int | ||||
3664 | for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data) | ||||
3665 | { | ||||
3666 | rtx x = XEXP (mem, 0)(((mem)->u.fld[0]).rt_rtx); | ||||
3667 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | ||||
3668 | { | ||||
3669 | case PRE_INC: | ||||
3670 | case POST_INC: | ||||
3671 | { | ||||
3672 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); | ||||
3673 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
3674 | rtx c = gen_int_mode (size, GET_MODE (r1)((machine_mode) (r1)->mode)); | ||||
3675 | return fn (mem, x, r1, r1, c, data); | ||||
3676 | } | ||||
3677 | |||||
3678 | case PRE_DEC: | ||||
3679 | case POST_DEC: | ||||
3680 | { | ||||
3681 | poly_int64 size = GET_MODE_SIZE (GET_MODE (mem)((machine_mode) (mem)->mode)); | ||||
3682 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
3683 | rtx c = gen_int_mode (-size, GET_MODE (r1)((machine_mode) (r1)->mode)); | ||||
3684 | return fn (mem, x, r1, r1, c, data); | ||||
3685 | } | ||||
3686 | |||||
3687 | case PRE_MODIFY: | ||||
3688 | case POST_MODIFY: | ||||
3689 | { | ||||
3690 | rtx r1 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
3691 | rtx add = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | ||||
3692 | return fn (mem, x, r1, add, NULLnullptr, data); | ||||
3693 | } | ||||
3694 | |||||
3695 | default: | ||||
3696 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3696, __FUNCTION__)); | ||||
3697 | } | ||||
3698 | } | ||||
3699 | |||||
3700 | /* Traverse *LOC looking for MEMs that have autoinc addresses. | ||||
3701 | For each such autoinc operation found, call FN, passing it | ||||
3702 | the innermost enclosing MEM, the operation itself, the RTX modified | ||||
3703 | by the operation, two RTXs (the second may be NULL) that, once | ||||
3704 | added, represent the value to be held by the modified RTX | ||||
3705 | afterwards, and DATA. FN is to return 0 to continue the | ||||
3706 | traversal or any other value to have it returned to the caller of | ||||
3707 | for_each_inc_dec. */ | ||||
3708 | |||||
3709 | int | ||||
3710 | for_each_inc_dec (rtx x, | ||||
3711 | for_each_inc_dec_fn fn, | ||||
3712 | void *data) | ||||
3713 | { | ||||
3714 | subrtx_var_iterator::array_type array; | ||||
3715 | FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)for (subrtx_var_iterator iter (array, x, rtx_nonconst_subrtx_bounds ); !iter.at_end (); iter.next ()) | ||||
3716 | { | ||||
3717 | rtx mem = *iter; | ||||
3718 | if (mem | ||||
3719 | && MEM_P (mem)(((enum rtx_code) (mem)->code) == MEM) | ||||
3720 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))(rtx_class[(int) (((enum rtx_code) ((((mem)->u.fld[0]).rt_rtx ))->code))]) == RTX_AUTOINC) | ||||
3721 | { | ||||
3722 | int res = for_each_inc_dec_find_inc_dec (mem, fn, data); | ||||
3723 | if (res != 0) | ||||
3724 | return res; | ||||
3725 | iter.skip_subrtxes (); | ||||
3726 | } | ||||
3727 | } | ||||
3728 | return 0; | ||||
3729 | } | ||||
3730 | |||||
3731 | |||||
3732 | /* Searches X for any reference to REGNO, returning the rtx of the | ||||
3733 | reference found if any. Otherwise, returns NULL_RTX. */ | ||||
3734 | |||||
3735 | rtx | ||||
3736 | regno_use_in (unsigned int regno, rtx x) | ||||
3737 | { | ||||
3738 | const char *fmt; | ||||
3739 | int i, j; | ||||
3740 | rtx tem; | ||||
3741 | |||||
3742 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) == regno) | ||||
3743 | return x; | ||||
3744 | |||||
3745 | fmt = GET_RTX_FORMAT (GET_CODE (x))(rtx_format[(int) (((enum rtx_code) (x)->code))]); | ||||
3746 | for (i = GET_RTX_LENGTH (GET_CODE (x))(rtx_length[(int) (((enum rtx_code) (x)->code))]) - 1; i >= 0; i--) | ||||
3747 | { | ||||
3748 | if (fmt[i] == 'e') | ||||
3749 | { | ||||
3750 | if ((tem = regno_use_in (regno, XEXP (x, i)(((x)->u.fld[i]).rt_rtx)))) | ||||
3751 | return tem; | ||||
3752 | } | ||||
3753 | else if (fmt[i] == 'E') | ||||
3754 | for (j = XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
3755 | if ((tem = regno_use_in (regno , XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j])))) | ||||
3756 | return tem; | ||||
3757 | } | ||||
3758 | |||||
3759 | return NULL_RTX(rtx) 0; | ||||
3760 | } | ||||
3761 | |||||
3762 | /* Return a value indicating whether OP, an operand of a commutative | ||||
3763 | operation, is preferred as the first or second operand. The more | ||||
3764 | positive the value, the stronger the preference for being the first | ||||
3765 | operand. */ | ||||
3766 | |||||
3767 | int | ||||
3768 | commutative_operand_precedence (rtx op) | ||||
3769 | { | ||||
3770 | enum rtx_code code = GET_CODE (op)((enum rtx_code) (op)->code); | ||||
3771 | |||||
3772 | /* Constants always become the second operand. Prefer "nice" constants. */ | ||||
3773 | if (code == CONST_INT) | ||||
3774 | return -10; | ||||
3775 | if (code == CONST_WIDE_INT) | ||||
3776 | return -9; | ||||
3777 | if (code == CONST_POLY_INT) | ||||
3778 | return -8; | ||||
3779 | if (code == CONST_DOUBLE) | ||||
3780 | return -8; | ||||
3781 | if (code == CONST_FIXED) | ||||
3782 | return -8; | ||||
3783 | op = avoid_constant_pool_reference (op); | ||||
3784 | code = GET_CODE (op)((enum rtx_code) (op)->code); | ||||
3785 | |||||
3786 | switch (GET_RTX_CLASS (code)(rtx_class[(int) (code)])) | ||||
3787 | { | ||||
3788 | case RTX_CONST_OBJ: | ||||
3789 | if (code == CONST_INT) | ||||
3790 | return -7; | ||||
3791 | if (code == CONST_WIDE_INT) | ||||
3792 | return -6; | ||||
3793 | if (code == CONST_POLY_INT) | ||||
3794 | return -5; | ||||
3795 | if (code == CONST_DOUBLE) | ||||
3796 | return -5; | ||||
3797 | if (code == CONST_FIXED) | ||||
3798 | return -5; | ||||
3799 | return -4; | ||||
3800 | |||||
3801 | case RTX_EXTRA: | ||||
3802 | /* SUBREGs of objects should come second. */ | ||||
3803 | if (code == SUBREG && OBJECT_P (SUBREG_REG (op))(((rtx_class[(int) (((enum rtx_code) ((((op)->u.fld[0]).rt_rtx ))->code))]) & (~1)) == (RTX_OBJ & (~1)))) | ||||
3804 | return -3; | ||||
3805 | return 0; | ||||
3806 | |||||
3807 | case RTX_OBJ: | ||||
3808 | /* Complex expressions should be the first, so decrease priority | ||||
3809 | of objects. Prefer pointer objects over non pointer objects. */ | ||||
3810 | if ((REG_P (op)(((enum rtx_code) (op)->code) == REG) && REG_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3810, __FUNCTION__); _rtx; })->frame_related)) | ||||
3811 | || (MEM_P (op)(((enum rtx_code) (op)->code) == MEM) && MEM_POINTER (op)(__extension__ ({ __typeof ((op)) const _rtx = ((op)); if ((( enum rtx_code) (_rtx)->code) != MEM) rtl_check_failed_flag ("MEM_POINTER", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3811, __FUNCTION__); _rtx; })->frame_related))) | ||||
3812 | return -1; | ||||
3813 | return -2; | ||||
3814 | |||||
3815 | case RTX_COMM_ARITH: | ||||
3816 | /* Prefer operands that are themselves commutative to be first. | ||||
3817 | This helps to make things linear. In particular, | ||||
3818 | (and (and (reg) (reg)) (not (reg))) is canonical. */ | ||||
3819 | return 4; | ||||
3820 | |||||
3821 | case RTX_BIN_ARITH: | ||||
3822 | /* If only one operand is a binary expression, it will be the first | ||||
3823 | operand. In particular, (plus (minus (reg) (reg)) (neg (reg))) | ||||
3824 | is canonical, although it will usually be further simplified. */ | ||||
3825 | return 2; | ||||
3826 | |||||
3827 | case RTX_UNARY: | ||||
3828 | /* Then prefer NEG and NOT. */ | ||||
3829 | if (code == NEG || code == NOT) | ||||
3830 | return 1; | ||||
3831 | /* FALLTHRU */ | ||||
3832 | |||||
3833 | default: | ||||
3834 | return 0; | ||||
3835 | } | ||||
3836 | } | ||||
3837 | |||||
3838 | /* Return 1 iff it is necessary to swap operands of commutative operation | ||||
3839 | in order to canonicalize expression. */ | ||||
3840 | |||||
3841 | bool | ||||
3842 | swap_commutative_operands_p (rtx x, rtx y) | ||||
3843 | { | ||||
3844 | return (commutative_operand_precedence (x) | ||||
3845 | < commutative_operand_precedence (y)); | ||||
3846 | } | ||||
3847 | |||||
3848 | /* Return 1 if X is an autoincrement side effect and the register is | ||||
3849 | not the stack pointer. */ | ||||
3850 | int | ||||
3851 | auto_inc_p (const_rtx x) | ||||
3852 | { | ||||
3853 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | ||||
3854 | { | ||||
3855 | case PRE_INC: | ||||
3856 | case POST_INC: | ||||
3857 | case PRE_DEC: | ||||
3858 | case POST_DEC: | ||||
3859 | case PRE_MODIFY: | ||||
3860 | case POST_MODIFY: | ||||
3861 | /* There are no REG_INC notes for SP. */ | ||||
3862 | if (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx) != stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | ||||
3863 | return 1; | ||||
3864 | default: | ||||
3865 | break; | ||||
3866 | } | ||||
3867 | return 0; | ||||
3868 | } | ||||
3869 | |||||
3870 | /* Return nonzero if IN contains a piece of rtl that has the address LOC. */ | ||||
3871 | int | ||||
3872 | loc_mentioned_in_p (rtx *loc, const_rtx in) | ||||
3873 | { | ||||
3874 | enum rtx_code code; | ||||
3875 | const char *fmt; | ||||
3876 | int i, j; | ||||
3877 | |||||
3878 | if (!in) | ||||
3879 | return 0; | ||||
3880 | |||||
3881 | code = GET_CODE (in)((enum rtx_code) (in)->code); | ||||
3882 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
3883 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
3884 | { | ||||
3885 | if (fmt[i] == 'e') | ||||
3886 | { | ||||
3887 | if (loc == &XEXP (in, i)(((in)->u.fld[i]).rt_rtx) || loc_mentioned_in_p (loc, XEXP (in, i)(((in)->u.fld[i]).rt_rtx))) | ||||
3888 | return 1; | ||||
3889 | } | ||||
3890 | else if (fmt[i] == 'E') | ||||
3891 | for (j = XVECLEN (in, i)(((((in)->u.fld[i]).rt_rtvec))->num_elem) - 1; j >= 0; j--) | ||||
3892 | if (loc == &XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]) | ||||
3893 | || loc_mentioned_in_p (loc, XVECEXP (in, i, j)(((((in)->u.fld[i]).rt_rtvec))->elem[j]))) | ||||
3894 | return 1; | ||||
3895 | } | ||||
3896 | return 0; | ||||
3897 | } | ||||
3898 | |||||
3899 | /* Reinterpret a subreg as a bit extraction from an integer and return | ||||
3900 | the position of the least significant bit of the extracted value. | ||||
3901 | In other words, if the extraction were performed as a shift right | ||||
3902 | and mask, return the number of bits to shift right. | ||||
3903 | |||||
3904 | The outer value of the subreg has OUTER_BYTES bytes and starts at | ||||
3905 | byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */ | ||||
3906 | |||||
3907 | poly_uint64 | ||||
3908 | subreg_size_lsb (poly_uint64 outer_bytes, | ||||
3909 | poly_uint64 inner_bytes, | ||||
3910 | poly_uint64 subreg_byte) | ||||
3911 | { | ||||
3912 | poly_uint64 subreg_end, trailing_bytes, byte_pos; | ||||
3913 | |||||
3914 | /* A paradoxical subreg begins at bit position 0. */ | ||||
3915 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3915, __FUNCTION__), 0 : 0)); | ||||
3916 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) | ||||
3917 | { | ||||
3918 | gcc_checking_assert (known_eq (subreg_byte, 0U))((void)(!((!maybe_ne (subreg_byte, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3918, __FUNCTION__), 0 : 0)); | ||||
3919 | return 0; | ||||
3920 | } | ||||
3921 | |||||
3922 | subreg_end = subreg_byte + outer_bytes; | ||||
3923 | trailing_bytes = inner_bytes - subreg_end; | ||||
3924 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) | ||||
3925 | byte_pos = trailing_bytes; | ||||
3926 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) | ||||
3927 | byte_pos = subreg_byte; | ||||
3928 | else | ||||
3929 | { | ||||
3930 | /* When bytes and words have opposite endianness, we must be able | ||||
3931 | to split offsets into words and bytes at compile time. */ | ||||
3932 | poly_uint64 leading_word_part | ||||
3933 | = force_align_down (subreg_byte, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | ||||
3934 | poly_uint64 trailing_word_part | ||||
3935 | = force_align_down (trailing_bytes, UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | ||||
3936 | /* If the subreg crosses a word boundary ensure that | ||||
