Bug Summary

File:build/gcc/vec.h
Warning:line 815, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-suse-linux -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name c-semantics.cc -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model static -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -resource-dir /usr/lib64/clang/15.0.7 -D IN_GCC_FRONTEND -D IN_GCC_FRONTEND -D IN_GCC -D HAVE_CONFIG_H -I . -I c-family -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcpp/include -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libcody -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libdecnumber/bid -I ../libdecnumber -I /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/../libbacktrace -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13 -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/x86_64-suse-linux -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../include/c++/13/backward -internal-isystem /usr/lib64/clang/15.0.7/include -internal-isystem /usr/local/include -internal-isystem /usr/bin/../lib64/gcc/x86_64-suse-linux/13/../../../../x86_64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-narrowing -Wwrite-strings -Wno-long-long -Wno-variadic-macros -Wno-overlength-strings -fdeprecated-macro -fdebug-compilation-dir=/buildworker/marxinbox-gcc-clang-static-analyzer/objdir/gcc -ferror-limit 19 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=plist-html -analyzer-config silence-checkers=core.NullDereference -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /buildworker/marxinbox-gcc-clang-static-analyzer/objdir/clang-static-analyzer/2023-03-27-141847-20772-1/report-nVcz8E.plist -x c++ /buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc

1/* This file contains subroutine used by the C front-end to construct GENERIC.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
3 Written by Benjamin Chelf (chelf@codesourcery.com).
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "c-common.h"
25#include "tree-iterator.h"
26
27/* Create an empty statement tree rooted at T. */
28
29tree
30push_stmt_list (void)
31{
32 tree t;
33 t = alloc_stmt_list ();
34 vec_safe_push (stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list), t);
1
Passing value via 1st parameter 'v'
2
Calling 'vec_safe_push<tree_node *, va_gc>'
35 return t;
36}
37
38/* Return TRUE if, after I, there are any nondebug stmts. */
39
40static inline bool
41only_debug_stmts_after_p (tree_stmt_iterator i)
42{
43 for (tsi_next (&i); !tsi_end_p (i); tsi_next (&i))
44 if (TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) != DEBUG_BEGIN_STMT)
45 return false;
46 return true;
47}
48
49/* Finish the statement tree rooted at T. */
50
51tree
52pop_stmt_list (tree t)
53{
54 tree u = NULL_TREE(tree) nullptr;
55
56 /* Pop statement lists until we reach the target level. The extra
57 nestings will be due to outstanding cleanups. */
58 while (1)
59 {
60 u = stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->pop ();
61 if (!stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->is_empty ())
62 {
63 tree x = stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->last ();
64 STATEMENT_LIST_HAS_LABEL (x)((tree_not_check2 (((tree_check ((x), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 64, __FUNCTION__, (STATEMENT_LIST)))), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 64, __FUNCTION__, (TREE_VEC), (SSA_NAME)))->base.u.bits.
lang_flag_3)
|= STATEMENT_LIST_HAS_LABEL (u)((tree_not_check2 (((tree_check ((u), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 64, __FUNCTION__, (STATEMENT_LIST)))), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 64, __FUNCTION__, (TREE_VEC), (SSA_NAME)))->base.u.bits.
lang_flag_3)
;
65 }
66 if (t == u)
67 break;
68 }
69
70 gcc_assert (u != NULL_TREE)((void)(!(u != (tree) nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 70, __FUNCTION__), 0 : 0))
;
71
72 /* If the statement list is completely empty, just return it. This is
73 just as good small as build_empty_stmt, with the advantage that
74 statement lists are merged when they appended to one another. So
75 using the STATEMENT_LIST avoids pathological buildup of EMPTY_STMT_P
76 statements. */
77 if (TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 77, __FUNCTION__))->base.side_effects_flag)
)
78 {
79 tree_stmt_iterator i = tsi_start (t);
80
81 /* If the statement list contained exactly one statement, then
82 extract it immediately. */
83 if (tsi_one_before_end_p (i))
84 {
85 u = tsi_stmt (i);
86 tsi_delink (&i);
87 free_stmt_list (t);
88 t = u;
89 }
90 /* If the statement list contained a debug begin stmt and a
91 statement list, move the debug begin stmt into the statement
92 list and return it. */
93 else if (!tsi_end_p (i)
94 && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == DEBUG_BEGIN_STMT)
95 {
96 u = tsi_stmt (i);
97 tsi_next (&i);
98 if (tsi_one_before_end_p (i)
99 && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == STATEMENT_LIST)
100 {
101 tree l = tsi_stmt (i);
102 tsi_prev (&i);
103 tsi_delink (&i);
104 tsi_delink (&i);
105 i = tsi_start (l);
106 free_stmt_list (t);
107 t = l;
108 tsi_link_before (&i, u, TSI_SAME_STMT);
109 }
110 while (!tsi_end_p (i)
111 && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == DEBUG_BEGIN_STMT)
112 tsi_next (&i);
113 /* If there are only debug stmts in the list, without them
114 we'd have an empty stmt without side effects. If there's
115 only one nondebug stmt, we'd have extracted the stmt and
116 dropped the list, and we'd take TREE_SIDE_EFFECTS from
117 that statement. In either case, keep the list's
118 TREE_SIDE_EFFECTS in sync. */
119 if (tsi_end_p (i))
120 TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 120, __FUNCTION__))->base.side_effects_flag)
= 0;
121 else if (only_debug_stmts_after_p (i))
122 TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 122, __FUNCTION__))->base.side_effects_flag)
= TREE_SIDE_EFFECTS (tsi_stmt (i))((non_type_check ((tsi_stmt (i)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 122, __FUNCTION__))->base.side_effects_flag)
;
123 }
124 }
125
126 return t;
127}
128
129/* Build a generic statement based on the given type of node and
130 arguments. Similar to `build_nt', except that we set
131 EXPR_LOCATION to LOC. */
132/* ??? This should be obsolete with the lineno_stmt productions
133 in the grammar. */
134
135tree
136build_stmt (location_t loc, enum tree_code code, ...)
137{
138 tree ret;
139 int length, i;
140 va_list p;
141 bool side_effects;
142
143 /* This function cannot be used to construct variably-sized nodes. */
144 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp)((void)(!(tree_code_type_tmpl <0>::tree_code_type[(int)
(code)] != tcc_vl_exp) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 144, __FUNCTION__), 0 : 0))
;
145
146 va_start (p, code)__builtin_va_start(p, code);
147
148 ret = make_node (code);
149 TREE_TYPE (ret)((contains_struct_check ((ret), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 149, __FUNCTION__))->typed.type)
= void_type_nodeglobal_trees[TI_VOID_TYPE];
150 length = TREE_CODE_LENGTH (code)tree_code_length_tmpl <0>::tree_code_length[(int) (code
)]
;
151 SET_EXPR_LOCATION (ret, loc)(expr_check (((ret)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 151, __FUNCTION__))->exp.locus = (loc)
;
152
153 /* TREE_SIDE_EFFECTS will already be set for statements with
154 implicit side effects. Here we make sure it is set for other
155 expressions by checking whether the parameters have side
156 effects. */
157
158 side_effects = false;
159 for (i = 0; i < length; i++)
160 {
161 tree t = va_arg (p, tree)__builtin_va_arg(p, tree);
162 if (t && !TYPE_P (t)(tree_code_type_tmpl <0>::tree_code_type[(int) (((enum tree_code
) (t)->base.code))] == tcc_type)
)
163 side_effects |= TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 163, __FUNCTION__))->base.side_effects_flag)
;
164 TREE_OPERAND (ret, i)(*((const_cast<tree*> (tree_operand_check ((ret), (i), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 164, __FUNCTION__)))))
= t;
165 }
166
167 TREE_SIDE_EFFECTS (ret)((non_type_check ((ret), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 167, __FUNCTION__))->base.side_effects_flag)
|= side_effects;
168
169 va_end (p)__builtin_va_end(p);
170 return ret;
171}
172
173/* Build a REALPART_EXPR or IMAGPART_EXPR, according to CODE, from ARG. */
174
175tree
176build_real_imag_expr (location_t location, enum tree_code code, tree arg)
177{
178 tree ret;
179 tree arg_type = TREE_TYPE (arg)((contains_struct_check ((arg), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 179, __FUNCTION__))->typed.type)
;
180
181 gcc_assert (code == REALPART_EXPR || code == IMAGPART_EXPR)((void)(!(code == REALPART_EXPR || code == IMAGPART_EXPR) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 181, __FUNCTION__), 0 : 0))
;
182
183 if (TREE_CODE (arg_type)((enum tree_code) (arg_type)->base.code) == COMPLEX_TYPE)
184 {
185 ret = build1 (code, TREE_TYPE (TREE_TYPE (arg))((contains_struct_check ((((contains_struct_check ((arg), (TS_TYPED
), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 185, __FUNCTION__))->typed.type)), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 185, __FUNCTION__))->typed.type)
, arg);
186 SET_EXPR_LOCATION (ret, location)(expr_check (((ret)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc"
, 186, __FUNCTION__))->exp.locus = (location)
;
187 }
188 else if (INTEGRAL_TYPE_P (arg_type)(((enum tree_code) (arg_type)->base.code) == ENUMERAL_TYPE
|| ((enum tree_code) (arg_type)->base.code) == BOOLEAN_TYPE
|| ((enum tree_code) (arg_type)->base.code) == INTEGER_TYPE
)
|| SCALAR_FLOAT_TYPE_P (arg_type)(((enum tree_code) (arg_type)->base.code) == REAL_TYPE))
189 {
190 ret = (code == REALPART_EXPR
191 ? arg
192 : omit_one_operand_loc (location, arg_type,
193 integer_zero_nodeglobal_trees[TI_INTEGER_ZERO], arg));
194 }
195 else
196 {
197 error_at (location, "wrong type argument to %s",
198 code == REALPART_EXPR ? "__real" : "__imag");
199 ret = error_mark_nodeglobal_trees[TI_ERROR_MARK];
200 }
201
202 return ret;
203}

/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h

1/* Vector API for GNU compiler.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30extern void ggc_free (void *);
31extern size_t ggc_round_alloc_size (size_t requested_size);
32extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34/* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180*/
181
182/* Support function for statistics. */
183extern void dump_vec_loc_statistics (void);
184
185/* Hashtable mapping vec addresses to descriptors. */
186extern htab_t vec_mem_usage_hash;
187
188/* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191struct vec_prefix
192{
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.cc. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218};
219
220/* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224inline unsigned
225vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227{
228 if (exact
14.1
'exact' is false
14.1
'exact' is false
)
15
Taking false branch
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx
15.1
'pfx' is non-null, which participates in a condition later
15.1
'pfx' is non-null, which participates in a condition later
)
16
Taking false branch
231 return MAX (4, reserve)((4) > (reserve) ? (4) : (reserve));
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
17
Returning value, which participates in a condition later
233}
234
235template<typename, typename, typename> struct vec;
236
237/* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242struct vl_embed { };
243struct vl_ptr { };
244
245
246/* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253/* Allocator type for heap vectors. */
254struct va_heap
255{
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266};
267
268
269/* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274template<typename T>
275inline void
276va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278{
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc)((void)(!(alloc) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 282, __FUNCTION__), 0 : 0))
;
283
284 if (GATHER_STATISTICS0 && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS0)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295}
296
297
298#if GCC_VERSION(4 * 1000 + 2) >= 4007
299#pragma GCC diagnostic push
300#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
301#endif
302
303/* Free the heap space allocated for vector V. */
304
305template<typename T>
306void
307va_heap::release (vec<T, va_heap, vl_embed> *&v)
308{
309 size_t elt_size = sizeof (T);
310 if (v == NULLnullptr)
311 return;
312
313 if (GATHER_STATISTICS0)
314 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
315 v->allocated (), true);
316 ::free (v);
317 v = NULLnullptr;
318}
319
320#if GCC_VERSION(4 * 1000 + 2) >= 4007
321#pragma GCC diagnostic pop
322#endif
323
324/* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
326
327struct va_gc
328{
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v);
341};
342
343
344/* Free GC memory used by V and reset V to NULL. */
345
346template<typename T, typename A>
347inline void
348va_gc::release (vec<T, A, vl_embed> *&v)
349{
350 if (v)
351 ::ggc_free (v);
352 v = NULLnullptr;
353}
354
355
356/* Allocator for GC memory. Ensure there are at least RESERVE free
357 slots in V. If EXACT is true, grow exactly, else grow
358 exponentially. As a special case, if the vector had not been
359 allocated and RESERVE is 0, no vector will be created. */
360
361template<typename T, typename A>
362void
363va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
364 MEM_STAT_DECL)
365{
366 unsigned alloc
367 = vec_prefix::calculate_allocation (v
12.1
'v' is non-null
12.1
'v' is non-null
? &v->m_vecpfx : 0, reserve, exact)
;
13
'?' condition is true
14
Calling 'vec_prefix::calculate_allocation'
18
Returning from 'vec_prefix::calculate_allocation'
368 if (!alloc)
19
Assuming 'alloc' is 0, which participates in a condition later
20
Taking true branch
369 {
370 ::ggc_free (v);
371 v = NULLnullptr;
21
Null pointer value stored to field 'x_cur_stmt_list'
372 return;
373 }
374
375 /* Calculate the amount of space we want. */
376 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
377
378 /* Ask the allocator how much space it will really give us. */
379 size = ::ggc_round_alloc_size (size);
380
381 /* Adjust the number of slots accordingly. */
382 size_t vec_offset = sizeof (vec_prefix);
383 size_t elt_size = sizeof (T);
384 alloc = (size - vec_offset) / elt_size;
385
386 /* And finally, recalculate the amount of space we ask for. */
387 size = vec_offset + alloc * elt_size;
388
389 unsigned nelem = v ? v->length () : 0;
390 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
391 PASS_MEM_STAT));
392 v->embedded_init (alloc, nelem);
393}
394
395
396/* Allocator type for GC vectors. This is for vectors of types
397 atomics w.r.t. collection, so allocation and deallocation is
398 completely inherited from va_gc. */
399struct va_gc_atomic : va_gc
400{
401};
402
403
404/* Generic vector template. Default values for A and L indicate the
405 most commonly used strategies.
406
407 FIXME - Ideally, they would all be vl_ptr to encourage using regular
408 instances for vectors, but the existing GTY machinery is limited
409 in that it can only deal with GC objects that are pointers
410 themselves.
411
412 This means that vector operations that need to deal with
413 potentially NULL pointers, must be provided as free
414 functions (see the vec_safe_* functions above). */
415template<typename T,
416 typename A = va_heap,
417 typename L = typename A::default_layout>
418struct GTY((user)) vec
419{
420};
421
422/* Allow C++11 range-based 'for' to work directly on vec<T>*. */
423template<typename T, typename A, typename L>
424T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
425template<typename T, typename A, typename L>
426T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
427template<typename T, typename A, typename L>
428const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
429template<typename T, typename A, typename L>
430const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }
431
432/* Generic vec<> debug helpers.
433
434 These need to be instantiated for each vec<TYPE> used throughout
435 the compiler like this:
436
437 DEFINE_DEBUG_VEC (TYPE)
438
439 The reason we have a debug_helper() is because GDB can't
440 disambiguate a plain call to debug(some_vec), and it must be called
441 like debug<TYPE>(some_vec). */
442
443template<typename T>
444void
445debug_helper (vec<T> &ref)
446{
447 unsigned i;
448 for (i = 0; i < ref.length (); ++i)
449 {
450 fprintf (stderrstderr, "[%d] = ", i);
451 debug_slim (ref[i]);
452 fputc ('\n', stderrstderr);
453 }
454}
455
456/* We need a separate va_gc variant here because default template
457 argument for functions cannot be used in c++-98. Once this
458 restriction is removed, those variant should be folded with the
459 above debug_helper. */
460
461template<typename T>
462void
463debug_helper (vec<T, va_gc> &ref)
464{
465 unsigned i;
466 for (i = 0; i < ref.length (); ++i)
467 {
468 fprintf (stderrstderr, "[%d] = ", i);
469 debug_slim (ref[i]);
470 fputc ('\n', stderrstderr);
471 }
472}
473
474/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
475 functions for a type T. */
476
477#define DEFINE_DEBUG_VEC(T)template void debug_helper (vec<T> &); template void
debug_helper (vec<T, va_gc> &); __attribute__ ((__used__
)) void debug (vec<T> &ref) { debug_helper <T>
(ref); } __attribute__ ((__used__)) void debug (vec<T>
*ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"
); } __attribute__ ((__used__)) void debug (vec<T, va_gc>
&ref) { debug_helper <T> (ref); } __attribute__ ((
__used__)) void debug (vec<T, va_gc> *ptr) { if (ptr) debug
(*ptr); else fprintf (stderr, "<nil>\n"); }
\
478 template void debug_helper (vec<T> &); \
479 template void debug_helper (vec<T, va_gc> &); \
480 /* Define the vec<T> debug functions. */ \
481 DEBUG_FUNCTION__attribute__ ((__used__)) void \
482 debug (vec<T> &ref) \
483 { \
484 debug_helper <T> (ref); \
485 } \
486 DEBUG_FUNCTION__attribute__ ((__used__)) void \
487 debug (vec<T> *ptr) \
488 { \
489 if (ptr) \
490 debug (*ptr); \
491 else \
492 fprintf (stderrstderr, "<nil>\n"); \
493 } \
494 /* Define the vec<T, va_gc> debug functions. */ \
495 DEBUG_FUNCTION__attribute__ ((__used__)) void \
496 debug (vec<T, va_gc> &ref) \
497 { \
498 debug_helper <T> (ref); \
499 } \
500 DEBUG_FUNCTION__attribute__ ((__used__)) void \
501 debug (vec<T, va_gc> *ptr) \
502 { \
503 if (ptr) \
504 debug (*ptr); \
505 else \
506 fprintf (stderrstderr, "<nil>\n"); \
507 }
508
509/* Default-construct N elements in DST. */
510
511template <typename T>
512inline void
513vec_default_construct (T *dst, unsigned n)
514{
515#ifdef BROKEN_VALUE_INITIALIZATION
516 /* Versions of GCC before 4.4 sometimes leave certain objects
517 uninitialized when value initialized, though if the type has
518 user defined default ctor, that ctor is invoked. As a workaround
519 perform clearing first and then the value initialization, which
520 fixes the case when value initialization doesn't initialize due to
521 the bugs and should initialize to all zeros, but still allows
522 vectors for types with user defined default ctor that initializes
523 some or all elements to non-zero. If T has no user defined
524 default ctor and some non-static data members have user defined
525 default ctors that initialize to non-zero the workaround will
526 still not work properly; in that case we just need to provide
527 user defined default ctor. */
528 memset (dst, '\0', sizeof (T) * n);
529#endif
530 for ( ; n; ++dst, --n)
531 ::new (static_cast<void*>(dst)) T ();
532}
533
534/* Copy-construct N elements in DST from *SRC. */
535
536template <typename T>
537inline void
538vec_copy_construct (T *dst, const T *src, unsigned n)
539{
540 for ( ; n; ++dst, ++src, --n)
541 ::new (static_cast<void*>(dst)) T (*src);
542}
543
544/* Type to provide zero-initialized values for vec<T, A, L>. This is
545 used to provide nil initializers for vec instances. Since vec must
546 be a trivially copyable type that can be copied by memcpy and zeroed
547 out by memset, it must have defaulted default and copy ctor and copy
548 assignment. To initialize a vec either use value initialization
549 (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't
550 needed for file-scope and function-local static vectors, which are
551 zero-initialized by default. */
552struct vnull { };
553constexpr vnull vNULL{ };
554
555
556/* Embeddable vector. These vectors are suitable to be embedded
557 in other data structures so that they can be pre-allocated in a
558 contiguous memory block.