3937 | it also begins and ends on a word boundary. */ | ||||
3938 | gcc_assert (known_le (subreg_end - leading_word_part,((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | ||||
3939 | (unsigned int) UNITS_PER_WORD)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | ||||
3940 | || (known_eq (leading_word_part, subreg_byte)((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)) | ||||
3941 | && known_eq (trailing_word_part, trailing_bytes)))((void)(!((!maybe_lt ((unsigned int) (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4), subreg_end - leading_word_part )) || ((!maybe_ne (leading_word_part, subreg_byte)) && (!maybe_ne (trailing_word_part, trailing_bytes)))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3941, __FUNCTION__), 0 : 0)); | ||||
3942 | if (WORDS_BIG_ENDIAN0) | ||||
3943 | byte_pos = trailing_word_part + (subreg_byte - leading_word_part); | ||||
3944 | else | ||||
3945 | byte_pos = leading_word_part + (trailing_bytes - trailing_word_part); | ||||
3946 | } | ||||
3947 | |||||
3948 | return byte_pos * BITS_PER_UNIT(8); | ||||
3949 | } | ||||
3950 | |||||
3951 | /* Given a subreg X, return the bit offset where the subreg begins | ||||
3952 | (counting from the least significant bit of the reg). */ | ||||
3953 | |||||
3954 | poly_uint64 | ||||
3955 | subreg_lsb (const_rtx x) | ||||
3956 | { | ||||
3957 | return subreg_lsb_1 (GET_MODE (x)((machine_mode) (x)->mode), GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), | ||||
3958 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg)); | ||||
3959 | } | ||||
3960 | |||||
3961 | /* Return the subreg byte offset for a subreg whose outer value has | ||||
3962 | OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where | ||||
3963 | there are LSB_SHIFT *bits* between the lsb of the outer value and the | ||||
3964 | lsb of the inner value. This is the inverse of the calculation | ||||
3965 | performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */ | ||||
3966 | |||||
3967 | poly_uint64 | ||||
3968 | subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes, | ||||
3969 | poly_uint64 lsb_shift) | ||||
3970 | { | ||||
3971 | /* A paradoxical subreg begins at bit position 0. */ | ||||
3972 | gcc_checking_assert (ordered_p (outer_bytes, inner_bytes))((void)(!(ordered_p (outer_bytes, inner_bytes)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3972, __FUNCTION__), 0 : 0)); | ||||
3973 | if (maybe_gt (outer_bytes, inner_bytes)maybe_lt (inner_bytes, outer_bytes)) | ||||
3974 | { | ||||
3975 | gcc_checking_assert (known_eq (lsb_shift, 0U))((void)(!((!maybe_ne (lsb_shift, 0U))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 3975, __FUNCTION__), 0 : 0)); | ||||
3976 | return 0; | ||||
3977 | } | ||||
3978 | |||||
3979 | poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT(8)); | ||||
3980 | poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes); | ||||
3981 | if (WORDS_BIG_ENDIAN0 && BYTES_BIG_ENDIAN0) | ||||
3982 | return upper_bytes; | ||||
3983 | else if (!WORDS_BIG_ENDIAN0 && !BYTES_BIG_ENDIAN0) | ||||
3984 | return lower_bytes; | ||||
3985 | else | ||||
3986 | { | ||||
3987 | /* When bytes and words have opposite endianness, we must be able | ||||
3988 | to split offsets into words and bytes at compile time. */ | ||||
3989 | poly_uint64 lower_word_part = force_align_down (lower_bytes, | ||||
3990 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | ||||
3991 | poly_uint64 upper_word_part = force_align_down (upper_bytes, | ||||
3992 | UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)); | ||||
3993 | if (WORDS_BIG_ENDIAN0) | ||||
3994 | return upper_word_part + (lower_bytes - lower_word_part); | ||||
3995 | else | ||||
3996 | return lower_word_part + (upper_bytes - upper_word_part); | ||||
3997 | } | ||||
3998 | } | ||||
3999 | |||||
4000 | /* Fill in information about a subreg of a hard register. | ||||
4001 | xregno - A regno of an inner hard subreg_reg (or what will become one). | ||||
4002 | xmode - The mode of xregno. | ||||
4003 | offset - The byte offset. | ||||
4004 | ymode - The mode of a top level SUBREG (or what may become one). | ||||
4005 | info - Pointer to structure to fill in. | ||||
4006 | |||||
4007 | Rather than considering one particular inner register (and thus one | ||||
4008 | particular "outer" register) in isolation, this function really uses | ||||
4009 | XREGNO as a model for a sequence of isomorphic hard registers. Thus the | ||||
4010 | function does not check whether adding INFO->offset to XREGNO gives | ||||
4011 | a valid hard register; even if INFO->offset + XREGNO is out of range, | ||||
4012 | there might be another register of the same type that is in range. | ||||
4013 | Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts | ||||
4014 | the new register, since that can depend on things like whether the final | ||||
4015 | register number is even or odd. Callers that want to check whether | ||||
4016 | this particular subreg can be replaced by a simple (reg ...) should | ||||
4017 | use simplify_subreg_regno. */ | ||||
4018 | |||||
4019 | void | ||||
4020 | subreg_get_info (unsigned int xregno, machine_mode xmode, | ||||
4021 | poly_uint64 offset, machine_mode ymode, | ||||
4022 | struct subreg_info *info) | ||||
4023 | { | ||||
4024 | unsigned int nregs_xmode, nregs_ymode; | ||||
4025 | |||||
4026 | gcc_assert (xregno < FIRST_PSEUDO_REGISTER)((void)(!(xregno < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4026, __FUNCTION__), 0 : 0)); | ||||
4027 | |||||
4028 | poly_uint64 xsize = GET_MODE_SIZE (xmode); | ||||
4029 | poly_uint64 ysize = GET_MODE_SIZE (ymode); | ||||
4030 | |||||
4031 | bool rknown = false; | ||||
4032 | |||||
4033 | /* If the register representation of a non-scalar mode has holes in it, | ||||
4034 | we expect the scalar units to be concatenated together, with the holes | ||||
4035 | distributed evenly among the scalar units. Each scalar unit must occupy | ||||
4036 | at least one register. */ | ||||
4037 | if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) )))) | ||||
4038 | { | ||||
4039 | /* As a consequence, we must be dealing with a constant number of | ||||
4040 | scalars, and thus a constant offset and number of units. */ | ||||
4041 | HOST_WIDE_INTlong coffset = offset.to_constant (); | ||||
4042 | HOST_WIDE_INTlong cysize = ysize.to_constant (); | ||||
4043 | nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode)((xmode) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8); | ||||
4044 | unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant (); | ||||
4045 | scalar_mode xmode_unit = GET_MODE_INNER (xmode)(mode_to_inner (xmode)); | ||||
4046 | gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit))((void)(!((((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno )) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int ) E_XFmode)) || (xmode_unit) == (complex_mode ((complex_mode:: from_int) E_XCmode))))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4046, __FUNCTION__), 0 : 0)); | ||||
4047 | gcc_assert (nregs_xmode((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) | ||||
4048 | == (nunits((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)) | ||||
4049 | * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)))((void)(!(nregs_xmode == (nunits * ((xmode_unit) == (scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) ? 4 : 8))) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4049, __FUNCTION__), 0 : 0)); | ||||
4050 | gcc_assert (hard_regno_nregs (xregno, xmode)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)) | ||||
4051 | == hard_regno_nregs (xregno, xmode_unit) * nunits)((void)(!(hard_regno_nregs (xregno, xmode) == hard_regno_nregs (xregno, xmode_unit) * nunits) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4051, __FUNCTION__), 0 : 0)); | ||||
4052 | |||||
4053 | /* You can only ask for a SUBREG of a value with holes in the middle | ||||
4054 | if you don't cross the holes. (Such a SUBREG should be done by | ||||
4055 | picking a different register class, or doing it in memory if | ||||
4056 | necessary.) An example of a value with holes is XCmode on 32-bit | ||||
4057 | x86 with -m128bit-long-double; it's represented in 6 32-bit registers, | ||||
4058 | 3 for each part, but in memory it's two 128-bit parts. | ||||
4059 | Padding is assumed to be at the end (not necessarily the 'high part') | ||||
4060 | of each unit. */ | ||||
4061 | if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits) | ||||
4062 | && (coffset / GET_MODE_SIZE (xmode_unit) | ||||
4063 | != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit)))) | ||||
4064 | { | ||||
4065 | info->representable_p = false; | ||||
4066 | rknown = true; | ||||
4067 | } | ||||
4068 | } | ||||
4069 | else | ||||
4070 | nregs_xmode = hard_regno_nregs (xregno, xmode); | ||||
4071 | |||||
4072 | nregs_ymode = hard_regno_nregs (xregno, ymode); | ||||
4073 | |||||
4074 | /* Subreg sizes must be ordered, so that we can tell whether they are | ||||
4075 | partial, paradoxical or complete. */ | ||||
4076 | gcc_checking_assert (ordered_p (xsize, ysize))((void)(!(ordered_p (xsize, ysize)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4076, __FUNCTION__), 0 : 0)); | ||||
4077 | |||||
4078 | /* Paradoxical subregs are otherwise valid. */ | ||||
4079 | if (!rknown && known_eq (offset, 0U)(!maybe_ne (offset, 0U)) && maybe_gt (ysize, xsize)maybe_lt (xsize, ysize)) | ||||
4080 | { | ||||
4081 | info->representable_p = true; | ||||
4082 | /* If this is a big endian paradoxical subreg, which uses more | ||||
4083 | actual hard registers than the original register, we must | ||||
4084 | return a negative offset so that we find the proper highpart | ||||
4085 | of the register. | ||||
4086 | |||||
4087 | We assume that the ordering of registers within a multi-register | ||||
4088 | value has a consistent endianness: if bytes and register words | ||||
4089 | have different endianness, the hard registers that make up a | ||||
4090 | multi-register value must be at least word-sized. */ | ||||
4091 | if (REG_WORDS_BIG_ENDIAN0) | ||||
4092 | info->offset = (int) nregs_xmode - (int) nregs_ymode; | ||||
4093 | else | ||||
4094 | info->offset = 0; | ||||
4095 | info->nregs = nregs_ymode; | ||||
4096 | return; | ||||
4097 | } | ||||
4098 | |||||
4099 | /* If registers store different numbers of bits in the different | ||||
4100 | modes, we cannot generally form this subreg. */ | ||||
4101 | poly_uint64 regsize_xmode, regsize_ymode; | ||||
4102 | if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((xmode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (xmode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) | ||||
4103 | && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)(((global_options.x_target_flags & (1U << 0)) != 0) && !((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) && ((((unsigned long) ((xregno)) - (unsigned long) (0) <= (unsigned long) (7) - (unsigned long) (0))) || ((unsigned long) ((xregno)) - (unsigned long) (36) <= (unsigned long) (43) - (unsigned long) (36))) && ((ymode) == ( scalar_float_mode ((scalar_float_mode::from_int) E_XFmode)) || (ymode) == (complex_mode ((complex_mode::from_int) E_XCmode) ))) | ||||
4104 | && multiple_p (xsize, nregs_xmode, ®size_xmode) | ||||
4105 | && multiple_p (ysize, nregs_ymode, ®size_ymode)) | ||||
4106 | { | ||||
4107 | if (!rknown | ||||
4108 | && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode)maybe_lt (regsize_ymode, regsize_xmode)) | ||||
4109 | || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode)maybe_lt (regsize_xmode, regsize_ymode)))) | ||||
4110 | { | ||||
4111 | info->representable_p = false; | ||||
4112 | if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs) | ||||
4113 | || !can_div_trunc_p (offset, regsize_xmode, &info->offset)) | ||||
4114 | /* Checked by validate_subreg. We must know at compile time | ||||
4115 | which inner registers are being accessed. */ | ||||
4116 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4116, __FUNCTION__)); | ||||