559
560 Embeddable vectors are implemented using the trailing array idiom,
561 thus they are not resizeable without changing the address of the
562 vector object itself. This means you cannot have variables or
563 fields of embeddable vector type -- always use a pointer to a
564 vector. The one exception is the final field of a structure, which
565 could be a vector type.
566
567 You will have to use the embedded_size & embedded_init calls to
568 create such objects, and they will not be resizeable (so the 'safe'
569 allocation variants are not available).
570
571 Properties:
572
573 - The whole vector and control data are allocated in a single
574 contiguous block. It uses the trailing-vector idiom, so
575 allocation must reserve enough space for all the elements
576 in the vector plus its control data.
577 - The vector cannot be re-allocated.
578 - The vector cannot grow nor shrink.
579 - No indirections needed for access/manipulation.
580 - It requires 2 words of storage (prior to vector allocation). */
581
582template<typename T, typename A>
583struct GTY((user)) vec<T, A, vl_embed>
584{
585public:
586 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
587 unsigned length (void) const { return m_vecpfx.m_num; }
588 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
589 T *address (void) { return reinterpret_cast <T *> (this + 1); }
590 const T *address (void) const
591 { return reinterpret_cast <const T *> (this + 1); }
592 T *begin () { return address (); }
593 const T *begin () const { return address (); }
594 T *end () { return address () + length (); }
595 const T *end () const { return address () + length (); }
596 const T &operator[] (unsigned) const;
597 T &operator[] (unsigned);
598 T &last (void);
599 bool space (unsigned) const;
600 bool iterate (unsigned, T *) const;
601 bool iterate (unsigned, T **) const;
602 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
603 void splice (const vec &);
604 void splice (const vec *src);
605 T *quick_push (const T &);
606 T &pop (void);
607 void truncate (unsigned);
608 void quick_insert (unsigned, const T &);
609 void ordered_remove (unsigned);
610 void unordered_remove (unsigned);
611 void block_remove (unsigned, unsigned);
612 void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *));
613 void sort (int (*) (const void *, const void *, void *), void *);
614 void stablesort (int (*) (const void *, const void *, void *), void *);
615 T *bsearch (const void *key, int (*compar) (const void *, const void *));
616 T *bsearch (const void *key,
617 int (*compar)(const void *, const void *, void *), void *);
618 unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const;
619 bool contains (const T &search) const;
620 static size_t embedded_size (unsigned);
621 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
622 void quick_grow (unsigned len);
623 void quick_grow_cleared (unsigned len);
624
625 /* vec class can access our internal data and functions. */
626 template <typename, typename, typename> friend struct vec;
627
628 /* The allocator types also need access to our internals. */
629 friend struct va_gc;
630 friend struct va_gc_atomic;
631 friend struct va_heap;
632
633 /* FIXME - This field should be private, but we need to cater to
634 compilers that have stricter notions of PODness for types. */
635 /* Align m_vecpfx to simplify address (). */
636 alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx;
637};
638
639
640/* Convenience wrapper functions to use when dealing with pointers to
641 embedded vectors. Some functionality for these vectors must be
642 provided via free functions for these reasons:
643
644 1- The pointer may be NULL (e.g., before initial allocation).
645
646 2- When the vector needs to grow, it must be reallocated, so
647 the pointer will change its value.
648
649 Because of limitations with the current GC machinery, all vectors
650 in GC memory *must* be pointers. */
651
652
653/* If V contains no room for NELEMS elements, return false. Otherwise,
654 return true. */
655template<typename T, typename A>
656inline bool
657vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
658{
659 return v ? v->space (nelems) : nelems == 0;
6
Assuming 'v' is non-null, which participates in a condition later
7
'?' condition is true
8
Returning value, which participates in a condition later
660}
661
662
663/* If V is NULL, return 0. Otherwise, return V->length(). */
664template<typename T, typename A>
665inline unsigned
666vec_safe_length (const vec<T, A, vl_embed> *v)
667{
668 return v ? v->length () : 0;
669}
670
671
672/* If V is NULL, return NULL. Otherwise, return V->address(). */
673template<typename T, typename A>
674inline T *
675vec_safe_address (vec<T, A, vl_embed> *v)
676{
677 return v ? v->address () : NULLnullptr;
678}
679
680
681/* If V is NULL, return true. Otherwise, return V->is_empty(). */
682template<typename T, typename A>
683inline bool
684vec_safe_is_empty (vec<T, A, vl_embed> *v)
685{
686 return v ? v->is_empty () : true;
687}
688
689/* If V does not have space for NELEMS elements, call
690 V->reserve(NELEMS, EXACT). */
691template<typename T, typename A>
692inline bool
693vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
694 CXX_MEM_STAT_INFO)
695{
696 bool extend = nelems
3.1
'nelems' is 1
3.1
'nelems' is 1
? !vec_safe_space (v, nelems) : false;
4
'?' condition is true
5
Calling 'vec_safe_space<tree_node *, va_gc>'
9
Returning from 'vec_safe_space<tree_node *, va_gc>'
10
Assuming the condition is true
697 if (extend
10.1
'extend' is true
10.1
'extend' is true
)
11
Taking true branch
698 A::reserve (v, nelems, exact PASS_MEM_STAT);
12
Calling 'va_gc::reserve'
22
Returning from 'va_gc::reserve'
699 return extend;
700}
701
702template<typename T, typename A>
703inline bool
704vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
705 CXX_MEM_STAT_INFO)
706{
707 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
708}
709
710
711/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
712 is 0, V is initialized to NULL. */
713
714template<typename T, typename A>
715inline void
716vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
717{
718 v = NULLnullptr;
719 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
720}
721
722
723/* Free the GC memory allocated by vector V and set it to NULL. */
724
725template<typename T, typename A>
726inline void
727vec_free (vec<T, A, vl_embed> *&v)
728{
729 A::release (v);
730}
731
732
733/* Grow V to length LEN. Allocate it, if necessary. */
734template<typename T, typename A>
735inline void
736vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
737 bool exact = false CXX_MEM_STAT_INFO)
738{
739 unsigned oldlen = vec_safe_length (v);
740 gcc_checking_assert (len >= oldlen)((void)(!(len >= oldlen) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 740, __FUNCTION__), 0 : 0))
;
741 vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
742 v->quick_grow (len);
743}
744
745
746/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
747template<typename T, typename A>
748inline void
749vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
750 bool exact = false CXX_MEM_STAT_INFO)
751{
752 unsigned oldlen = vec_safe_length (v);
753 vec_safe_grow (v, len, exact PASS_MEM_STAT);
754 vec_default_construct (v->address () + oldlen, len - oldlen);
755}
756
757
758/* Assume V is not NULL. */
759
760template<typename T>
761inline void
762vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
763 unsigned len, bool exact = false CXX_MEM_STAT_INFO)
764{
765 v->safe_grow_cleared (len, exact PASS_MEM_STAT);
766}
767
768/* If V does not have space for NELEMS elements, call
769 V->reserve(NELEMS, EXACT). */
770
771template<typename T>
772inline bool
773vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
774 CXX_MEM_STAT_INFO)
775{
776 return v->reserve (nelems, exact);
777}
778
779
780/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
781template<typename T, typename A>
782inline bool
783vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
784{
785 if (v)
786 return v->iterate (ix, ptr);
787 else
788 {
789 *ptr = 0;
790 return false;
791 }
792}
793
794template<typename T, typename A>
795inline bool
796vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
797{
798 if (v)
799 return v->iterate (ix, ptr);
800 else
801 {
802 *ptr = 0;
803 return false;
804 }
805}
806
807
808/* If V has no room for one more element, reallocate it. Then call
809 V->quick_push(OBJ). */
810template<typename T, typename A>
811inline T *
812vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
813{
814 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
3
Calling 'vec_safe_reserve<tree_node *, va_gc>'
23
Returning from 'vec_safe_reserve<tree_node *, va_gc>'
815 return v->quick_push (obj);
24
Called C++ object pointer is null
816}
817
818
819/* if V has no room for one more element, reallocate it. Then call
820 V->quick_insert(IX, OBJ). */
821template<typename T, typename A>
822inline void
823vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
824 CXX_MEM_STAT_INFO)
825{
826 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
827 v->quick_insert (ix, obj);
828}
829
830
831/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
832template<typename T, typename A>
833inline void
834vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
835{
836 if (v)
837 v->truncate (size);
838}
839
840
841/* If SRC is not NULL, return a pointer to a copy of it. */
842template<typename T, typename A>
843inline vec<T, A, vl_embed> *
844vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
845{
846 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULLnullptr;
847}
848
849/* Copy the elements from SRC to the end of DST as if by memcpy.
850 Reallocate DST, if necessary. */
851template<typename T, typename A>
852inline void
853vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
854 CXX_MEM_STAT_INFO)
855{
856 unsigned src_len = vec_safe_length (src);
857 if (src_len)
858 {
859 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
860 PASS_MEM_STAT);
861 dst->splice (*src);
862 }
863}
864
865/* Return true if SEARCH is an element of V. Note that this is O(N) in the
866 size of the vector and so should be used with care. */
867
868template<typename T, typename A>
869inline bool
870vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
871{
872 return v ? v->contains (search) : false;
873}
874
875/* Index into vector. Return the IX'th element. IX must be in the
876 domain of the vector. */
877
878template<typename T, typename A>
879inline const T &
880vec<T, A, vl_embed>::operator[] (unsigned ix) const
881{
882 gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 882, __FUNCTION__), 0 : 0))
;
883 return address ()[ix];
884}
885
886template<typename T, typename A>
887inline T &
888vec<T, A, vl_embed>::operator[] (unsigned ix)
889{
890 gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 890, __FUNCTION__), 0 : 0))
;
891 return address ()[ix];
892}
893
894
895/* Get the final element of the vector, which must not be empty. */
896
897template<typename T, typename A>
898inline T &
899vec<T, A, vl_embed>::last (void)
900{
901 gcc_checking_assert (m_vecpfx.m_num > 0)((void)(!(m_vecpfx.m_num > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 901, __FUNCTION__), 0 : 0))
;
902 return (*this)[m_vecpfx.m_num - 1];
903}
904
905
906/* If this vector has space for NELEMS additional entries, return
907 true. You usually only need to use this if you are doing your
908 own vector reallocation, for instance on an embedded vector. This
909 returns true in exactly the same circumstances that vec::reserve
910 will. */
911
912template<typename T, typename A>
913inline bool
914vec<T, A, vl_embed>::space (unsigned nelems) const
915{
916 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
917}
918
919
920/* Return iteration condition and update *PTR to (a copy of) the IX'th
921 element of this vector. Use this to iterate over the elements of a
922 vector as follows,
923
924 for (ix = 0; v->iterate (ix, &val); ix++)
925 continue; */
926
927template<typename T, typename A>
928inline bool
929vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
930{
931 if (ix < m_vecpfx.m_num)
932 {
933 *ptr = address ()[ix];
934 return true;
935 }
936 else
937 {
938 *ptr = 0;
939 return false;
940 }
941}
942
943
944/* Return iteration condition and update *PTR to point to the
945 IX'th element of this vector. Use this to iterate over the
946 elements of a vector as follows,
947
948 for (ix = 0; v->iterate (ix, &ptr); ix++)
949 continue;
950
951 This variant is for vectors of objects. */
952
953template<typename T, typename A>
954inline bool
955vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
956{
957 if (ix < m_vecpfx.m_num)
958 {
959 *ptr = CONST_CAST (T *, &address ()[ix])(const_cast<T *> ((&address ()[ix])));
960 return true;
961 }
962 else
963 {
964 *ptr = 0;
965 return false;
966 }
967}
968
969
970/* Return a pointer to a copy of this vector. */
971
972template<typename T, typename A>
973inline vec<T, A, vl_embed> *
974vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECLvoid) const
975{
976 vec<T, A, vl_embed> *new_vec = NULLnullptr;
977 unsigned len = length ();
978 if (len)
979 {
980 vec_alloc (new_vec, len PASS_MEM_STAT);
981 new_vec->embedded_init (len, len);
982 vec_copy_construct (new_vec->address (), address (), len);
983 }
984 return new_vec;
985}
986
987
988/* Copy the elements from SRC to the end of this vector as if by memcpy.
989 The vector must have sufficient headroom available. */
990
991template<typename T, typename A>
992inline void
993vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
994{
995 unsigned len = src.length ();
996 if (len)
997 {
998 gcc_checking_assert (space (len))((void)(!(space (len)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 998, __FUNCTION__), 0 : 0))
;
999 vec_copy_construct (end (), src.address (), len);
1000 m_vecpfx.m_num += len;
1001 }
1002}
1003
1004template<typename T, typename A>
1005inline void
1006vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
1007{
1008 if (src)
1009 splice (*src);
1010}
1011
1012
1013/* Push OBJ (a new element) onto the end of the vector. There must be
1014 sufficient space in the vector. Return a pointer to the slot
1015 where OBJ was inserted. */
1016
1017template<typename T, typename A>
1018inline T *
1019vec<T, A, vl_embed>::quick_push (const T &obj)
1020{
1021 gcc_checking_assert (space (1))((void)(!(space (1)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1021, __FUNCTION__), 0 : 0))
;
1022 T *slot = &address ()[m_vecpfx.m_num++];
1023 *slot = obj;
1024 return slot;
1025}
1026
1027
1028/* Pop and return the last element off the end of the vector. */
1029
1030template<typename T, typename A>
1031inline T &
1032vec<T, A, vl_embed>::pop (void)
1033{
1034 gcc_checking_assert (length () > 0)((void)(!(length () > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1034, __FUNCTION__), 0 : 0))
;
1035 return address ()[--m_vecpfx.m_num];
1036}
1037
1038
1039/* Set the length of the vector to SIZE. The new length must be less
1040 than or equal to the current length. This is an O(1) operation. */
1041
1042template<typename T, typename A>
1043inline void
1044vec<T, A, vl_embed>::truncate (unsigned size)
1045{
1046 gcc_checking_assert (length () >= size)((void)(!(length () >= size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1046, __FUNCTION__), 0 : 0))
;
1047 m_vecpfx.m_num = size;
1048}
1049
1050
1051/* Insert an element, OBJ, at the IXth position of this vector. There
1052 must be sufficient space. */
1053
1054template<typename T, typename A>
1055inline void
1056vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1057{
1058 gcc_checking_assert (length () < allocated ())((void)(!(length () < allocated ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1058, __FUNCTION__), 0 : 0))
;
1059 gcc_checking_assert (ix <= length ())((void)(!(ix <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1059, __FUNCTION__), 0 : 0))
;
1060 T *slot = &address ()[ix];
1061 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1062 *slot = obj;
1063}
1064
1065
1066/* Remove an element from the IXth position of this vector. Ordering of
1067 remaining elements is preserved. This is an O(N) operation due to
1068 memmove. */
1069
1070template<typename T, typename A>
1071inline void
1072vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1073{
1074 gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1074, __FUNCTION__), 0 : 0))
;
1075 T *slot = &address ()[ix];
1076 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1077}
1078
1079
1080/* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1081 remaining elements is preserved. This is an O(N) operation. */
1082
1083#define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \{ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (start); read_index < (end); ++read_index) { elem_ptr =
&(vec)[read_index]; bool remove_p = (cond); if (remove_p
) continue; if (read_index != write_index) (vec)[write_index]
= (vec)[read_index]; write_index++; } if (read_index - write_index
> 0) (vec).block_remove (write_index, read_index - write_index
); }
1084 elem_ptr, start, end, cond){ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (start); read_index < (end); ++read_index) { elem_ptr =
&(vec)[read_index]; bool remove_p = (cond); if (remove_p
) continue; if (read_index != write_index) (vec)[write_index]
= (vec)[read_index]; write_index++; } if (read_index - write_index
> 0) (vec).block_remove (write_index, read_index - write_index
); }
\
1085 { \
1086 gcc_assert ((end) <= (vec).length ())((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1086, __FUNCTION__), 0 : 0))
; \
1087 for (read_index = write_index = (start); read_index < (end); \
1088 ++read_index) \
1089 { \
1090 elem_ptr = &(vec)[read_index]; \
1091 bool remove_p = (cond); \
1092 if (remove_p) \
1093 continue; \
1094 \
1095 if (read_index != write_index) \
1096 (vec)[write_index] = (vec)[read_index]; \
1097 \
1098 write_index++; \
1099 } \
1100 \
1101 if (read_index - write_index > 0) \
1102 (vec).block_remove (write_index, read_index - write_index); \
1103 }
1104
1105
1106/* Remove elements from VEC for which COND holds. Ordering of remaining
1107 elements is preserved. This is an O(N) operation. */
1108
1109#define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1110 cond){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
\
1111 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1112 elem_ptr, 0, (vec).length (), (cond)){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort
("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index
= (0); read_index < ((vec).length ()); ++read_index) { elem_ptr
= &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p
) continue; if (read_index != write_index) ((vec))[write_index
] = ((vec))[read_index]; write_index++; } if (read_index - write_index
> 0) ((vec)).block_remove (write_index, read_index - write_index
); }
1113
1114/* Remove an element from the IXth position of this vector. Ordering of
1115 remaining elements is destroyed. This is an O(1) operation. */
1116
1117template<typename T, typename A>
1118inline void
1119vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1120{
1121 gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1121, __FUNCTION__), 0 : 0))
;
1122 T *p = address ();
1123 p[ix] = p[--m_vecpfx.m_num];
1124}
1125
1126
1127/* Remove LEN elements starting at the IXth. Ordering is retained.