4117 | return; | ||||
4118 | } | ||||
4119 | /* It's not valid to extract a subreg of mode YMODE at OFFSET that | ||||
4120 | would go outside of XMODE. */ | ||||
4121 | if (!rknown && maybe_gt (ysize + offset, xsize)maybe_lt (xsize, ysize + offset)) | ||||
4122 | { | ||||
4123 | info->representable_p = false; | ||||
4124 | info->nregs = nregs_ymode; | ||||
4125 | if (!can_div_trunc_p (offset, regsize_xmode, &info->offset)) | ||||
4126 | /* Checked by validate_subreg. We must know at compile time | ||||
4127 | which inner registers are being accessed. */ | ||||
4128 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4128, __FUNCTION__)); | ||||
4129 | return; | ||||
4130 | } | ||||
4131 | /* Quick exit for the simple and common case of extracting whole | ||||
4132 | subregisters from a multiregister value. */ | ||||
4133 | /* ??? It would be better to integrate this into the code below, | ||||
4134 | if we can generalize the concept enough and figure out how | ||||
4135 | odd-sized modes can coexist with the other weird cases we support. */ | ||||
4136 | HOST_WIDE_INTlong count; | ||||
4137 | if (!rknown | ||||
4138 | && WORDS_BIG_ENDIAN0 == REG_WORDS_BIG_ENDIAN0 | ||||
4139 | && known_eq (regsize_xmode, regsize_ymode)(!maybe_ne (regsize_xmode, regsize_ymode)) | ||||
4140 | && constant_multiple_p (offset, regsize_ymode, &count)) | ||||
4141 | { | ||||
4142 | info->representable_p = true; | ||||
4143 | info->nregs = nregs_ymode; | ||||
4144 | info->offset = count; | ||||
4145 | gcc_assert (info->offset + info->nregs <= (int) nregs_xmode)((void)(!(info->offset + info->nregs <= (int) nregs_xmode ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4145, __FUNCTION__), 0 : 0)); | ||||
4146 | return; | ||||
4147 | } | ||||
4148 | } | ||||
4149 | |||||
4150 | /* Lowpart subregs are otherwise valid. */ | ||||
4151 | if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode))(!maybe_ne (offset, subreg_lowpart_offset (ymode, xmode)))) | ||||
4152 | { | ||||
4153 | info->representable_p = true; | ||||
4154 | rknown = true; | ||||
4155 | |||||
4156 | if (known_eq (offset, 0U)(!maybe_ne (offset, 0U)) || nregs_xmode == nregs_ymode) | ||||
4157 | { | ||||
4158 | info->offset = 0; | ||||
4159 | info->nregs = nregs_ymode; | ||||
4160 | return; | ||||
4161 | } | ||||
4162 | } | ||||
4163 | |||||
4164 | /* Set NUM_BLOCKS to the number of independently-representable YMODE | ||||
4165 | values there are in (reg:XMODE XREGNO). We can view the register | ||||
4166 | as consisting of this number of independent "blocks", where each | ||||
4167 | block occupies NREGS_YMODE registers and contains exactly one | ||||
4168 | representable YMODE value. */ | ||||
4169 | gcc_assert ((nregs_xmode % nregs_ymode) == 0)((void)(!((nregs_xmode % nregs_ymode) == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4169, __FUNCTION__), 0 : 0)); | ||||
4170 | unsigned int num_blocks = nregs_xmode / nregs_ymode; | ||||
4171 | |||||
4172 | /* Calculate the number of bytes in each block. This must always | ||||
4173 | be exact, otherwise we don't know how to verify the constraint. | ||||
4174 | These conditions may be relaxed but subreg_regno_offset would | ||||
4175 | need to be redesigned. */ | ||||
4176 | poly_uint64 bytes_per_block = exact_div (xsize, num_blocks); | ||||
4177 | |||||
4178 | /* Get the number of the first block that contains the subreg and the byte | ||||
4179 | offset of the subreg from the start of that block. */ | ||||
4180 | unsigned int block_number; | ||||
4181 | poly_uint64 subblock_offset; | ||||
4182 | if (!can_div_trunc_p (offset, bytes_per_block, &block_number, | ||||
4183 | &subblock_offset)) | ||||
4184 | /* Checked by validate_subreg. We must know at compile time which | ||||
4185 | inner registers are being accessed. */ | ||||
4186 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4186, __FUNCTION__)); | ||||
4187 | |||||
4188 | if (!rknown) | ||||
4189 | { | ||||
4190 | /* Only the lowpart of each block is representable. */ | ||||
4191 | info->representable_p | ||||
4192 | = known_eq (subblock_offset,(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))) | ||||
4193 | subreg_size_lowpart_offset (ysize, bytes_per_block))(!maybe_ne (subblock_offset, subreg_size_lowpart_offset (ysize , bytes_per_block))); | ||||
4194 | rknown = true; | ||||
4195 | } | ||||
4196 | |||||
4197 | /* We assume that the ordering of registers within a multi-register | ||||
4198 | value has a consistent endianness: if bytes and register words | ||||
4199 | have different endianness, the hard registers that make up a | ||||
4200 | multi-register value must be at least word-sized. */ | ||||
4201 | if (WORDS_BIG_ENDIAN0 != REG_WORDS_BIG_ENDIAN0) | ||||
4202 | /* The block number we calculated above followed memory endianness. | ||||
4203 | Convert it to register endianness by counting back from the end. | ||||
4204 | (Note that, because of the assumption above, each block must be | ||||
4205 | at least word-sized.) */ | ||||
4206 | info->offset = (num_blocks - block_number - 1) * nregs_ymode; | ||||
4207 | else | ||||
4208 | info->offset = block_number * nregs_ymode; | ||||
4209 | info->nregs = nregs_ymode; | ||||
4210 | } | ||||
4211 | |||||
4212 | /* This function returns the regno offset of a subreg expression. | ||||
4213 | xregno - A regno of an inner hard subreg_reg (or what will become one). | ||||
4214 | xmode - The mode of xregno. | ||||
4215 | offset - The byte offset. | ||||
4216 | ymode - The mode of a top level SUBREG (or what may become one). | ||||
4217 | RETURN - The regno offset which would be used. */ | ||||
4218 | unsigned int | ||||
4219 | subreg_regno_offset (unsigned int xregno, machine_mode xmode, | ||||
4220 | poly_uint64 offset, machine_mode ymode) | ||||
4221 | { | ||||
4222 | struct subreg_info info; | ||||
4223 | subreg_get_info (xregno, xmode, offset, ymode, &info); | ||||
4224 | return info.offset; | ||||
4225 | } | ||||
4226 | |||||
4227 | /* This function returns true when the offset is representable via | ||||
4228 | subreg_offset in the given regno. | ||||
4229 | xregno - A regno of an inner hard subreg_reg (or what will become one). | ||||
4230 | xmode - The mode of xregno. | ||||
4231 | offset - The byte offset. | ||||
4232 | ymode - The mode of a top level SUBREG (or what may become one). | ||||
4233 | RETURN - Whether the offset is representable. */ | ||||
4234 | bool | ||||
4235 | subreg_offset_representable_p (unsigned int xregno, machine_mode xmode, | ||||
4236 | poly_uint64 offset, machine_mode ymode) | ||||
4237 | { | ||||
4238 | struct subreg_info info; | ||||
4239 | subreg_get_info (xregno, xmode, offset, ymode, &info); | ||||
4240 | return info.representable_p; | ||||
4241 | } | ||||
4242 | |||||
4243 | /* Return the number of a YMODE register to which | ||||
4244 | |||||
4245 | (subreg:YMODE (reg:XMODE XREGNO) OFFSET) | ||||
4246 | |||||
4247 | can be simplified. Return -1 if the subreg can't be simplified. | ||||
4248 | |||||
4249 | XREGNO is a hard register number. */ | ||||
4250 | |||||
4251 | int | ||||
4252 | simplify_subreg_regno (unsigned int xregno, machine_mode xmode, | ||||
4253 | poly_uint64 offset, machine_mode ymode) | ||||
4254 | { | ||||
4255 | struct subreg_info info; | ||||
4256 | unsigned int yregno; | ||||
4257 | |||||
4258 | /* Give the backend a chance to disallow the mode change. */ | ||||
4259 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_INT | ||||
4260 | && GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) != MODE_COMPLEX_FLOAT | ||||
4261 | && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)(targetm.can_change_mode_class (xmode, ymode, (regclass_map[( xregno)])))) | ||||
4262 | return -1; | ||||
4263 | |||||
4264 | /* We shouldn't simplify stack-related registers. */ | ||||
4265 | if ((!reload_completed || frame_pointer_needed((&x_rtl)->frame_pointer_needed)) | ||||
4266 | && xregno == FRAME_POINTER_REGNUM19) | ||||
4267 | return -1; | ||||
4268 | |||||
4269 | if (FRAME_POINTER_REGNUM19 != ARG_POINTER_REGNUM16 | ||||
4270 | && xregno == ARG_POINTER_REGNUM16) | ||||
4271 | return -1; | ||||
4272 | |||||
4273 | if (xregno == STACK_POINTER_REGNUM7 | ||||
4274 | /* We should convert hard stack register in LRA if it is | ||||
4275 | possible. */ | ||||
4276 | && ! lra_in_progress) | ||||
4277 | return -1; | ||||
4278 | |||||
4279 | /* Try to get the register offset. */ | ||||
4280 | subreg_get_info (xregno, xmode, offset, ymode, &info); | ||||
4281 | if (!info.representable_p) | ||||
4282 | return -1; | ||||
4283 | |||||
4284 | /* Make sure that the offsetted register value is in range. */ | ||||
4285 | yregno = xregno + info.offset; | ||||
4286 | if (!HARD_REGISTER_NUM_P (yregno)((yregno) < 76)) | ||||
4287 | return -1; | ||||
4288 | |||||
4289 | /* See whether (reg:YMODE YREGNO) is valid. | ||||
4290 | |||||
4291 | ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid. | ||||
4292 | This is a kludge to work around how complex FP arguments are passed | ||||
4293 | on IA-64 and should be fixed. See PR target/49226. */ | ||||
4294 | if (!targetm.hard_regno_mode_ok (yregno, ymode) | ||||
4295 | && targetm.hard_regno_mode_ok (xregno, xmode)) | ||||
4296 | return -1; | ||||
4297 | |||||
4298 | return (int) yregno; | ||||
4299 | } | ||||
4300 | |||||
4301 | /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset | ||||
4302 | (xmode, ymode) as the offset. */ | ||||
4303 | |||||
4304 | int | ||||
4305 | lowpart_subreg_regno (unsigned int regno, machine_mode xmode, | ||||
4306 | machine_mode ymode) | ||||
4307 | { | ||||
4308 | poly_uint64 offset = subreg_lowpart_offset (xmode, ymode); | ||||
4309 | return simplify_subreg_regno (regno, xmode, offset, ymode); | ||||
4310 | } | ||||
4311 | |||||
4312 | /* Return the final regno that a subreg expression refers to. */ | ||||
4313 | unsigned int | ||||
4314 | subreg_regno (const_rtx x) | ||||
4315 | { | ||||
4316 | unsigned int ret; | ||||
4317 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | ||||
4318 | int regno = REGNO (subreg)(rhs_regno(subreg)); | ||||
4319 | |||||
4320 | ret = regno + subreg_regno_offset (regno, | ||||
4321 | GET_MODE (subreg)((machine_mode) (subreg)->mode), | ||||
4322 | SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), | ||||
4323 | GET_MODE (x)((machine_mode) (x)->mode)); | ||||
4324 | return ret; | ||||
4325 | |||||
4326 | } | ||||
4327 | |||||
4328 | /* Return the number of registers that a subreg expression refers | ||||
4329 | to. */ | ||||
4330 | unsigned int | ||||
4331 | subreg_nregs (const_rtx x) | ||||
4332 | { | ||||
4333 | return subreg_nregs_with_regno (REGNO (SUBREG_REG (x))(rhs_regno((((x)->u.fld[0]).rt_rtx))), x); | ||||
4334 | } | ||||
4335 | |||||
4336 | /* Return the number of registers that a subreg REG with REGNO | ||||
4337 | expression refers to. This is a copy of the rtlanal.cc:subreg_nregs | ||||
4338 | changed so that the regno can be passed in. */ | ||||
4339 | |||||
4340 | unsigned int | ||||
4341 | subreg_nregs_with_regno (unsigned int regno, const_rtx x) | ||||
4342 | { | ||||
4343 | struct subreg_info info; | ||||
4344 | rtx subreg = SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx); | ||||
4345 | |||||
4346 | subreg_get_info (regno, GET_MODE (subreg)((machine_mode) (subreg)->mode), SUBREG_BYTE (x)(((x)->u.fld[1]).rt_subreg), GET_MODE (x)((machine_mode) (x)->mode), | ||||
4347 | &info); | ||||
4348 | return info.nregs; | ||||
4349 | } | ||||
4350 | |||||
4351 | struct parms_set_data | ||||
4352 | { | ||||
4353 | int nregs; | ||||
4354 | HARD_REG_SET regs; | ||||
4355 | }; | ||||
4356 | |||||
4357 | /* Helper function for noticing stores to parameter registers. */ | ||||
4358 | static void | ||||
4359 | parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED__attribute__ ((__unused__)), void *data) | ||||
4360 | { | ||||
4361 | struct parms_set_data *const d = (struct parms_set_data *) data; | ||||
4362 | if (REG_P (x)(((enum rtx_code) (x)->code) == REG) && REGNO (x)(rhs_regno(x)) < FIRST_PSEUDO_REGISTER76 | ||||