1128 This is an O(N) operation due to memmove. */
1129
1130template<typename T, typename A>
1131inline void
1132vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1133{
1134 gcc_checking_assert (ix + len <= length ())((void)(!(ix + len <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1134, __FUNCTION__), 0 : 0))
;
1135 T *slot = &address ()[ix];
1136 m_vecpfx.m_num -= len;
1137 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1138}
1139
1140
1141/* Sort the contents of this vector with qsort. CMP is the comparison
1142 function to pass to qsort. */
1143
1144template<typename T, typename A>
1145inline void
1146vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *))
1147{
1148 if (length () > 1)
1149 gcc_qsort (address (), length (), sizeof (T), cmp);
1150}
1151
1152/* Sort the contents of this vector with qsort. CMP is the comparison
1153 function to pass to qsort. */
1154
1155template<typename T, typename A>
1156inline void
1157vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1158 void *data)
1159{
1160 if (length () > 1)
1161 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1162}
1163
1164/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
1165 comparison function to pass to qsort. */
1166
1167template<typename T, typename A>
1168inline void
1169vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *,
1170 void *), void *data)
1171{
1172 if (length () > 1)
1173 gcc_stablesort_r (address (), length (), sizeof (T), cmp, data);
1174}
1175
1176/* Search the contents of the sorted vector with a binary search.
1177 CMP is the comparison function to pass to bsearch. */
1178
1179template<typename T, typename A>
1180inline T *
1181vec<T, A, vl_embed>::bsearch (const void *key,
1182 int (*compar) (const void *, const void *))
1183{
1184 const void *base = this->address ();
1185 size_t nmemb = this->length ();
1186 size_t size = sizeof (T);
1187 /* The following is a copy of glibc stdlib-bsearch.h. */
1188 size_t l, u, idx;
1189 const void *p;
1190 int comparison;
1191
1192 l = 0;
1193 u = nmemb;
1194 while (l < u)
1195 {
1196 idx = (l + u) / 2;
1197 p = (const void *) (((const char *) base) + (idx * size));
1198 comparison = (*compar) (key, p);
1199 if (comparison < 0)
1200 u = idx;
1201 else if (comparison > 0)
1202 l = idx + 1;
1203 else
1204 return (T *)const_cast<void *>(p);
1205 }
1206
1207 return NULLnullptr;
1208}
1209
1210/* Search the contents of the sorted vector with a binary search.
1211 CMP is the comparison function to pass to bsearch. */
1212
1213template<typename T, typename A>
1214inline T *
1215vec<T, A, vl_embed>::bsearch (const void *key,
1216 int (*compar) (const void *, const void *,
1217 void *), void *data)
1218{
1219 const void *base = this->address ();
1220 size_t nmemb = this->length ();
1221 size_t size = sizeof (T);
1222 /* The following is a copy of glibc stdlib-bsearch.h. */
1223 size_t l, u, idx;
1224 const void *p;
1225 int comparison;
1226
1227 l = 0;
1228 u = nmemb;
1229 while (l < u)
1230 {
1231 idx = (l + u) / 2;
1232 p = (const void *) (((const char *) base) + (idx * size));
1233 comparison = (*compar) (key, p, data);
1234 if (comparison < 0)
1235 u = idx;
1236 else if (comparison > 0)
1237 l = idx + 1;
1238 else
1239 return (T *)const_cast<void *>(p);
1240 }
1241
1242 return NULLnullptr;
1243}
1244
1245/* Return true if SEARCH is an element of V. Note that this is O(N) in the
1246 size of the vector and so should be used with care. */
1247
1248template<typename T, typename A>
1249inline bool
1250vec<T, A, vl_embed>::contains (const T &search) const
1251{
1252 unsigned int len = length ();
1253 const T *p = address ();
1254 for (unsigned int i = 0; i < len; i++)
1255 {
1256 const T *slot = &p[i];
1257 if (*slot == search)
1258 return true;
1259 }
1260
1261 return false;
1262}
1263
1264/* Find and return the first position in which OBJ could be inserted
1265 without changing the ordering of this vector. LESSTHAN is a
1266 function that returns true if the first argument is strictly less
1267 than the second. */
1268
1269template<typename T, typename A>
1270unsigned
1271vec<T, A, vl_embed>::lower_bound (const T &obj,
1272 bool (*lessthan)(const T &, const T &))
1273 const
1274{
1275 unsigned int len = length ();
1276 unsigned int half, middle;
1277 unsigned int first = 0;
1278 while (len > 0)
1279 {
1280 half = len / 2;
1281 middle = first;
1282 middle += half;
1283 const T &middle_elem = address ()[middle];
1284 if (lessthan (middle_elem, obj))
1285 {
1286 first = middle;
1287 ++first;
1288 len = len - half - 1;
1289 }
1290 else
1291 len = half;
1292 }
1293 return first;
1294}
1295
1296
1297/* Return the number of bytes needed to embed an instance of an
1298 embeddable vec inside another data structure.
1299
1300 Use these methods to determine the required size and initialization
1301 of a vector V of type T embedded within another structure (as the
1302 final member):
1303
1304 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1305 void v->embedded_init (unsigned alloc, unsigned num);
1306
1307 These allow the caller to perform the memory allocation. */
1308
1309template<typename T, typename A>
1310inline size_t
1311vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1312{
1313 struct alignas (T) U { char data[sizeof (T)]; };
1314 typedef vec<U, A, vl_embed> vec_embedded;
1315 typedef typename std::conditional<std::is_standard_layout<T>::value,
1316 vec, vec_embedded>::type vec_stdlayout;
1317 static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
1318 static_assert (alignof (vec_stdlayout) == alignof (vec), "");
1319 return sizeof (vec_stdlayout) + alloc * sizeof (T);
1320}
1321
1322
1323/* Initialize the vector to contain room for ALLOC elements and
1324 NUM active elements. */
1325
1326template<typename T, typename A>
1327inline void
1328vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1329{
1330 m_vecpfx.m_alloc = alloc;
1331 m_vecpfx.m_using_auto_storage = aut;
1332 m_vecpfx.m_num = num;
1333}
1334
1335
1336/* Grow the vector to a specific length. LEN must be as long or longer than
1337 the current length. The new elements are uninitialized. */
1338
1339template<typename T, typename A>
1340inline void
1341vec<T, A, vl_embed>::quick_grow (unsigned len)
1342{
1343 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc)((void)(!(length () <= len && len <= m_vecpfx.m_alloc
) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1343, __FUNCTION__), 0 : 0))
;
1344 m_vecpfx.m_num = len;
1345}
1346
1347
1348/* Grow the vector to a specific length. LEN must be as long or longer than
1349 the current length. The new elements are initialized to zero. */
1350
1351template<typename T, typename A>
1352inline void
1353vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1354{
1355 unsigned oldlen = length ();
1356 size_t growby = len - oldlen;
1357 quick_grow (len);
1358 if (growby != 0)
1359 vec_default_construct (address () + oldlen, growby);
1360}
1361
1362/* Garbage collection support for vec<T, A, vl_embed>. */
1363
1364template<typename T>
1365void
1366gt_ggc_mx (vec<T, va_gc> *v)
1367{
1368 extern void gt_ggc_mx (T &);
1369 for (unsigned i = 0; i < v->length (); i++)
1370 gt_ggc_mx ((*v)[i]);
1371}
1372
1373template<typename T>
1374void
1375gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED__attribute__ ((__unused__)))
1376{
1377 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1378 be traversed. */
1379}
1380
1381
1382/* PCH support for vec<T, A, vl_embed>. */
1383
1384template<typename T, typename A>
1385void
1386gt_pch_nx (vec<T, A, vl_embed> *v)
1387{
1388 extern void gt_pch_nx (T &);
1389 for (unsigned i = 0; i < v->length (); i++)
1390 gt_pch_nx ((*v)[i]);
1391}
1392
1393template<typename T, typename A>
1394void
1395gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1396{
1397 for (unsigned i = 0; i < v->length (); i++)
1398 op (&((*v)[i]), NULLnullptr, cookie);
1399}
1400
1401template<typename T, typename A>
1402void
1403gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1404{
1405 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1406 for (unsigned i = 0; i < v->length (); i++)
1407 gt_pch_nx (&((*v)[i]), op, cookie);
1408}
1409
1410
1411/* Space efficient vector. These vectors can grow dynamically and are
1412 allocated together with their control data. They are suited to be
1413 included in data structures. Prior to initial allocation, they
1414 only take a single word of storage.
1415
1416 These vectors are implemented as a pointer to an embeddable vector.
1417 The semantics allow for this pointer to be NULL to represent empty
1418 vectors. This way, empty vectors occupy minimal space in the
1419 structure containing them.
1420
1421 Properties:
1422
1423 - The whole vector and control data are allocated in a single
1424 contiguous block.
1425 - The whole vector may be re-allocated.
1426 - Vector data may grow and shrink.
1427 - Access and manipulation requires a pointer test and
1428 indirection.
1429 - It requires 1 word of storage (prior to vector allocation).