4363 | && TEST_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x)))) | ||||
4364 | { | ||||
4365 | CLEAR_HARD_REG_BIT (d->regs, REGNO (x)(rhs_regno(x))); | ||||
4366 | d->nregs--; | ||||
4367 | } | ||||
4368 | } | ||||
4369 | |||||
4370 | /* Look backward for first parameter to be loaded. | ||||
4371 | Note that loads of all parameters will not necessarily be | ||||
4372 | found if CSE has eliminated some of them (e.g., an argument | ||||
4373 | to the outer function is passed down as a parameter). | ||||
4374 | Do not skip BOUNDARY. */ | ||||
4375 | rtx_insn * | ||||
4376 | find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary) | ||||
4377 | { | ||||
4378 | struct parms_set_data parm; | ||||
4379 | rtx p; | ||||
4380 | rtx_insn *before, *first_set; | ||||
4381 | |||||
4382 | /* Since different machines initialize their parameter registers | ||||
4383 | in different orders, assume nothing. Collect the set of all | ||||
4384 | parameter registers. */ | ||||
4385 | CLEAR_HARD_REG_SET (parm.regs); | ||||
4386 | parm.nregs = 0; | ||||
4387 | for (p = CALL_INSN_FUNCTION_USAGE (call_insn)(((call_insn)->u.fld[7]).rt_rtx); p; p = XEXP (p, 1)(((p)->u.fld[1]).rt_rtx)) | ||||
4388 | if (GET_CODE (XEXP (p, 0))((enum rtx_code) ((((p)->u.fld[0]).rt_rtx))->code) == USE | ||||
4389 | && REG_P (XEXP (XEXP (p, 0), 0))(((enum rtx_code) (((((((p)->u.fld[0]).rt_rtx))->u.fld[ 0]).rt_rtx))->code) == REG) | ||||
4390 | && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0))(__extension__ ({ __typeof ((((((((p)->u.fld[0]).rt_rtx))-> u.fld[0]).rt_rtx))) const _rtx = ((((((((p)->u.fld[0]).rt_rtx ))->u.fld[0]).rt_rtx))); if (((enum rtx_code) (_rtx)->code ) != REG) rtl_check_failed_flag ("STATIC_CHAIN_REG_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4390, __FUNCTION__); _rtx; })->jump)) | ||||
4391 | { | ||||
4392 | gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER)((void)(!((rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld [0]).rt_rtx))) < 76) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4392, __FUNCTION__), 0 : 0)); | ||||
4393 | |||||
4394 | /* We only care about registers which can hold function | ||||
4395 | arguments. */ | ||||
4396 | if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0)))ix86_function_arg_regno_p ((rhs_regno(((((((p)->u.fld[0]). rt_rtx))->u.fld[0]).rt_rtx))))) | ||||
4397 | continue; | ||||
4398 | |||||
4399 | SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0))(rhs_regno(((((((p)->u.fld[0]).rt_rtx))->u.fld[0]).rt_rtx )))); | ||||
4400 | parm.nregs++; | ||||
4401 | } | ||||
4402 | before = call_insn; | ||||
4403 | first_set = call_insn; | ||||
4404 | |||||
4405 | /* Search backward for the first set of a register in this set. */ | ||||
4406 | while (parm.nregs && before != boundary) | ||||
4407 | { | ||||
4408 | before = PREV_INSN (before); | ||||
4409 | |||||
4410 | /* It is possible that some loads got CSEed from one call to | ||||
4411 | another. Stop in that case. */ | ||||
4412 | if (CALL_P (before)(((enum rtx_code) (before)->code) == CALL_INSN)) | ||||
4413 | break; | ||||
4414 | |||||
4415 | /* Our caller needs either ensure that we will find all sets | ||||
4416 | (in case code has not been optimized yet), or take care | ||||
4417 | for possible labels in a way by setting boundary to preceding | ||||
4418 | CODE_LABEL. */ | ||||
4419 | if (LABEL_P (before)(((enum rtx_code) (before)->code) == CODE_LABEL)) | ||||
4420 | { | ||||
4421 | gcc_assert (before == boundary)((void)(!(before == boundary) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4421, __FUNCTION__), 0 : 0)); | ||||
4422 | break; | ||||
4423 | } | ||||
4424 | |||||
4425 | if (INSN_P (before)(((((enum rtx_code) (before)->code) == INSN) || (((enum rtx_code ) (before)->code) == JUMP_INSN) || (((enum rtx_code) (before )->code) == CALL_INSN)) || (((enum rtx_code) (before)-> code) == DEBUG_INSN))) | ||||
4426 | { | ||||
4427 | int nregs_old = parm.nregs; | ||||
4428 | note_stores (before, parms_set, &parm); | ||||
4429 | /* If we found something that did not set a parameter reg, | ||||
4430 | we're done. Do not keep going, as that might result | ||||
4431 | in hoisting an insn before the setting of a pseudo | ||||
4432 | that is used by the hoisted insn. */ | ||||
4433 | if (nregs_old != parm.nregs) | ||||
4434 | first_set = before; | ||||
4435 | else | ||||
4436 | break; | ||||
4437 | } | ||||
4438 | } | ||||
4439 | return first_set; | ||||
4440 | } | ||||
4441 | |||||
4442 | /* Return true if we should avoid inserting code between INSN and preceding | ||||
4443 | call instruction. */ | ||||
4444 | |||||
4445 | bool | ||||
4446 | keep_with_call_p (const rtx_insn *insn) | ||||
4447 | { | ||||
4448 | rtx set; | ||||
4449 | |||||
4450 | if (INSN_P (insn)(((((enum rtx_code) (insn)->code) == INSN) || (((enum rtx_code ) (insn)->code) == JUMP_INSN) || (((enum rtx_code) (insn)-> code) == CALL_INSN)) || (((enum rtx_code) (insn)->code) == DEBUG_INSN)) && (set = single_set (insn)) != NULLnullptr) | ||||
4451 | { | ||||
4452 | if (REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) | ||||
4453 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) < FIRST_PSEUDO_REGISTER76 | ||||
4454 | && fixed_regs(this_target_hard_regs->x_fixed_regs)[REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx)))] | ||||
4455 | && general_operand (SET_SRC (set)(((set)->u.fld[1]).rt_rtx), VOIDmode((void) 0, E_VOIDmode))) | ||||
4456 | return true; | ||||
4457 | if (REG_P (SET_SRC (set))(((enum rtx_code) ((((set)->u.fld[1]).rt_rtx))->code) == REG) | ||||
4458 | && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set))(rhs_regno((((set)->u.fld[1]).rt_rtx)))) | ||||
4459 | && REG_P (SET_DEST (set))(((enum rtx_code) ((((set)->u.fld[0]).rt_rtx))->code) == REG) | ||||
4460 | && REGNO (SET_DEST (set))(rhs_regno((((set)->u.fld[0]).rt_rtx))) >= FIRST_PSEUDO_REGISTER76) | ||||
4461 | return true; | ||||
4462 | /* There may be a stack pop just after the call and before the store | ||||
4463 | of the return register. Search for the actual store when deciding | ||||
4464 | if we can break or not. */ | ||||
4465 | if (SET_DEST (set)(((set)->u.fld[0]).rt_rtx) == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER])) | ||||
4466 | { | ||||
4467 | /* This CONST_CAST is okay because next_nonnote_insn just | ||||
4468 | returns its argument and we assign it to a const_rtx | ||||
4469 | variable. */ | ||||
4470 | const rtx_insn *i2 | ||||
4471 | = next_nonnote_insn (const_cast<rtx_insn *> (insn)); | ||||
4472 | if (i2 && keep_with_call_p (i2)) | ||||
4473 | return true; | ||||
4474 | } | ||||
4475 | } | ||||
4476 | return false; | ||||
4477 | } | ||||
4478 | |||||
4479 | /* Return true if LABEL is a target of JUMP_INSN. This applies only | ||||
4480 | to non-complex jumps. That is, direct unconditional, conditional, | ||||
4481 | and tablejumps, but not computed jumps or returns. It also does | ||||
4482 | not apply to the fallthru case of a conditional jump. */ | ||||
4483 | |||||
4484 | bool | ||||
4485 | label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn) | ||||
4486 | { | ||||
4487 | rtx tmp = JUMP_LABEL (jump_insn)(((jump_insn)->u.fld[7]).rt_rtx); | ||||
4488 | rtx_jump_table_data *table; | ||||
4489 | |||||
4490 | if (label == tmp) | ||||
4491 | return true; | ||||
4492 | |||||
4493 | if (tablejump_p (jump_insn, NULLnullptr, &table)) | ||||
4494 | { | ||||
4495 | rtvec vec = table->get_labels (); | ||||
4496 | int i, veclen = GET_NUM_ELEM (vec)((vec)->num_elem); | ||||
4497 | |||||
4498 | for (i = 0; i < veclen; ++i) | ||||
4499 | if (XEXP (RTVEC_ELT (vec, i), 0)(((((vec)->elem[i]))->u.fld[0]).rt_rtx) == label) | ||||
4500 | return true; | ||||
4501 | } | ||||
4502 | |||||
4503 | if (find_reg_note (jump_insn, REG_LABEL_TARGET, label)) | ||||
4504 | return true; | ||||
4505 | |||||
4506 | return false; | ||||
4507 | } | ||||
4508 | |||||
4509 | |||||
4510 | /* Return an estimate of the cost of computing rtx X. | ||||
4511 | One use is in cse, to decide which expression to keep in the hash table. | ||||
4512 | Another is in rtl generation, to pick the cheapest way to multiply. | ||||
4513 | Other uses like the latter are expected in the future. | ||||
4514 | |||||
4515 | X appears as operand OPNO in an expression with code OUTER_CODE. | ||||
4516 | SPEED specifies whether costs optimized for speed or size should | ||||
4517 | be returned. */ | ||||
4518 | |||||
4519 | int | ||||
4520 | rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code, | ||||
4521 | int opno, bool speed) | ||||
4522 | { | ||||
4523 | int i, j; | ||||
4524 | enum rtx_code code; | ||||
4525 | const char *fmt; | ||||
4526 | int total; | ||||
4527 | int factor; | ||||
4528 | unsigned mode_size; | ||||
4529 | |||||
4530 | if (x == 0) | ||||
4531 | return 0; | ||||
4532 | |||||
4533 | if (GET_CODE (x)((enum rtx_code) (x)->code) == SET) | ||||
4534 | /* A SET doesn't have a mode, so let's look at the SET_DEST to get | ||||
4535 | the mode for the factor. */ | ||||
4536 | mode = GET_MODE (SET_DEST (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); | ||||
4537 | else if (GET_MODE (x)((machine_mode) (x)->mode) != VOIDmode((void) 0, E_VOIDmode)) | ||||
4538 | mode = GET_MODE (x)((machine_mode) (x)->mode); | ||||
4539 | |||||
4540 | mode_size = estimated_poly_value (GET_MODE_SIZE (mode)); | ||||
4541 | |||||
4542 | /* A size N times larger than UNITS_PER_WORD likely needs N times as | ||||
4543 | many insns, taking N times as long. */ | ||||
4544 | factor = mode_size > UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) ? mode_size / UNITS_PER_WORD(((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4) : 1; | ||||
4545 | |||||
4546 | /* Compute the default costs of certain things. | ||||
4547 | Note that targetm.rtx_costs can override the defaults. */ | ||||
4548 | |||||
4549 | code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
4550 | switch (code) | ||||
4551 | { | ||||
4552 | case MULT: | ||||
4553 | case FMA: | ||||
4554 | case SS_MULT: | ||||
4555 | case US_MULT: | ||||
4556 | case SMUL_HIGHPART: | ||||
4557 | case UMUL_HIGHPART: | ||||
4558 | /* Multiplication has time-complexity O(N*N), where N is the | ||||
4559 | number of units (translated from digits) when using | ||||
4560 | schoolbook long multiplication. */ | ||||
4561 | total = factor * factor * COSTS_N_INSNS (5)((5) * 4); | ||||
4562 | break; | ||||
4563 | case DIV: | ||||
4564 | case UDIV: | ||||
4565 | case MOD: | ||||
4566 | case UMOD: | ||||
4567 | case SS_DIV: | ||||
4568 | case US_DIV: | ||||
4569 | /* Similarly, complexity for schoolbook long division. */ | ||||
4570 | total = factor * factor * COSTS_N_INSNS (7)((7) * 4); | ||||
4571 | break; | ||||
4572 | case USE: | ||||
4573 | /* Used in combine.cc as a marker. */ | ||||
4574 | total = 0; | ||||
4575 | break; | ||||
4576 | default: | ||||
4577 | total = factor * COSTS_N_INSNS (1)((1) * 4); | ||||
4578 | } | ||||
4579 | |||||
4580 | switch (code) | ||||
4581 | { | ||||
4582 | case REG: | ||||
4583 | return 0; | ||||
4584 | |||||
4585 | case SUBREG: | ||||
4586 | total = 0; | ||||
4587 | /* If we can't tie these modes, make this expensive. The larger | ||||
4588 | the mode, the more expensive it is. */ | ||||
4589 | if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) | ||||
4590 | return COSTS_N_INSNS (2 + factor)((2 + factor) * 4); | ||||
4591 | break; | ||||
4592 | |||||
4593 | case TRUNCATE: | ||||
4594 | if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode))) | ||||
4595 | { | ||||
4596 | total = 0; | ||||
4597 | break; | ||||
4598 | } | ||||
4599 | /* FALLTHRU */ | ||||
4600 | default: | ||||
4601 | if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed)) | ||||
4602 | return total; | ||||
4603 | break; | ||||
4604 | } | ||||
4605 | |||||
4606 | /* Sum the costs of the sub-rtx's, plus cost of this operation, | ||||
4607 | which is already in total. */ | ||||
4608 | |||||
4609 | fmt = GET_RTX_FORMAT (code)(rtx_format[(int) (code)]); | ||||
4610 | for (i = GET_RTX_LENGTH (code)(rtx_length[(int) (code)]) - 1; i >= 0; i--) | ||||
4611 | if (fmt[i] == 'e') | ||||
4612 | total += rtx_cost (XEXP (x, i)(((x)->u.fld[i]).rt_rtx), mode, code, i, speed); | ||||
4613 | else if (fmt[i] == 'E') | ||||
4614 | for (j = 0; j < XVECLEN (x, i)(((((x)->u.fld[i]).rt_rtvec))->num_elem); j++) | ||||
4615 | total += rtx_cost (XVECEXP (x, i, j)(((((x)->u.fld[i]).rt_rtvec))->elem[j]), mode, code, i, speed); | ||||
4616 | |||||
4617 | return total; | ||||
4618 | } | ||||
4619 | |||||
4620 | /* Fill in the structure C with information about both speed and size rtx | ||||
4621 | costs for X, which is operand OPNO in an expression with code OUTER. */ | ||||
4622 | |||||
4623 | void | ||||
4624 | get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno, | ||||
4625 | struct full_rtx_costs *c) | ||||
4626 | { | ||||
4627 | c->speed = rtx_cost (x, mode, outer, opno, true); | ||||
4628 | c->size = rtx_cost (x, mode, outer, opno, false); | ||||
4629 | } | ||||
4630 | |||||
4631 | |||||
4632 | /* Return cost of address expression X. | ||||
4633 | Expect that X is properly formed address reference. | ||||
4634 | |||||
4635 | SPEED parameter specify whether costs optimized for speed or size should | ||||
4636 | be returned. */ | ||||
4637 | |||||
4638 | int | ||||
4639 | address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed) | ||||
4640 | { | ||||
4641 | /* We may be asked for cost of various unusual addresses, such as operands | ||||
4642 | of push instruction. It is not worthwhile to complicate writing | ||||
4643 | of the target hook by such cases. */ | ||||
4644 | |||||
4645 | if (!memory_address_addr_space_p (mode, x, as)) | ||||
4646 | return 1000; | ||||
4647 | |||||
4648 | return targetm.address_cost (x, mode, as, speed); | ||||
4649 | } | ||||
4650 | |||||
4651 | /* If the target doesn't override, compute the cost as with arithmetic. */ | ||||
4652 | |||||
4653 | int | ||||
4654 | default_address_cost (rtx x, machine_mode, addr_space_t, bool speed) | ||||
4655 | { | ||||
4656 | return rtx_cost (x, Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))), MEM, 0, speed); | ||||
4657 | } | ||||
4658 | |||||
4659 | |||||
4660 | unsigned HOST_WIDE_INTlong | ||||
4661 | nonzero_bits (const_rtx x, machine_mode mode) | ||||
4662 | { | ||||
4663 | if (mode == VOIDmode((void) 0, E_VOIDmode)) | ||||
4664 | mode = GET_MODE (x)((machine_mode) (x)->mode); | ||||
4665 | scalar_int_mode int_mode; | ||||
4666 | if (!is_a <scalar_int_mode> (mode, &int_mode)) | ||||
4667 | return GET_MODE_MASK (mode)mode_mask_array[mode]; | ||||
4668 | return cached_nonzero_bits (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); | ||||
4669 | } | ||||
4670 | |||||
4671 | unsigned int | ||||
4672 | num_sign_bit_copies (const_rtx x, machine_mode mode) | ||||
4673 | { | ||||
4674 | if (mode == VOIDmode((void) 0, E_VOIDmode)) | ||||
4675 | mode = GET_MODE (x)((machine_mode) (x)->mode); | ||||
4676 | scalar_int_mode int_mode; | ||||
4677 | if (!is_a <scalar_int_mode> (mode, &int_mode)) | ||||
4678 | return 1; | ||||
4679 | return cached_num_sign_bit_copies (x, int_mode, NULL_RTX(rtx) 0, VOIDmode((void) 0, E_VOIDmode), 0); | ||||
4680 | } | ||||
4681 | |||||
4682 | /* Return true if nonzero_bits1 might recurse into both operands | ||||
4683 | of X. */ | ||||
4684 | |||||
4685 | static inline bool | ||||
4686 | nonzero_bits_binary_arith_p (const_rtx x) | ||||
4687 | { | ||||
4688 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) | ||||
4689 | return false; | ||||
4690 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | ||||
4691 | { | ||||
4692 | case AND: | ||||
4693 | case XOR: | ||||
4694 | case IOR: | ||||
4695 | case UMIN: | ||||
4696 | case UMAX: | ||||
4697 | case SMIN: | ||||
4698 | case SMAX: | ||||
4699 | case PLUS: | ||||
4700 | case MINUS: | ||||
4701 | case MULT: | ||||
4702 | case DIV: | ||||
4703 | case UDIV: | ||||
4704 | case MOD: | ||||
4705 | case UMOD: | ||||
4706 | return true; | ||||
4707 | default: | ||||
4708 | return false; | ||||
4709 | } | ||||
4710 | } | ||||
4711 | |||||
4712 | /* The function cached_nonzero_bits is a wrapper around nonzero_bits1. | ||||
4713 | It avoids exponential behavior in nonzero_bits1 when X has | ||||
4714 | identical subexpressions on the first or the second level. */ | ||||
4715 | |||||
4716 | static unsigned HOST_WIDE_INTlong | ||||
4717 | cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x, | ||||
4718 | machine_mode known_mode, | ||||
4719 | unsigned HOST_WIDE_INTlong known_ret) | ||||
4720 | { | ||||
4721 | if (x == known_x && mode == known_mode) | ||||
4722 | return known_ret; | ||||
4723 | |||||
4724 | /* Try to find identical subexpressions. If found call | ||||
4725 | nonzero_bits1 on X with the subexpressions as KNOWN_X and the | ||||
4726 | precomputed value for the subexpression as KNOWN_RET. */ | ||||
4727 | |||||
4728 | if (nonzero_bits_binary_arith_p (x)) | ||||
4729 | { | ||||
4730 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
4731 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | ||||
4732 | |||||
4733 | /* Check the first level. */ | ||||
4734 | if (x0 == x1) | ||||
4735 | return nonzero_bits1 (x, mode, x0, mode, | ||||
4736 | cached_nonzero_bits (x0, mode, known_x, | ||||
4737 | known_mode, known_ret)); | ||||
4738 | |||||
4739 | /* Check the second level. */ | ||||
4740 | if (nonzero_bits_binary_arith_p (x0) | ||||
4741 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) | ||||
4742 | return nonzero_bits1 (x, mode, x1, mode, | ||||
4743 | cached_nonzero_bits (x1, mode, known_x, | ||||
4744 | known_mode, known_ret)); | ||||
4745 | |||||
4746 | if (nonzero_bits_binary_arith_p (x1) | ||||
4747 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) | ||||
4748 | return nonzero_bits1 (x, mode, x0, mode, | ||||
4749 | cached_nonzero_bits (x0, mode, known_x, | ||||
4750 | known_mode, known_ret)); | ||||
4751 | } | ||||
4752 | |||||
4753 | return nonzero_bits1 (x, mode, known_x, known_mode, known_ret); | ||||
4754 | } | ||||
4755 | |||||
4756 | /* We let num_sign_bit_copies recur into nonzero_bits as that is useful. | ||||
4757 | We don't let nonzero_bits recur into num_sign_bit_copies, because that | ||||
4758 | is less useful. We can't allow both, because that results in exponential | ||||
4759 | run time recursion. There is a nullstone testcase that triggered | ||||
4760 | this. This macro avoids accidental uses of num_sign_bit_copies. */ | ||||
4761 | #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior | ||||
4762 | |||||
4763 | /* Given an expression, X, compute which bits in X can be nonzero. | ||||
4764 | We don't care about bits outside of those defined in MODE. | ||||
4765 | |||||
4766 | For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is | ||||
4767 | an arithmetic operation, we can do better. */ | ||||
4768 | |||||
4769 | static unsigned HOST_WIDE_INTlong | ||||
4770 | nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, | ||||
4771 | machine_mode known_mode, | ||||
4772 | unsigned HOST_WIDE_INTlong known_ret) | ||||
4773 | { | ||||
4774 | unsigned HOST_WIDE_INTlong nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; | ||||
4775 | unsigned HOST_WIDE_INTlong inner_nz; | ||||
4776 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
4777 | machine_mode inner_mode; | ||||
4778 | unsigned int inner_width; | ||||
4779 | scalar_int_mode xmode; | ||||
4780 | |||||
4781 | unsigned int mode_width = GET_MODE_PRECISION (mode); | ||||
4782 | |||||
4783 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) | ||||
4784 | { | ||||
4785 | if (SHORT_IMMEDIATES_SIGN_EXTEND0 | ||||
4786 | && INTVAL (x)((x)->u.hwint[0]) > 0 | ||||
4787 | && mode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | ||||
4788 | && (UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & (HOST_WIDE_INT_1U1UL << (mode_width - 1))) != 0) | ||||
4789 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) | (HOST_WIDE_INT_M1U-1UL << mode_width); | ||||
4790 | |||||
4791 | return UINTVAL (x)((unsigned long) ((x)->u.hwint[0])); | ||||
4792 | } | ||||
4793 | |||||
4794 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) | ||||
4795 | return nonzero; | ||||
4796 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); | ||||
4797 | |||||
4798 | /* If X is wider than MODE, use its mode instead. */ | ||||
4799 | if (xmode_width > mode_width) | ||||
4800 | { | ||||
4801 | mode = xmode; | ||||
4802 | nonzero = GET_MODE_MASK (mode)mode_mask_array[mode]; | ||||
4803 | mode_width = xmode_width; | ||||
4804 | } | ||||
4805 | |||||
4806 | if (mode_width > HOST_BITS_PER_WIDE_INT64) | ||||
4807 | /* Our only callers in this case look for single bit values. So | ||||
4808 | just return the mode mask. Those tests will then be false. */ | ||||
4809 | return nonzero; | ||||
4810 | |||||
4811 | /* If MODE is wider than X, but both are a single word for both the host | ||||
4812 | and target machines, we can compute this from which bits of the object | ||||
4813 | might be nonzero in its own mode, taking into account the fact that, on | ||||
4814 | CISC machines, accessing an object in a wider mode generally causes the | ||||
4815 | high-order bits to become undefined, so they are not known to be zero. | ||||
4816 | We extend this reasoning to RISC machines for operations that might not | ||||
4817 | operate on the full registers. */ | ||||
4818 | if (mode_width > xmode_width | ||||
4819 | && xmode_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | ||||
4820 | && xmode_width <= HOST_BITS_PER_WIDE_INT64 | ||||
4821 | && !(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) | ||||
4822 | { | ||||
4823 | nonzero &= cached_nonzero_bits (x, xmode, | ||||
4824 | known_x, known_mode, known_ret); | ||||
4825 | nonzero |= GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]; | ||||
4826 | return nonzero; | ||||
4827 | } | ||||
4828 | |||||
4829 | /* Please keep nonzero_bits_binary_arith_p above in sync with | ||||
4830 | the code in the switch below. */ | ||||
4831 | switch (code) | ||||
4832 | { | ||||
4833 | case REG: | ||||
4834 | #if defined(POINTERS_EXTEND_UNSIGNED1) | ||||
4835 | /* If pointers extend unsigned and this is a pointer in Pmode, say that | ||||
4836 | all the bits above ptr_mode are known to be zero. */ | ||||
4837 | /* As we do not know which address space the pointer is referring to, | ||||
4838 | we can do this only if the target does not support different pointer | ||||
4839 | or address modes depending on the address space. */ | ||||
4840 | if (target_default_pointer_address_modes_p () | ||||
4841 | && POINTERS_EXTEND_UNSIGNED1 | ||||
4842 | && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) | ||||
4843 | && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 4843, __FUNCTION__); _rtx; })->frame_related) | ||||
4844 | && !targetm.have_ptr_extend ()) | ||||
4845 | nonzero &= GET_MODE_MASK (ptr_mode)mode_mask_array[ptr_mode]; | ||||
4846 | #endif | ||||
4847 | |||||
4848 | /* Include declared information about alignment of pointers. */ | ||||
4849 | /* ??? We don't properly preserve REG_POINTER changes across | ||||
4850 | pointer-to-integer casts, so we can't trust it except for | ||||
4851 | things that we know must be pointers. See execute/960116-1.c. */ | ||||
4852 | if ((x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) | ||||
4853 | || x == frame_pointer_rtx((this_target_rtl->x_global_rtl)[GR_FRAME_POINTER]) | ||||
4854 | || x == arg_pointer_rtx((this_target_rtl->x_global_rtl)[GR_ARG_POINTER])) | ||||
4855 | && REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))])) | ||||
4856 | { | ||||
4857 | unsigned HOST_WIDE_INTlong alignment | ||||
4858 | = REGNO_POINTER_ALIGN (REGNO (x))((&x_rtl)->emit.regno_pointer_align[(rhs_regno(x))]) / BITS_PER_UNIT(8); | ||||
4859 | |||||
4860 | #ifdef PUSH_ROUNDING | ||||
4861 | /* If PUSH_ROUNDING is defined, it is possible for the | ||||
4862 | stack to be momentarily aligned only to that amount, | ||||
4863 | so we pick the least alignment. */ | ||||