1430
1431
1432 Limitations:
1433
1434 These vectors must be PODs because they are stored in unions.
1435 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1436 As long as we use C++03, we cannot have constructors nor
1437 destructors in classes that are stored in unions. */
1438
1439template<typename T, size_t N = 0>
1440class auto_vec;
1441
1442template<typename T>
1443struct vec<T, va_heap, vl_ptr>
1444{
1445public:
1446 /* Default ctors to ensure triviality. Use value-initialization
1447 (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized
1448 instance. */
1449 vec () = default;
1450 vec (const vec &) = default;
1451 /* Initialization from the generic vNULL. */
1452 vec (vnull): m_vec () { }
1453 /* Same as default ctor: vec storage must be released manually. */
1454 ~vec () = default;
1455
1456 /* Defaulted same as copy ctor. */
1457 vec& operator= (const vec &) = default;
1458
1459 /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec()
1460 instead. */
1461 template <size_t N>
1462 vec (auto_vec<T, N> &) = delete;
1463
1464 template <size_t N>
1465 void operator= (auto_vec<T, N> &) = delete;
1466
1467 /* Memory allocation and deallocation for the embedded vector.
1468 Needed because we cannot have proper ctors/dtors defined. */
1469 void create (unsigned nelems CXX_MEM_STAT_INFO);
1470 void release (void);
1471
1472 /* Vector operations. */
1473 bool exists (void) const
1474 { return m_vec != NULLnullptr; }
1475
1476 bool is_empty (void) const
1477 { return m_vec ? m_vec->is_empty () : true; }
1478
1479 unsigned allocated (void) const
1480 { return m_vec ? m_vec->allocated () : 0; }
1481
1482 unsigned length (void) const
1483 { return m_vec ? m_vec->length () : 0; }
1484
1485 T *address (void)
1486 { return m_vec ? m_vec->address () : NULLnullptr; }
1487
1488 const T *address (void) const
1489 { return m_vec ? m_vec->address () : NULLnullptr; }
1490
1491 T *begin () { return address (); }
1492 const T *begin () const { return address (); }
1493 T *end () { return begin () + length (); }
1494 const T *end () const { return begin () + length (); }
1495 const T &operator[] (unsigned ix) const
1496 { return (*m_vec)[ix]; }
1497
1498 bool operator!=(const vec &other) const
1499 { return !(*this == other); }
1500
1501 bool operator==(const vec &other) const
1502 { return address () == other.address (); }
1503
1504 T &operator[] (unsigned ix)
1505 { return (*m_vec)[ix]; }
1506
1507 T &last (void)
1508 { return m_vec->last (); }
1509
1510 bool space (int nelems) const
1511 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1512
1513 bool iterate (unsigned ix, T *p) const;
1514 bool iterate (unsigned ix, T **p) const;
1515 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1516 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1517 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1518 void splice (const vec &);
1519 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1520 T *quick_push (const T &);
1521 T *safe_push (const T &CXX_MEM_STAT_INFO);
1522 T &pop (void);
1523 void truncate (unsigned);
1524 void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
1525 void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
1526 void quick_grow (unsigned);
1527 void quick_grow_cleared (unsigned);
1528 void quick_insert (unsigned, const T &);
1529 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1530 void ordered_remove (unsigned);
1531 void unordered_remove (unsigned);
1532 void block_remove (unsigned, unsigned);
1533 void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *));
1534 void sort (int (*) (const void *, const void *, void *), void *);
1535 void stablesort (int (*) (const void *, const void *, void *), void *);
1536 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1537 T *bsearch (const void *key,
1538 int (*compar)(const void *, const void *, void *), void *);
1539 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1540 bool contains (const T &search) const;
1541 void reverse (void);
1542
1543 bool using_auto_storage () const;
1544
1545 /* FIXME - This field should be private, but we need to cater to
1546 compilers that have stricter notions of PODness for types. */
1547 vec<T, va_heap, vl_embed> *m_vec;
1548};
1549
1550
1551/* auto_vec is a subclass of vec that automatically manages creating and
1552 releasing the internal vector. If N is non zero then it has N elements of
1553 internal storage. The default is no internal storage, and you probably only
1554 want to ask for internal storage for vectors on the stack because if the
1555 size of the vector is larger than the internal storage that space is wasted.
1556 */
1557template<typename T, size_t N /* = 0 */>
1558class auto_vec : public vec<T, va_heap>
1559{
1560public:
1561 auto_vec ()
1562 {
1563 m_auto.embedded_init (N, 0, 1);
1564 /* ??? Instead of initializing m_vec from &m_auto directly use an
1565 expression that avoids refering to a specific member of 'this'
1566 to derail the -Wstringop-overflow diagnostic code, avoiding
1567 the impression that data accesses are supposed to be to the
1568 m_auto member storage. */
1569 size_t off = (char *) &m_auto - (char *) this;
1570 this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
1571 }
1572
1573 auto_vec (size_t s CXX_MEM_STAT_INFO)
1574 {
1575 if (s > N)
1576 {
1577 this->create (s PASS_MEM_STAT);
1578 return;
1579 }
1580
1581 m_auto.embedded_init (N, 0, 1);
1582 /* ??? See above. */
1583 size_t off = (char *) &m_auto - (char *) this;
1584 this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
1585 }
1586
1587 ~auto_vec ()
1588 {
1589 this->release ();
1590 }
1591
1592 /* Explicitly convert to the base class. There is no conversion
1593 from a const auto_vec because a copy of the returned vec can
1594 be used to modify *THIS.
1595 This is a legacy function not to be used in new code. */
1596 vec<T, va_heap> to_vec_legacy () {
1597 return *static_cast<vec<T, va_heap> *>(this);
1598 }
1599
1600private:
1601 vec<T, va_heap, vl_embed> m_auto;
1602 unsigned char m_data[sizeof (T) * N];
1603};
1604
1605/* auto_vec is a sub class of vec whose storage is released when it is
1606 destroyed. */
1607template<typename T>
1608class auto_vec<T, 0> : public vec<T, va_heap>
1609{
1610public:
1611 auto_vec () { this->m_vec = NULLnullptr; }
1612 auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
1613 ~auto_vec () { this->release (); }
1614
1615 auto_vec (vec<T, va_heap>&& r)
1616 {
1617 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1617, __FUNCTION__), 0 : 0))
;
1618 this->m_vec = r.m_vec;
1619 r.m_vec = NULLnullptr;
1620 }
1621
1622 auto_vec (auto_vec<T> &&r)
1623 {
1624 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1624, __FUNCTION__), 0 : 0))
;
1625 this->m_vec = r.m_vec;
1626 r.m_vec = NULLnullptr;
1627 }
1628
1629 auto_vec& operator= (vec<T, va_heap>&& r)
1630 {
1631 if (this == &r)
1632 return *this;
1633
1634 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1634, __FUNCTION__), 0 : 0))
;
1635 this->release ();
1636 this->m_vec = r.m_vec;
1637 r.m_vec = NULLnullptr;
1638 return *this;
1639 }
1640
1641 auto_vec& operator= (auto_vec<T> &&r)
1642 {
1643 if (this == &r)
1644 return *this;
1645
1646 gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 1646, __FUNCTION__), 0 : 0))
;
1647 this->release ();
1648 this->m_vec = r.m_vec;
1649 r.m_vec = NULLnullptr;
1650 return *this;
1651 }
1652
1653 /* Explicitly convert to the base class. There is no conversion
1654 from a const auto_vec because a copy of the returned vec can
1655 be used to modify *THIS.
1656 This is a legacy function not to be used in new code. */
1657 vec<T, va_heap> to_vec_legacy () {
1658 return *static_cast<vec<T, va_heap> *>(this);
1659 }
1660
1661 // You probably don't want to copy a vector, so these are deleted to prevent
1662 // unintentional use. If you really need a copy of the vectors contents you
1663 // can use copy ().
1664 auto_vec(const auto_vec &) = delete;
1665 auto_vec &operator= (const auto_vec &) = delete;
1666};
1667
1668
1669/* Allocate heap memory for pointer V and create the internal vector
1670 with space for NELEMS elements. If NELEMS is 0, the internal
1671 vector is initialized to empty. */
1672
1673template<typename T>
1674inline void
1675vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1676{
1677 v = new vec<T>;
1678 v->create (nelems PASS_MEM_STAT);
1679}
1680
1681
1682/* A subclass of auto_vec <char *> that frees all of its elements on
1683 deletion. */
1684
1685class auto_string_vec : public auto_vec <char *>
1686{
1687 public:
1688 ~auto_string_vec ();
1689};
1690
1691/* A subclass of auto_vec <T *> that deletes all of its elements on
1692 destruction.
1693
1694 This is a crude way for a vec to "own" the objects it points to
1695 and clean up automatically.
1696
1697 For example, no attempt is made to delete elements when an item
1698 within the vec is overwritten.