4864 | if (x == stack_pointer_rtx((this_target_rtl->x_global_rtl)[GR_STACK_POINTER]) && targetm.calls.push_argument (0)) | ||||
4865 | { | ||||
4866 | poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1))ix86_push_rounding (poly_int64 (1)); | ||||
4867 | alignment = MIN (known_alignment (rounded_1), alignment)((known_alignment (rounded_1)) < (alignment) ? (known_alignment (rounded_1)) : (alignment)); | ||||
4868 | } | ||||
4869 | #endif | ||||
4870 | |||||
4871 | nonzero &= ~(alignment - 1); | ||||
4872 | } | ||||
4873 | |||||
4874 | { | ||||
4875 | unsigned HOST_WIDE_INTlong nonzero_for_hook = nonzero; | ||||
4876 | rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode, | ||||
4877 | &nonzero_for_hook); | ||||
4878 | |||||
4879 | if (new_rtx) | ||||
4880 | nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x, | ||||
4881 | known_mode, known_ret); | ||||
4882 | |||||
4883 | return nonzero_for_hook; | ||||
4884 | } | ||||
4885 | |||||
4886 | case MEM: | ||||
4887 | /* In many, if not most, RISC machines, reading a byte from memory | ||||
4888 | zeros the rest of the register. Noticing that fact saves a lot | ||||
4889 | of extra zero-extends. */ | ||||
4890 | if (load_extend_op (xmode) == ZERO_EXTEND) | ||||
4891 | nonzero &= GET_MODE_MASK (xmode)mode_mask_array[xmode]; | ||||
4892 | break; | ||||
4893 | |||||
4894 | case EQ: case NE: | ||||
4895 | case UNEQ: case LTGT: | ||||
4896 | case GT: case GTU: case UNGT: | ||||
4897 | case LT: case LTU: case UNLT: | ||||
4898 | case GE: case GEU: case UNGE: | ||||
4899 | case LE: case LEU: case UNLE: | ||||
4900 | case UNORDERED: case ORDERED: | ||||
4901 | /* If this produces an integer result, we know which bits are set. | ||||
4902 | Code here used to clear bits outside the mode of X, but that is | ||||
4903 | now done above. */ | ||||
4904 | /* Mind that MODE is the mode the caller wants to look at this | ||||
4905 | operation in, and not the actual operation mode. We can wind | ||||
4906 | up with (subreg:DI (gt:V4HI x y)), and we don't have anything | ||||
4907 | that describes the results of a vector compare. */ | ||||
4908 | if (GET_MODE_CLASS (xmode)((enum mode_class) mode_class[xmode]) == MODE_INT | ||||
4909 | && mode_width <= HOST_BITS_PER_WIDE_INT64) | ||||
4910 | nonzero = STORE_FLAG_VALUE1; | ||||
4911 | break; | ||||
4912 | |||||
4913 | case NEG: | ||||
4914 | #if 0 | ||||
4915 | /* Disabled to avoid exponential mutual recursion between nonzero_bits | ||||
4916 | and num_sign_bit_copies. */ | ||||
4917 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) | ||||
4918 | nonzero = 1; | ||||
4919 | #endif | ||||
4920 | |||||
4921 | if (xmode_width < mode_width) | ||||
4922 | nonzero |= (GET_MODE_MASK (mode)mode_mask_array[mode] & ~GET_MODE_MASK (xmode)mode_mask_array[xmode]); | ||||
4923 | break; | ||||
4924 | |||||
4925 | case ABS: | ||||
4926 | #if 0 | ||||
4927 | /* Disabled to avoid exponential mutual recursion between nonzero_bits | ||||
4928 | and num_sign_bit_copies. */ | ||||
4929 | if (num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), xmode) == xmode_width) | ||||
4930 | nonzero = 1; | ||||
4931 | #endif | ||||
4932 | break; | ||||
4933 | |||||
4934 | case TRUNCATE: | ||||
4935 | nonzero &= (cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4936 | known_x, known_mode, known_ret) | ||||
4937 | & GET_MODE_MASK (mode)mode_mask_array[mode]); | ||||
4938 | break; | ||||
4939 | |||||
4940 | case ZERO_EXTEND: | ||||
4941 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4942 | known_x, known_mode, known_ret); | ||||
4943 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) | ||||
4944 | nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; | ||||
4945 | break; | ||||
4946 | |||||
4947 | case SIGN_EXTEND: | ||||
4948 | /* If the sign bit is known clear, this is the same as ZERO_EXTEND. | ||||
4949 | Otherwise, show all the bits in the outer mode but not the inner | ||||
4950 | may be nonzero. */ | ||||
4951 | inner_nz = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4952 | known_x, known_mode, known_ret); | ||||
4953 | if (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode) != VOIDmode((void) 0, E_VOIDmode)) | ||||
4954 | { | ||||
4955 | inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]; | ||||
4956 | if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), inner_nz)) | ||||
4957 | inner_nz |= (GET_MODE_MASK (mode)mode_mask_array[mode] | ||||
4958 | & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))mode_mask_array[((machine_mode) ((((x)->u.fld[0]).rt_rtx)) ->mode)]); | ||||
4959 | } | ||||
4960 | |||||
4961 | nonzero &= inner_nz; | ||||
4962 | break; | ||||
4963 | |||||
4964 | case AND: | ||||
4965 | nonzero &= cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4966 | known_x, known_mode, known_ret) | ||||
4967 | & cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
4968 | known_x, known_mode, known_ret); | ||||
4969 | break; | ||||
4970 | |||||
4971 | case XOR: case IOR: | ||||
4972 | case UMIN: case UMAX: case SMIN: case SMAX: | ||||
4973 | { | ||||
4974 | unsigned HOST_WIDE_INTlong nonzero0 | ||||
4975 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4976 | known_x, known_mode, known_ret); | ||||
4977 | |||||
4978 | /* Don't call nonzero_bits for the second time if it cannot change | ||||
4979 | anything. */ | ||||
4980 | if ((nonzero & nonzero0) != nonzero) | ||||
4981 | nonzero &= nonzero0 | ||||
4982 | | cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
4983 | known_x, known_mode, known_ret); | ||||
4984 | } | ||||
4985 | break; | ||||
4986 | |||||
4987 | case PLUS: case MINUS: | ||||
4988 | case MULT: | ||||
4989 | case DIV: case UDIV: | ||||
4990 | case MOD: case UMOD: | ||||
4991 | /* We can apply the rules of arithmetic to compute the number of | ||||
4992 | high- and low-order zero bits of these operations. We start by | ||||
4993 | computing the width (position of the highest-order nonzero bit) | ||||
4994 | and the number of low-order zero bits for each value. */ | ||||
4995 | { | ||||
4996 | unsigned HOST_WIDE_INTlong nz0 | ||||
4997 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
4998 | known_x, known_mode, known_ret); | ||||
4999 | unsigned HOST_WIDE_INTlong nz1 | ||||
5000 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
5001 | known_x, known_mode, known_ret); | ||||
5002 | int sign_index = xmode_width - 1; | ||||
5003 | int width0 = floor_log2 (nz0) + 1; | ||||
5004 | int width1 = floor_log2 (nz1) + 1; | ||||
5005 | int low0 = ctz_or_zero (nz0); | ||||
5006 | int low1 = ctz_or_zero (nz1); | ||||
5007 | unsigned HOST_WIDE_INTlong op0_maybe_minusp | ||||
5008 | = nz0 & (HOST_WIDE_INT_1U1UL << sign_index); | ||||
5009 | unsigned HOST_WIDE_INTlong op1_maybe_minusp | ||||
5010 | = nz1 & (HOST_WIDE_INT_1U1UL << sign_index); | ||||
5011 | unsigned int result_width = mode_width; | ||||
5012 | int result_low = 0; | ||||
5013 | |||||
5014 | switch (code) | ||||
5015 | { | ||||
5016 | case PLUS: | ||||
5017 | result_width = MAX (width0, width1)((width0) > (width1) ? (width0) : (width1)) + 1; | ||||
5018 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | ||||
5019 | break; | ||||
5020 | case MINUS: | ||||
5021 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | ||||
5022 | break; | ||||
5023 | case MULT: | ||||
5024 | result_width = width0 + width1; | ||||
5025 | result_low = low0 + low1; | ||||
5026 | break; | ||||
5027 | case DIV: | ||||
5028 | if (width1 == 0) | ||||
5029 | break; | ||||
5030 | if (!op0_maybe_minusp && !op1_maybe_minusp) | ||||
5031 | result_width = width0; | ||||
5032 | break; | ||||
5033 | case UDIV: | ||||
5034 | if (width1 == 0) | ||||
5035 | break; | ||||
5036 | result_width = width0; | ||||
5037 | break; | ||||
5038 | case MOD: | ||||
5039 | if (width1 == 0) | ||||
5040 | break; | ||||
5041 | if (!op0_maybe_minusp && !op1_maybe_minusp) | ||||
5042 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); | ||||
5043 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | ||||
5044 | break; | ||||
5045 | case UMOD: | ||||
5046 | if (width1 == 0) | ||||
5047 | break; | ||||
5048 | result_width = MIN (width0, width1)((width0) < (width1) ? (width0) : (width1)); | ||||
5049 | result_low = MIN (low0, low1)((low0) < (low1) ? (low0) : (low1)); | ||||
5050 | break; | ||||
5051 | default: | ||||
5052 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5052, __FUNCTION__)); | ||||
5053 | } | ||||
5054 | |||||
5055 | /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */ | ||||
5056 | if (result_width < mode_width) | ||||
5057 | nonzero &= (HOST_WIDE_INT_1U1UL << result_width) - 1; | ||||
5058 | |||||
5059 | if (result_low > 0) | ||||
5060 | { | ||||
5061 | if (result_low < HOST_BITS_PER_WIDE_INT64) | ||||
5062 | nonzero &= ~((HOST_WIDE_INT_1U1UL << result_low) - 1); | ||||
5063 | else | ||||
5064 | nonzero = 0; | ||||
5065 | } | ||||
5066 | } | ||||
5067 | break; | ||||
5068 | |||||
5069 | case ZERO_EXTRACT: | ||||
5070 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
5071 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64) | ||||
5072 | nonzero &= (HOST_WIDE_INT_1U1UL << INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0])) - 1; | ||||
5073 | break; | ||||
5074 | |||||
5075 | case SUBREG: | ||||
5076 | /* If this is a SUBREG formed for a promoted variable that has | ||||
5077 | been zero-extended, we know that at least the high-order bits | ||||
5078 | are zero, though others might be too. */ | ||||
5079 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_UNSIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_UNSIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5079, __FUNCTION__); _rtx; })->volatil)) | ||||
5080 | nonzero = GET_MODE_MASK (xmode)mode_mask_array[xmode] | ||||
5081 | & cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), xmode, | ||||
5082 | known_x, known_mode, known_ret); | ||||
5083 | |||||
5084 | /* If the inner mode is a single word for both the host and target | ||||
5085 | machines, we can compute this from which bits of the inner | ||||
5086 | object might be nonzero. */ | ||||
5087 | inner_mode = GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode); | ||||
5088 | if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width) | ||||
5089 | && inner_width <= BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | ||||
5090 | && inner_width <= HOST_BITS_PER_WIDE_INT64) | ||||
5091 | { | ||||
5092 | nonzero &= cached_nonzero_bits (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5093 | known_x, known_mode, known_ret); | ||||
5094 | |||||
5095 | /* On a typical CISC machine, accessing an object in a wider mode | ||||
5096 | causes the high-order bits to become undefined. So they are | ||||
5097 | not known to be zero. | ||||
5098 | |||||
5099 | On a typical RISC machine, we only have to worry about the way | ||||
5100 | loads are extended. Otherwise, if we get a reload for the inner | ||||
5101 | part, it may be loaded from the stack, and then we may lose all | ||||
5102 | the zero bits that existed before the store to the stack. */ | ||||
5103 | rtx_code extend_op; | ||||
5104 | if ((!WORD_REGISTER_OPERATIONS0 | ||||
5105 | || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND | ||||
5106 | ? val_signbit_known_set_p (inner_mode, nonzero) | ||||
5107 | : extend_op != ZERO_EXTEND) | ||||
5108 | || !MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | ||||
5109 | && xmode_width > inner_width) | ||||
5110 | nonzero | ||||
5111 | |= (GET_MODE_MASK (GET_MODE (x))mode_mask_array[((machine_mode) (x)->mode)] & ~GET_MODE_MASK (inner_mode)mode_mask_array[inner_mode]); | ||||
5112 | } | ||||
5113 | break; | ||||
5114 | |||||
5115 | case ASHIFT: | ||||
5116 | case ASHIFTRT: | ||||
5117 | case LSHIFTRT: | ||||
5118 | case ROTATE: | ||||
5119 | case ROTATERT: | ||||
5120 | /* The nonzero bits are in two classes: any bits within MODE | ||||
5121 | that aren't in xmode are always significant. The rest of the | ||||
5122 | nonzero bits are those that are significant in the operand of | ||||
5123 | the shift when shifted the appropriate number of bits. This | ||||
5124 | shows that high-order bits are cleared by the right shift and | ||||
5125 | low-order bits by left shifts. */ | ||||
5126 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
5127 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 | ||||
5128 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < HOST_BITS_PER_WIDE_INT64 | ||||
5129 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < xmode_width) | ||||
5130 | { | ||||
5131 | int count = INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]); | ||||
5132 | unsigned HOST_WIDE_INTlong mode_mask = GET_MODE_MASK (xmode)mode_mask_array[xmode]; | ||||
5133 | unsigned HOST_WIDE_INTlong op_nonzero | ||||
5134 | = cached_nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5135 | known_x, known_mode, known_ret); | ||||
5136 | unsigned HOST_WIDE_INTlong inner = op_nonzero & mode_mask; | ||||
5137 | unsigned HOST_WIDE_INTlong outer = 0; | ||||
5138 | |||||
5139 | if (mode_width > xmode_width) | ||||
5140 | outer = (op_nonzero & nonzero & ~mode_mask); | ||||
5141 | |||||
5142 | switch (code) | ||||
5143 | { | ||||
5144 | case ASHIFT: | ||||
5145 | inner <<= count; | ||||
5146 | break; | ||||
5147 | |||||
5148 | case LSHIFTRT: | ||||
5149 | inner >>= count; | ||||
5150 | break; | ||||
5151 | |||||
5152 | case ASHIFTRT: | ||||
5153 | inner >>= count; | ||||
5154 | |||||
5155 | /* If the sign bit may have been nonzero before the shift, we | ||||
5156 | need to mark all the places it could have been copied to | ||||
5157 | by the shift as possibly nonzero. */ | ||||
5158 | if (inner & (HOST_WIDE_INT_1U1UL << (xmode_width - 1 - count))) | ||||
5159 | inner |= (((HOST_WIDE_INT_1U1UL << count) - 1) | ||||
5160 | << (xmode_width - count)); | ||||
5161 | break; | ||||
5162 | |||||
5163 | case ROTATE: | ||||
5164 | inner = (inner << (count % xmode_width) | ||||
5165 | | (inner >> (xmode_width - (count % xmode_width)))) | ||||
5166 | & mode_mask; | ||||
5167 | break; | ||||
5168 | |||||
5169 | case ROTATERT: | ||||
5170 | inner = (inner >> (count % xmode_width) | ||||
5171 | | (inner << (xmode_width - (count % xmode_width)))) | ||||
5172 | & mode_mask; | ||||
5173 | break; | ||||
5174 | |||||
5175 | default: | ||||
5176 | gcc_unreachable ()(fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5176, __FUNCTION__)); | ||||
5177 | } | ||||
5178 | |||||
5179 | nonzero &= (outer | inner); | ||||
5180 | } | ||||
5181 | break; | ||||
5182 | |||||
5183 | case FFS: | ||||
5184 | case POPCOUNT: | ||||
5185 | /* This is at most the number of bits in the mode. */ | ||||
5186 | nonzero = ((unsigned HOST_WIDE_INTlong) 2 << (floor_log2 (mode_width))) - 1; | ||||
5187 | break; | ||||
5188 | |||||
5189 | case CLZ: | ||||
5190 | /* If CLZ has a known value at zero, then the nonzero bits are | ||||
5191 | that value, plus the number of bits in the mode minus one. */ | ||||
5192 | if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 35)) != 0) ? 2 : 0)) | ||||
5193 | nonzero | ||||
5194 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | ||||
5195 | else | ||||
5196 | nonzero = -1; | ||||
5197 | break; | ||||
5198 | |||||
5199 | case CTZ: | ||||
5200 | /* If CTZ has a known value at zero, then the nonzero bits are | ||||
5201 | that value, plus the number of bits in the mode minus one. */ | ||||
5202 | if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero)((nonzero) = GET_MODE_BITSIZE (mode), ((global_options.x_ix86_isa_flags & (1UL << 23)) != 0) ? 2 : 0)) | ||||
5203 | nonzero | ||||
5204 | |= (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | ||||
5205 | else | ||||
5206 | nonzero = -1; | ||||
5207 | break; | ||||
5208 | |||||
5209 | case CLRSB: | ||||
5210 | /* This is at most the number of bits in the mode minus 1. */ | ||||
5211 | nonzero = (HOST_WIDE_INT_1U1UL << (floor_log2 (mode_width))) - 1; | ||||
5212 | break; | ||||
5213 | |||||
5214 | case PARITY: | ||||
5215 | nonzero = 1; | ||||
5216 | break; | ||||
5217 | |||||
5218 | case IF_THEN_ELSE: | ||||
5219 | { | ||||
5220 | unsigned HOST_WIDE_INTlong nonzero_true | ||||
5221 | = cached_nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
5222 | known_x, known_mode, known_ret); | ||||
5223 | |||||
5224 | /* Don't call nonzero_bits for the second time if it cannot change | ||||
5225 | anything. */ | ||||
5226 | if ((nonzero & nonzero_true) != nonzero) | ||||
5227 | nonzero &= nonzero_true | ||||
5228 | | cached_nonzero_bits (XEXP (x, 2)(((x)->u.fld[2]).rt_rtx), mode, | ||||
5229 | known_x, known_mode, known_ret); | ||||
5230 | } | ||||
5231 | break; | ||||
5232 | |||||
5233 | default: | ||||
5234 | break; | ||||
5235 | } | ||||
5236 | |||||
5237 | return nonzero; | ||||
5238 | } | ||||
5239 | |||||
5240 | /* See the macro definition above. */ | ||||
5241 | #undef cached_num_sign_bit_copies | ||||
5242 | |||||
5243 | |||||
5244 | /* Return true if num_sign_bit_copies1 might recurse into both operands | ||||
5245 | of X. */ | ||||
5246 | |||||
5247 | static inline bool | ||||
5248 | num_sign_bit_copies_binary_arith_p (const_rtx x) | ||||
5249 | { | ||||
5250 | if (!ARITHMETIC_P (x)(((rtx_class[(int) (((enum rtx_code) (x)->code))]) & ( ~1)) == (RTX_COMM_ARITH & (~1)))) | ||||
5251 | return false; | ||||
5252 | switch (GET_CODE (x)((enum rtx_code) (x)->code)) | ||||
5253 | { | ||||
5254 | case IOR: | ||||
5255 | case AND: | ||||
5256 | case XOR: | ||||
5257 | case SMIN: | ||||
5258 | case SMAX: | ||||
5259 | case UMIN: | ||||
5260 | case UMAX: | ||||
5261 | case PLUS: | ||||
5262 | case MINUS: | ||||
5263 | case MULT: | ||||
5264 | return true; | ||||
5265 | default: | ||||
5266 | return false; | ||||
5267 | } | ||||
5268 | } | ||||
5269 | |||||
5270 | /* The function cached_num_sign_bit_copies is a wrapper around | ||||
5271 | num_sign_bit_copies1. It avoids exponential behavior in | ||||
5272 | num_sign_bit_copies1 when X has identical subexpressions on the | ||||
5273 | first or the second level. */ | ||||
5274 | |||||
5275 | static unsigned int | ||||
5276 | cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode, | ||||
5277 | const_rtx known_x, machine_mode known_mode, | ||||
5278 | unsigned int known_ret) | ||||
5279 | { | ||||
5280 | if (x == known_x && mode == known_mode) | ||||
5281 | return known_ret; | ||||
5282 | |||||
5283 | /* Try to find identical subexpressions. If found call | ||||
5284 | num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and | ||||
5285 | the precomputed value for the subexpression as KNOWN_RET. */ | ||||
5286 | |||||
5287 | if (num_sign_bit_copies_binary_arith_p (x)) | ||||
5288 | { | ||||
5289 | rtx x0 = XEXP (x, 0)(((x)->u.fld[0]).rt_rtx); | ||||
5290 | rtx x1 = XEXP (x, 1)(((x)->u.fld[1]).rt_rtx); | ||||
5291 | |||||
5292 | /* Check the first level. */ | ||||
5293 | if (x0 == x1) | ||||
5294 | return | ||||
5295 | num_sign_bit_copies1 (x, mode, x0, mode, | ||||
5296 | cached_num_sign_bit_copies (x0, mode, known_x, | ||||
5297 | known_mode, | ||||
5298 | known_ret)); | ||||
5299 | |||||
5300 | /* Check the second level. */ | ||||
5301 | if (num_sign_bit_copies_binary_arith_p (x0) | ||||
5302 | && (x1 == XEXP (x0, 0)(((x0)->u.fld[0]).rt_rtx) || x1 == XEXP (x0, 1)(((x0)->u.fld[1]).rt_rtx))) | ||||
5303 | return | ||||
5304 | num_sign_bit_copies1 (x, mode, x1, mode, | ||||
5305 | cached_num_sign_bit_copies (x1, mode, known_x, | ||||
5306 | known_mode, | ||||
5307 | known_ret)); | ||||
5308 | |||||
5309 | if (num_sign_bit_copies_binary_arith_p (x1) | ||||
5310 | && (x0 == XEXP (x1, 0)(((x1)->u.fld[0]).rt_rtx) || x0 == XEXP (x1, 1)(((x1)->u.fld[1]).rt_rtx))) | ||||
5311 | return | ||||
5312 | num_sign_bit_copies1 (x, mode, x0, mode, | ||||
5313 | cached_num_sign_bit_copies (x0, mode, known_x, | ||||
5314 | known_mode, | ||||
5315 | known_ret)); | ||||
5316 | } | ||||
5317 | |||||
5318 | return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret); | ||||
5319 | } | ||||
5320 | |||||
5321 | /* Return the number of bits at the high-order end of X that are known to | ||||
5322 | be equal to the sign bit. X will be used in mode MODE. The returned | ||||
5323 | value will always be between 1 and the number of bits in MODE. */ | ||||
5324 | |||||
5325 | static unsigned int | ||||
5326 | num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x, | ||||
5327 | machine_mode known_mode, | ||||
5328 | unsigned int known_ret) | ||||
5329 | { | ||||
5330 | enum rtx_code code = GET_CODE (x)((enum rtx_code) (x)->code); | ||||
5331 | unsigned int bitwidth = GET_MODE_PRECISION (mode); | ||||
5332 | int num0, num1, result; | ||||
5333 | unsigned HOST_WIDE_INTlong nonzero; | ||||
5334 | |||||
5335 | if (CONST_INT_P (x)(((enum rtx_code) (x)->code) == CONST_INT)) | ||||
5336 | { | ||||
5337 | /* If the constant is negative, take its 1's complement and remask. | ||||
5338 | Then see how many zero bits we have. */ | ||||
5339 | nonzero = UINTVAL (x)((unsigned long) ((x)->u.hwint[0])) & GET_MODE_MASK (mode)mode_mask_array[mode]; | ||||
5340 | if (bitwidth <= HOST_BITS_PER_WIDE_INT64 | ||||
5341 | && (nonzero & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | ||||
5342 | nonzero = (~nonzero) & GET_MODE_MASK (mode)mode_mask_array[mode]; | ||||
5343 | |||||
5344 | return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1); | ||||
5345 | } | ||||
5346 | |||||
5347 | scalar_int_mode xmode, inner_mode; | ||||
5348 | if (!is_a <scalar_int_mode> (GET_MODE (x)((machine_mode) (x)->mode), &xmode)) | ||||
5349 | return 1; | ||||
5350 | |||||
5351 | unsigned int xmode_width = GET_MODE_PRECISION (xmode); | ||||
5352 | |||||
5353 | /* For a smaller mode, just ignore the high bits. */ | ||||
5354 | if (bitwidth < xmode_width) | ||||
5355 | { | ||||
5356 | num0 = cached_num_sign_bit_copies (x, xmode, | ||||
5357 | known_x, known_mode, known_ret); | ||||
5358 | return MAX (1, num0 - (int) (xmode_width - bitwidth))((1) > (num0 - (int) (xmode_width - bitwidth)) ? (1) : (num0 - (int) (xmode_width - bitwidth))); | ||||
5359 | } | ||||
5360 | |||||
5361 | if (bitwidth > xmode_width) | ||||
5362 | { | ||||
5363 | /* If this machine does not do all register operations on the entire | ||||
5364 | register and MODE is wider than the mode of X, we can say nothing | ||||
5365 | at all about the high-order bits. We extend this reasoning to RISC | ||||
5366 | machines for operations that might not operate on full registers. */ | ||||
5367 | if (!(WORD_REGISTER_OPERATIONS0 && word_register_operation_p (x))) | ||||
5368 | return 1; | ||||
5369 | |||||
5370 | /* Likewise on machines that do, if the mode of the object is smaller | ||||
5371 | than a word and loads of that size don't sign extend, we can say | ||||
5372 | nothing about the high order bits. */ | ||||
5373 | if (xmode_width < BITS_PER_WORD((8) * (((global_options.x_ix86_isa_flags & (1UL << 1)) != 0) ? 8 : 4)) | ||||
5374 | && load_extend_op (xmode) != SIGN_EXTEND) | ||||
5375 | return 1; | ||||
5376 | } | ||||
5377 | |||||
5378 | /* Please keep num_sign_bit_copies_binary_arith_p above in sync with | ||||
5379 | the code in the switch below. */ | ||||
5380 | switch (code) | ||||
5381 | { | ||||
5382 | case REG: | ||||
5383 | |||||
5384 | #if defined(POINTERS_EXTEND_UNSIGNED1) | ||||
5385 | /* If pointers extend signed and this is a pointer in Pmode, say that | ||||
5386 | all the bits above ptr_mode are known to be sign bit copies. */ | ||||
5387 | /* As we do not know which address space the pointer is referring to, | ||||
5388 | we can do this only if the target does not support different pointer | ||||
5389 | or address modes depending on the address space. */ | ||||
5390 | if (target_default_pointer_address_modes_p () | ||||
5391 | && ! POINTERS_EXTEND_UNSIGNED1 && xmode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) | ||||
5392 | && mode == Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode))) && REG_POINTER (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != REG) rtl_check_failed_flag ("REG_POINTER" , _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5392, __FUNCTION__); _rtx; })->frame_related) | ||||