1699
1700 We can't rely on gnu::unique_ptr within a container,
1701 since we can't rely on move semantics in C++98. */
1702
1703template <typename T>
1704class auto_delete_vec : public auto_vec <T *>
1705{
1706 public:
1707 auto_delete_vec () {}
1708 auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
1709
1710 ~auto_delete_vec ();
1711
1712private:
1713 DISABLE_COPY_AND_ASSIGN(auto_delete_vec)auto_delete_vec (const auto_delete_vec&) = delete; void operator
= (const auto_delete_vec &) = delete
;
1714};
1715
1716/* Conditionally allocate heap memory for VEC and its internal vector. */
1717
1718template<typename T>
1719inline void
1720vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1721{
1722 if (!vec)
1723 vec_alloc (vec, nelems PASS_MEM_STAT);
1724}
1725
1726
1727/* Free the heap memory allocated by vector V and set it to NULL. */
1728
1729template<typename T>
1730inline void
1731vec_free (vec<T> *&v)
1732{
1733 if (v == NULLnullptr)
1734 return;
1735
1736 v->release ();
1737 delete v;
1738 v = NULLnullptr;
1739}
1740
1741
1742/* Return iteration condition and update PTR to point to the IX'th
1743 element of this vector. Use this to iterate over the elements of a
1744 vector as follows,
1745
1746 for (ix = 0; v.iterate (ix, &ptr); ix++)
1747 continue; */
1748
1749template<typename T>
1750inline bool
1751vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1752{
1753 if (m_vec)
1754 return m_vec->iterate (ix, ptr);
1755 else
1756 {
1757 *ptr = 0;
1758 return false;
1759 }
1760}
1761
1762
1763/* Return iteration condition and update *PTR to point to the
1764 IX'th element of this vector. Use this to iterate over the
1765 elements of a vector as follows,
1766
1767 for (ix = 0; v->iterate (ix, &ptr); ix++)
1768 continue;
1769
1770 This variant is for vectors of objects. */
1771
1772template<typename T>
1773inline bool
1774vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1775{
1776 if (m_vec)
1777 return m_vec->iterate (ix, ptr);
1778 else
1779 {
1780 *ptr = 0;
1781 return false;
1782 }
1783}
1784
1785
1786/* Convenience macro for forward iteration. */
1787#define FOR_EACH_VEC_ELT(V, I, P)for (I = 0; (V).iterate ((I), &(P)); ++(I)) \
1788 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1789
1790#define FOR_EACH_VEC_SAFE_ELT(V, I, P)for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) \
1791 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1792
1793/* Likewise, but start from FROM rather than 0. */
1794#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) \
1795 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1796
1797/* Convenience macro for reverse iteration. */
1798#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)for (I = (V).length () - 1; (V).iterate ((I), &(P)); (I)--
)
\
1799 for (I = (V).length () - 1; \
1800 (V).iterate ((I), &(P)); \
1801 (I)--)
1802
1803#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)for (I = vec_safe_length (V) - 1; vec_safe_iterate ((V), (I),
&(P)); (I)--)
\
1804 for (I = vec_safe_length (V) - 1; \
1805 vec_safe_iterate ((V), (I), &(P)); \
1806 (I)--)
1807
1808/* auto_string_vec's dtor, freeing all contained strings, automatically
1809 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1810
1811inline
1812auto_string_vec::~auto_string_vec ()
1813{
1814 int i;
1815 char *str;
1816 FOR_EACH_VEC_ELT (*this, i, str)for (i = 0; (*this).iterate ((i), &(str)); ++(i))
1817 free (str);
1818}
1819
1820/* auto_delete_vec's dtor, deleting all contained items, automatically
1821 chaining up to ~auto_vec <T*>, which frees the internal buffer. */
1822
1823template <typename T>
1824inline
1825auto_delete_vec<T>::~auto_delete_vec ()
1826{
1827 int i;
1828 T *item;
1829 FOR_EACH_VEC_ELT (*this, i, item)for (i = 0; (*this).iterate ((i), &(item)); ++(i))
1830 delete item;
1831}
1832
1833
1834/* Return a copy of this vector. */
1835
1836template<typename T>
1837inline vec<T, va_heap, vl_ptr>
1838vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECLvoid) const
1839{
1840 vec<T, va_heap, vl_ptr> new_vec{ };
1841 if (length ())
1842 new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
1843 return new_vec;
1844}
1845
1846
1847/* Ensure that the vector has at least RESERVE slots available (if
1848 EXACT is false), or exactly RESERVE slots available (if EXACT is
1849 true).
1850
1851 This may create additional headroom if EXACT is false.
1852
1853 Note that this can cause the embedded vector to be reallocated.
1854 Returns true iff reallocation actually occurred. */
1855
1856template<typename T>
1857inline bool
1858vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1859{
1860 if (space (nelems))
1861 return false;
1862
1863 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1864 this is necessary because it doesn't have enough information to know the
1865 embedded vector is in auto storage, and so should not be freed. */
1866 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1867 unsigned int oldsize = 0;
1868 bool handle_auto_vec = m_vec && using_auto_storage ();
1869 if (handle_auto_vec)
1870 {
1871 m_vec = NULLnullptr;
1872 oldsize = oldvec->length ();
1873 nelems += oldsize;
1874 }
1875
1876 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1877 if (handle_auto_vec)
1878 {
1879 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1880 m_vec->m_vecpfx.m_num = oldsize;
1881 }
1882
1883 return true;
1884}
1885
1886
1887/* Ensure that this vector has exactly NELEMS slots available. This
1888 will not create additional headroom. Note this can cause the
1889 embedded vector to be reallocated. Returns true iff reallocation
1890 actually occurred. */
1891
1892template<typename T>
1893inline bool
1894vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1895{
1896 return reserve (nelems, true PASS_MEM_STAT);
1897}
1898
1899
1900/* Create the internal vector and reserve NELEMS for it. This is
1901 exactly like vec::reserve, but the internal vector is
1902 unconditionally allocated from scratch. The old one, if it
1903 existed, is lost. */
1904
1905template<typename T>
1906inline void
1907vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1908{
1909 m_vec = NULLnullptr;
1910 if (nelems > 0)
1911 reserve_exact (nelems PASS_MEM_STAT);
1912}
1913
1914
1915/* Free the memory occupied by the embedded vector. */
1916
1917template<typename T>
1918inline void
1919vec<T, va_heap, vl_ptr>::release (void)
1920{
1921 if (!m_vec)
1922 return;
1923
1924 if (using_auto_storage ())
1925 {
1926 m_vec->m_vecpfx.m_num = 0;
1927 return;
1928 }
1929
1930 va_heap::release (m_vec);
1931}
1932
1933/* Copy the elements from SRC to the end of this vector as if by memcpy.
1934 SRC and this vector must be allocated with the same memory
1935 allocation mechanism. This vector is assumed to have sufficient
1936 headroom available. */
1937
1938template<typename T>
1939inline void
1940vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1941{
1942 if (src.length ())
1943 m_vec->splice (*(src.m_vec));
1944}
1945
1946
1947/* Copy the elements in SRC to the end of this vector as if by memcpy.
1948 SRC and this vector must be allocated with the same mechanism.
1949 If there is not enough headroom in this vector, it will be reallocated
1950 as needed. */
1951
1952template<typename T>
1953inline void
1954vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1955 MEM_STAT_DECL)
1956{
1957 if (src.length ())
1958 {
1959 reserve_exact (src.length ());
1960 splice (src);
1961 }
1962}
1963
1964
1965/* Push OBJ (a new element) onto the end of the vector. There must be
1966 sufficient space in the vector. Return a pointer to the slot
1967 where OBJ was inserted. */
1968
1969template<typename T>
1970inline T *
1971vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1972{
1973 return m_vec->quick_push (obj);
1974}
1975
1976
1977/* Push a new element OBJ onto the end of this vector. Reallocates
1978 the embedded vector, if needed. Return a pointer to the slot where
1979 OBJ was inserted. */
1980
1981template<typename T>
1982inline T *
1983vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1984{
1985 reserve (1, false PASS_MEM_STAT);
1986 return quick_push (obj);
1987}
1988
1989
1990/* Pop and return the last element off the end of the vector. */
1991
1992template<typename T>
1993inline T &
1994vec<T, va_heap, vl_ptr>::pop (void)
1995{
1996 return m_vec->pop ();
1997}
1998
1999
2000/* Set the length of the vector to LEN. The new length must be less
2001 than or equal to the current length. This is an O(1) operation. */
2002
2003template<typename T>
2004inline void
2005vec<T, va_heap, vl_ptr>::truncate (unsigned size)
2006{
2007 if (m_vec)
2008 m_vec->truncate (size);
2009 else
2010 gcc_checking_assert (size == 0)((void)(!(size == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2010, __FUNCTION__), 0 : 0))
;
2011}
2012
2013
2014/* Grow the vector to a specific length. LEN must be as long or
2015 longer than the current length. The new elements are
2016 uninitialized. Reallocate the internal vector, if needed. */
2017
2018template<typename T>
2019inline void
2020vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
2021{
2022 unsigned oldlen = length ();
2023 gcc_checking_assert (oldlen <= len)((void)(!(oldlen <= len) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2023, __FUNCTION__), 0 : 0))
;
2024 reserve (len - oldlen, exact PASS_MEM_STAT);
2025 if (m_vec)
2026 m_vec->quick_grow (len);
2027 else
2028 gcc_checking_assert (len == 0)((void)(!(len == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2028, __FUNCTION__), 0 : 0))
;
2029}
2030
2031
2032/* Grow the embedded vector to a specific length. LEN must be as
2033 long or longer than the current length. The new elements are
2034 initialized to zero. Reallocate the internal vector, if needed. */
2035
2036template<typename T>
2037inline void
2038vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
2039 MEM_STAT_DECL)
2040{
2041 unsigned oldlen = length ();
2042 size_t growby = len - oldlen;
2043 safe_grow (len, exact PASS_MEM_STAT);
2044 if (growby != 0)
2045 vec_default_construct (address () + oldlen, growby);
2046}
2047
2048
2049/* Same as vec::safe_grow but without reallocation of the internal vector.