5393 | && !targetm.have_ptr_extend ()) | ||||
5394 | return GET_MODE_PRECISION (Pmode(global_options.x_ix86_pmode == PMODE_DI ? (scalar_int_mode ( (scalar_int_mode::from_int) E_DImode)) : (scalar_int_mode ((scalar_int_mode ::from_int) E_SImode)))) - GET_MODE_PRECISION (ptr_mode) + 1; | ||||
5395 | #endif | ||||
5396 | |||||
5397 | { | ||||
5398 | unsigned int copies_for_hook = 1, copies = 1; | ||||
5399 | rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode, | ||||
5400 | &copies_for_hook); | ||||
5401 | |||||
5402 | if (new_rtx) | ||||
5403 | copies = cached_num_sign_bit_copies (new_rtx, mode, known_x, | ||||
5404 | known_mode, known_ret); | ||||
5405 | |||||
5406 | if (copies > 1 || copies_for_hook > 1) | ||||
5407 | return MAX (copies, copies_for_hook)((copies) > (copies_for_hook) ? (copies) : (copies_for_hook )); | ||||
5408 | |||||
5409 | /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */ | ||||
5410 | } | ||||
5411 | break; | ||||
5412 | |||||
5413 | case MEM: | ||||
5414 | /* Some RISC machines sign-extend all loads of smaller than a word. */ | ||||
5415 | if (load_extend_op (xmode) == SIGN_EXTEND) | ||||
5416 | return MAX (1, ((int) bitwidth - (int) xmode_width + 1))((1) > (((int) bitwidth - (int) xmode_width + 1)) ? (1) : ( ((int) bitwidth - (int) xmode_width + 1))); | ||||
5417 | break; | ||||
5418 | |||||
5419 | case SUBREG: | ||||
5420 | /* If this is a SUBREG for a promoted object that is sign-extended | ||||
5421 | and we are looking at it in a wider mode, we know that at least the | ||||
5422 | high-order bits are known to be sign bit copies. */ | ||||
5423 | |||||
5424 | if (SUBREG_PROMOTED_VAR_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->in_struct) && SUBREG_PROMOTED_SIGNED_P (x)(__extension__ ({ __typeof ((x)) const _rtx = ((x)); if (((enum rtx_code) (_rtx)->code) != SUBREG) rtl_check_failed_flag ( "SUBREG_PROMOTED_SIGNED_P", _rtx, "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/rtlanal.cc" , 5424, __FUNCTION__); _rtx; })->unchanging)) | ||||
5425 | { | ||||
5426 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5427 | known_x, known_mode, known_ret); | ||||
5428 | return MAX ((int) bitwidth - (int) xmode_width + 1, num0)(((int) bitwidth - (int) xmode_width + 1) > (num0) ? ((int ) bitwidth - (int) xmode_width + 1) : (num0)); | ||||
5429 | } | ||||
5430 | |||||
5431 | if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) | ||||
5432 | { | ||||
5433 | /* For a smaller object, just ignore the high bits. */ | ||||
5434 | if (bitwidth <= GET_MODE_PRECISION (inner_mode)) | ||||
5435 | { | ||||
5436 | num0 = cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), inner_mode, | ||||
5437 | known_x, known_mode, | ||||
5438 | known_ret); | ||||
5439 | return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) | ||||
5440 | - bitwidth))((1) > (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth )) ? (1) : (num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))); | ||||
5441 | } | ||||
5442 | |||||
5443 | /* For paradoxical SUBREGs on machines where all register operations | ||||
5444 | affect the entire register, just look inside. Note that we are | ||||
5445 | passing MODE to the recursive call, so the number of sign bit | ||||
5446 | copies will remain relative to that mode, not the inner mode. | ||||
5447 | |||||
5448 | This works only if loads sign extend. Otherwise, if we get a | ||||
5449 | reload for the inner part, it may be loaded from the stack, and | ||||
5450 | then we lose all sign bit copies that existed before the store | ||||
5451 | to the stack. */ | ||||
5452 | if (WORD_REGISTER_OPERATIONS0 | ||||
5453 | && load_extend_op (inner_mode) == SIGN_EXTEND | ||||
5454 | && paradoxical_subreg_p (x) | ||||
5455 | && MEM_P (SUBREG_REG (x))(((enum rtx_code) ((((x)->u.fld[0]).rt_rtx))->code) == MEM )) | ||||
5456 | return cached_num_sign_bit_copies (SUBREG_REG (x)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5457 | known_x, known_mode, known_ret); | ||||
5458 | } | ||||
5459 | break; | ||||
5460 | |||||
5461 | case SIGN_EXTRACT: | ||||
5462 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT )) | ||||
5463 | return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)))((1) > ((int) bitwidth - (((((x)->u.fld[1]).rt_rtx))-> u.hwint[0])) ? (1) : ((int) bitwidth - (((((x)->u.fld[1]). rt_rtx))->u.hwint[0]))); | ||||
5464 | break; | ||||
5465 | |||||
5466 | case SIGN_EXTEND: | ||||
5467 | if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode), &inner_mode)) | ||||
5468 | return (bitwidth - GET_MODE_PRECISION (inner_mode) | ||||
5469 | + cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, | ||||
5470 | known_x, known_mode, known_ret)); | ||||
5471 | break; | ||||
5472 | |||||
5473 | case TRUNCATE: | ||||
5474 | /* For a smaller object, just ignore the high bits. */ | ||||
5475 | inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0))((machine_mode) ((((x)->u.fld[0]).rt_rtx))->mode)); | ||||
5476 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), inner_mode, | ||||
5477 | known_x, known_mode, known_ret); | ||||
5478 | return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))) | ||||
5479 | - bitwidth)))((1) > ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth ))) ? (1) : ((num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth)))); | ||||
5480 | |||||
5481 | case NOT: | ||||
5482 | return cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5483 | known_x, known_mode, known_ret); | ||||
5484 | |||||
5485 | case ROTATE: case ROTATERT: | ||||
5486 | /* If we are rotating left by a number of bits less than the number | ||||
5487 | of sign bit copies, we can just subtract that amount from the | ||||
5488 | number. */ | ||||
5489 | if (CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
5490 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) >= 0 | ||||
5491 | && INTVAL (XEXP (x, 1))(((((x)->u.fld[1]).rt_rtx))->u.hwint[0]) < (int) bitwidth) | ||||
5492 | { | ||||
5493 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5494 | known_x, known_mode, known_ret); | ||||
5495 | return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))) | ||||
5496 | : (int) bitwidth - INTVAL (XEXP (x, 1))))((1) > (num0 - (code == ROTATE ? (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]) : (int) bitwidth - (((((x)->u.fld[1]).rt_rtx ))->u.hwint[0]))) ? (1) : (num0 - (code == ROTATE ? (((((x )->u.fld[1]).rt_rtx))->u.hwint[0]) : (int) bitwidth - ( ((((x)->u.fld[1]).rt_rtx))->u.hwint[0])))); | ||||
5497 | } | ||||
5498 | break; | ||||
5499 | |||||
5500 | case NEG: | ||||
5501 | /* In general, this subtracts one sign bit copy. But if the value | ||||
5502 | is known to be positive, the number of sign bit copies is the | ||||
5503 | same as that of the input. Finally, if the input has just one bit | ||||
5504 | that might be nonzero, all the bits are copies of the sign bit. */ | ||||
5505 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5506 | known_x, known_mode, known_ret); | ||||
5507 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) | ||||
5508 | return num0 > 1 ? num0 - 1 : 1; | ||||
5509 | |||||
5510 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); | ||||
5511 | if (nonzero == 1) | ||||
5512 | return bitwidth; | ||||
5513 | |||||
5514 | if (num0 > 1 | ||||
5515 | && ((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero)) | ||||
5516 | num0--; | ||||
5517 | |||||
5518 | return num0; | ||||
5519 | |||||
5520 | case IOR: case AND: case XOR: | ||||
5521 | case SMIN: case SMAX: case UMIN: case UMAX: | ||||
5522 | /* Logical operations will preserve the number of sign-bit copies. | ||||
5523 | MIN and MAX operations always return one of the operands. */ | ||||
5524 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5525 | known_x, known_mode, known_ret); | ||||
5526 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
5527 | known_x, known_mode, known_ret); | ||||
5528 | |||||
5529 | /* If num1 is clearing some of the top bits then regardless of | ||||
5530 | the other term, we are guaranteed to have at least that many | ||||
5531 | high-order zero bits. */ | ||||
5532 | if (code == AND | ||||
5533 | && num1 > 1 | ||||
5534 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 | ||||
5535 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
5536 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) | ||||
5537 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) == 0) | ||||
5538 | return num1; | ||||
5539 | |||||
5540 | /* Similarly for IOR when setting high-order bits. */ | ||||
5541 | if (code == IOR | ||||
5542 | && num1 > 1 | ||||
5543 | && bitwidth <= HOST_BITS_PER_WIDE_INT64 | ||||
5544 | && CONST_INT_P (XEXP (x, 1))(((enum rtx_code) ((((x)->u.fld[1]).rt_rtx))->code) == CONST_INT ) | ||||
5545 | && (UINTVAL (XEXP (x, 1))((unsigned long) (((((x)->u.fld[1]).rt_rtx))->u.hwint[0 ])) | ||||
5546 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | ||||
5547 | return num1; | ||||
5548 | |||||
5549 | return MIN (num0, num1)((num0) < (num1) ? (num0) : (num1)); | ||||
5550 | |||||
5551 | case PLUS: case MINUS: | ||||
5552 | /* For addition and subtraction, we can have a 1-bit carry. However, | ||||
5553 | if we are subtracting 1 from a positive number, there will not | ||||
5554 | be such a carry. Furthermore, if the positive number is known to | ||||
5555 | be 0 or 1, we know the result is either -1 or 0. */ | ||||
5556 | |||||
5557 | if (code == PLUS && XEXP (x, 1)(((x)->u.fld[1]).rt_rtx) == constm1_rtx(const_int_rtx[64 -1]) | ||||
5558 | && bitwidth <= HOST_BITS_PER_WIDE_INT64) | ||||
5559 | { | ||||
5560 | nonzero = nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode); | ||||
5561 | if (((HOST_WIDE_INT_1U1UL << (bitwidth - 1)) & nonzero) == 0) | ||||
5562 | return (nonzero == 1 || nonzero == 0 ? bitwidth | ||||
5563 | : bitwidth - floor_log2 (nonzero) - 1); | ||||
5564 | } | ||||
5565 | |||||
5566 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5567 | known_x, known_mode, known_ret); | ||||
5568 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
5569 | known_x, known_mode, known_ret); | ||||
5570 | result = MAX (1, MIN (num0, num1) - 1)((1) > (((num0) < (num1) ? (num0) : (num1)) - 1) ? (1) : (((num0) < (num1) ? (num0) : (num1)) - 1)); | ||||
5571 | |||||
5572 | return result; | ||||
5573 | |||||
5574 | case MULT: | ||||
5575 | /* The number of bits of the product is the sum of the number of | ||||
5576 | bits of both terms. However, unless one of the terms if known | ||||
5577 | to be positive, we must allow for an additional bit since negating | ||||
5578 | a negative number can remove one sign bit copy. */ | ||||
5579 | |||||
5580 | num0 = cached_num_sign_bit_copies (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode, | ||||
5581 | known_x, known_mode, known_ret); | ||||
5582 | num1 = cached_num_sign_bit_copies (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode, | ||||
5583 | known_x, known_mode, known_ret); | ||||
5584 | |||||
5585 | result = bitwidth - (bitwidth - num0) - (bitwidth - num1); | ||||
5586 | if (result > 0 | ||||
5587 | && (bitwidth > HOST_BITS_PER_WIDE_INT64 | ||||
5588 | || (((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) | ||||
5589 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | ||||
5590 | && ((nonzero_bits (XEXP (x, 1)(((x)->u.fld[1]).rt_rtx), mode) | ||||
5591 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) | ||||
5592 | != 0)))) | ||||
5593 | result--; | ||||
5594 | |||||
5595 | return MAX (1, result)((1) > (result) ? (1) : (result)); | ||||
5596 | |||||
5597 | case UDIV: | ||||
5598 | /* The result must be <= the first operand. If the first operand | ||||
5599 | has the high bit set, we know nothing about the number of sign | ||||
5600 | bit copies. */ | ||||
5601 | if (bitwidth > HOST_BITS_PER_WIDE_INT64) | ||||
5602 | return 1; | ||||
5603 | else if ((nonzero_bits (XEXP (x, 0)(((x)->u.fld[0]).rt_rtx), mode) | ||||
5604 | & (HOST_WIDE_INT_1U1UL << (bitwidth - 1))) != 0) | ||||
5605 | return 1; | ||||
5606 | else | ||||