2050 If the vector cannot be extended, a runtime assertion will be triggered. */
2051
2052template<typename T>
2053inline void
2054vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
2055{
2056 gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2056, __FUNCTION__), 0 : 0))
;
2057 m_vec->quick_grow (len);
2058}
2059
2060
2061/* Same as vec::quick_grow_cleared but without reallocation of the
2062 internal vector. If the vector cannot be extended, a runtime
2063 assertion will be triggered. */
2064
2065template<typename T>
2066inline void
2067vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
2068{
2069 gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2069, __FUNCTION__), 0 : 0))
;
2070 m_vec->quick_grow_cleared (len);
2071}
2072
2073
2074/* Insert an element, OBJ, at the IXth position of this vector. There
2075 must be sufficient space. */
2076
2077template<typename T>
2078inline void
2079vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
2080{
2081 m_vec->quick_insert (ix, obj);
2082}
2083
2084
2085/* Insert an element, OBJ, at the IXth position of the vector.
2086 Reallocate the embedded vector, if necessary. */
2087
2088template<typename T>
2089inline void
2090vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
2091{
2092 reserve (1, false PASS_MEM_STAT);
2093 quick_insert (ix, obj);
2094}
2095
2096
2097/* Remove an element from the IXth position of this vector. Ordering of
2098 remaining elements is preserved. This is an O(N) operation due to
2099 a memmove. */
2100
2101template<typename T>
2102inline void
2103vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
2104{
2105 m_vec->ordered_remove (ix);
2106}
2107
2108
2109/* Remove an element from the IXth position of this vector. Ordering
2110 of remaining elements is destroyed. This is an O(1) operation. */
2111
2112template<typename T>
2113inline void
2114vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
2115{
2116 m_vec->unordered_remove (ix);
2117}
2118
2119
2120/* Remove LEN elements starting at the IXth. Ordering is retained.
2121 This is an O(N) operation due to memmove. */
2122
2123template<typename T>
2124inline void
2125vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
2126{
2127 m_vec->block_remove (ix, len);
2128}
2129
2130
2131/* Sort the contents of this vector with qsort. CMP is the comparison
2132 function to pass to qsort. */
2133
2134template<typename T>
2135inline void
2136vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *))
2137{
2138 if (m_vec)
2139 m_vec->qsort (cmp)qsort (cmp);
2140}
2141
2142/* Sort the contents of this vector with qsort. CMP is the comparison
2143 function to pass to qsort. */
2144
2145template<typename T>
2146inline void
2147vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
2148 void *), void *data)
2149{
2150 if (m_vec)
2151 m_vec->sort (cmp, data);
2152}
2153
2154/* Sort the contents of this vector with gcc_stablesort_r. CMP is the
2155 comparison function to pass to qsort. */
2156
2157template<typename T>
2158inline void
2159vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *,
2160 void *), void *data)
2161{
2162 if (m_vec)
2163 m_vec->stablesort (cmp, data);
2164}
2165
2166/* Search the contents of the sorted vector with a binary search.
2167 CMP is the comparison function to pass to bsearch. */
2168
2169template<typename T>
2170inline T *
2171vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2172 int (*cmp) (const void *, const void *))
2173{
2174 if (m_vec)
2175 return m_vec->bsearch (key, cmp);
2176 return NULLnullptr;
2177}
2178
2179/* Search the contents of the sorted vector with a binary search.
2180 CMP is the comparison function to pass to bsearch. */
2181
2182template<typename T>
2183inline T *
2184vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2185 int (*cmp) (const void *, const void *,
2186 void *), void *data)
2187{
2188 if (m_vec)
2189 return m_vec->bsearch (key, cmp, data);
2190 return NULLnullptr;
2191}
2192
2193
2194/* Find and return the first position in which OBJ could be inserted
2195 without changing the ordering of this vector. LESSTHAN is a
2196 function that returns true if the first argument is strictly less
2197 than the second. */
2198
2199template<typename T>
2200inline unsigned
2201vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2202 bool (*lessthan)(const T &, const T &))
2203 const
2204{
2205 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2206}
2207
2208/* Return true if SEARCH is an element of V. Note that this is O(N) in the
2209 size of the vector and so should be used with care. */
2210
2211template<typename T>
2212inline bool
2213vec<T, va_heap, vl_ptr>::contains (const T &search) const
2214{
2215 return m_vec ? m_vec->contains (search) : false;
2216}
2217
2218/* Reverse content of the vector. */
2219
2220template<typename T>
2221inline void
2222vec<T, va_heap, vl_ptr>::reverse (void)
2223{
2224 unsigned l = length ();
2225 T *ptr = address ();
2226
2227 for (unsigned i = 0; i < l / 2; i++)
2228 std::swap (ptr[i], ptr[l - i - 1]);
2229}
2230
2231template<typename T>
2232inline bool
2233vec<T, va_heap, vl_ptr>::using_auto_storage () const
2234{
2235 return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false;
2236}
2237
2238/* Release VEC and call release of all element vectors. */
2239
2240template<typename T>
2241inline void
2242release_vec_vec (vec<vec<T> > &vec)
2243{
2244 for (unsigned i = 0; i < vec.length (); i++)
2245 vec[i].release ();
2246
2247 vec.release ();
2248}
2249
2250// Provide a subset of the std::span functionality. (We can't use std::span
2251// itself because it's a C++20 feature.)
2252//
2253// In addition, provide an invalid value that is distinct from all valid
2254// sequences (including the empty sequence). This can be used to return
2255// failure without having to use std::optional.
2256//
2257// There is no operator bool because it would be ambiguous whether it is
2258// testing for a valid value or an empty sequence.
2259template<typename T>
2260class array_slice
2261{
2262 template<typename OtherT> friend class array_slice;
2263
2264public:
2265 using value_type = T;
2266 using iterator = T *;
2267 using const_iterator = const T *;
2268
2269 array_slice () : m_base (nullptr), m_size (0) {}
2270
2271 template<typename OtherT>
2272 array_slice (array_slice<OtherT> other)
2273 : m_base (other.m_base), m_size (other.m_size) {}
2274
2275 array_slice (iterator base, unsigned int size)
2276 : m_base (base), m_size (size) {}
2277
2278 template<size_t N>
2279 array_slice (T (&array)[N]) : m_base (array), m_size (N) {}
2280
2281 template<typename OtherT>
2282 array_slice (const vec<OtherT> &v)
2283 : m_base (v.address ()), m_size (v.length ()) {}
2284
2285 template<typename OtherT>
2286 array_slice (vec<OtherT> &v)
2287 : m_base (v.address ()), m_size (v.length ()) {}
2288
2289 template<typename OtherT>
2290 array_slice (const vec<OtherT, va_gc> *v)
2291 : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
2292
2293 template<typename OtherT>
2294 array_slice (vec<OtherT, va_gc> *v)
2295 : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}
2296
2297 iterator begin () { return m_base; }
2298 iterator end () { return m_base + m_size; }
2299
2300 const_iterator begin () const { return m_base; }
2301 const_iterator end () const { return m_base + m_size; }
2302
2303 value_type &front ();
2304 value_type &back ();
2305 value_type &operator[] (unsigned int i);
2306
2307 const value_type &front () const;
2308 const value_type &back () const;
2309 const value_type &operator[] (unsigned int i) const;
2310
2311 size_t size () const { return m_size; }
2312 size_t size_bytes () const { return m_size * sizeof (T); }
2313 bool empty () const { return m_size == 0; }
2314
2315 // An invalid array_slice that represents a failed operation. This is
2316 // distinct from an empty slice, which is a valid result in some contexts.
2317 static array_slice invalid () { return { nullptr, ~0U }; }
2318
2319 // True if the array is valid, false if it is an array like INVALID.
2320 bool is_valid () const { return m_base || m_size == 0; }
2321
2322private:
2323 iterator m_base;
2324 unsigned int m_size;
2325};
2326
2327template<typename T>
2328inline typename array_slice<T>::value_type &
2329array_slice<T>::front ()
2330{
2331 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2331, __FUNCTION__), 0 : 0))
;
2332 return m_base[0];
2333}
2334
2335template<typename T>
2336inline const typename array_slice<T>::value_type &
2337array_slice<T>::front () const
2338{
2339 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2339, __FUNCTION__), 0 : 0))
;
2340 return m_base[0];
2341}
2342
2343template<typename T>
2344inline typename array_slice<T>::value_type &
2345array_slice<T>::back ()
2346{
2347 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2347, __FUNCTION__), 0 : 0))
;
2348 return m_base[m_size - 1];
2349}
2350
2351template<typename T>
2352inline const typename array_slice<T>::value_type &
2353array_slice<T>::back () const
2354{
2355 gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2355, __FUNCTION__), 0 : 0))
;
2356 return m_base[m_size - 1];
2357}
2358
2359template<typename T>
2360inline typename array_slice<T>::value_type &
2361array_slice<T>::operator[] (unsigned int i)
2362{
2363 gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2363, __FUNCTION__), 0 : 0))
;
2364 return m_base[i];
2365}
2366
2367template<typename T>
2368inline const typename array_slice<T>::value_type &
2369array_slice<T>::operator[] (unsigned int i) const
2370{
2371 gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h"
, 2371, __FUNCTION__), 0 : 0))
;
2372 return m_base[i];
2373}
2374
2375template<typename T>
2376array_slice<T>
2377make_array_slice (T *base, unsigned int size)
2378{
2379 return array_slice<T> (base, size);
2380}
2381
2382#if (GCC_VERSION(4 * 1000 + 2) >= 3000)
2383# pragma GCC poison m_vec m_vecpfx m_vecdata
2384#endif
2385
2386#endif // GCC_VEC_H