File: | build/gcc/vec.h |
Warning: | line 815, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* This file contains subroutine used by the C front-end to construct GENERIC. | |||
2 | Copyright (C) 2000-2023 Free Software Foundation, Inc. | |||
3 | Written by Benjamin Chelf (chelf@codesourcery.com). | |||
4 | ||||
5 | This file is part of GCC. | |||
6 | ||||
7 | GCC is free software; you can redistribute it and/or modify it under | |||
8 | the terms of the GNU General Public License as published by the Free | |||
9 | Software Foundation; either version 3, or (at your option) any later | |||
10 | version. | |||
11 | ||||
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |||
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
15 | for more details. | |||
16 | ||||
17 | You should have received a copy of the GNU General Public License | |||
18 | along with GCC; see the file COPYING3. If not see | |||
19 | <http://www.gnu.org/licenses/>. */ | |||
20 | ||||
21 | #include "config.h" | |||
22 | #include "system.h" | |||
23 | #include "coretypes.h" | |||
24 | #include "c-common.h" | |||
25 | #include "tree-iterator.h" | |||
26 | ||||
27 | /* Create an empty statement tree rooted at T. */ | |||
28 | ||||
29 | tree | |||
30 | push_stmt_list (void) | |||
31 | { | |||
32 | tree t; | |||
33 | t = alloc_stmt_list (); | |||
34 | vec_safe_push (stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list), t); | |||
| ||||
35 | return t; | |||
36 | } | |||
37 | ||||
38 | /* Return TRUE if, after I, there are any nondebug stmts. */ | |||
39 | ||||
40 | static inline bool | |||
41 | only_debug_stmts_after_p (tree_stmt_iterator i) | |||
42 | { | |||
43 | for (tsi_next (&i); !tsi_end_p (i); tsi_next (&i)) | |||
44 | if (TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) != DEBUG_BEGIN_STMT) | |||
45 | return false; | |||
46 | return true; | |||
47 | } | |||
48 | ||||
49 | /* Finish the statement tree rooted at T. */ | |||
50 | ||||
51 | tree | |||
52 | pop_stmt_list (tree t) | |||
53 | { | |||
54 | tree u = NULL_TREE(tree) nullptr; | |||
55 | ||||
56 | /* Pop statement lists until we reach the target level. The extra | |||
57 | nestings will be due to outstanding cleanups. */ | |||
58 | while (1) | |||
59 | { | |||
60 | u = stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->pop (); | |||
61 | if (!stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->is_empty ()) | |||
62 | { | |||
63 | tree x = stmt_list_stack(current_stmt_tree ()->x_cur_stmt_list)->last (); | |||
64 | STATEMENT_LIST_HAS_LABEL (x)((tree_not_check2 (((tree_check ((x), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 64, __FUNCTION__, (STATEMENT_LIST)))), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 64, __FUNCTION__, (TREE_VEC), (SSA_NAME)))->base.u.bits. lang_flag_3) |= STATEMENT_LIST_HAS_LABEL (u)((tree_not_check2 (((tree_check ((u), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 64, __FUNCTION__, (STATEMENT_LIST)))), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 64, __FUNCTION__, (TREE_VEC), (SSA_NAME)))->base.u.bits. lang_flag_3); | |||
65 | } | |||
66 | if (t == u) | |||
67 | break; | |||
68 | } | |||
69 | ||||
70 | gcc_assert (u != NULL_TREE)((void)(!(u != (tree) nullptr) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 70, __FUNCTION__), 0 : 0)); | |||
71 | ||||
72 | /* If the statement list is completely empty, just return it. This is | |||
73 | just as good small as build_empty_stmt, with the advantage that | |||
74 | statement lists are merged when they appended to one another. So | |||
75 | using the STATEMENT_LIST avoids pathological buildup of EMPTY_STMT_P | |||
76 | statements. */ | |||
77 | if (TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 77, __FUNCTION__))->base.side_effects_flag)) | |||
78 | { | |||
79 | tree_stmt_iterator i = tsi_start (t); | |||
80 | ||||
81 | /* If the statement list contained exactly one statement, then | |||
82 | extract it immediately. */ | |||
83 | if (tsi_one_before_end_p (i)) | |||
84 | { | |||
85 | u = tsi_stmt (i); | |||
86 | tsi_delink (&i); | |||
87 | free_stmt_list (t); | |||
88 | t = u; | |||
89 | } | |||
90 | /* If the statement list contained a debug begin stmt and a | |||
91 | statement list, move the debug begin stmt into the statement | |||
92 | list and return it. */ | |||
93 | else if (!tsi_end_p (i) | |||
94 | && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == DEBUG_BEGIN_STMT) | |||
95 | { | |||
96 | u = tsi_stmt (i); | |||
97 | tsi_next (&i); | |||
98 | if (tsi_one_before_end_p (i) | |||
99 | && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == STATEMENT_LIST) | |||
100 | { | |||
101 | tree l = tsi_stmt (i); | |||
102 | tsi_prev (&i); | |||
103 | tsi_delink (&i); | |||
104 | tsi_delink (&i); | |||
105 | i = tsi_start (l); | |||
106 | free_stmt_list (t); | |||
107 | t = l; | |||
108 | tsi_link_before (&i, u, TSI_SAME_STMT); | |||
109 | } | |||
110 | while (!tsi_end_p (i) | |||
111 | && TREE_CODE (tsi_stmt (i))((enum tree_code) (tsi_stmt (i))->base.code) == DEBUG_BEGIN_STMT) | |||
112 | tsi_next (&i); | |||
113 | /* If there are only debug stmts in the list, without them | |||
114 | we'd have an empty stmt without side effects. If there's | |||
115 | only one nondebug stmt, we'd have extracted the stmt and | |||
116 | dropped the list, and we'd take TREE_SIDE_EFFECTS from | |||
117 | that statement. In either case, keep the list's | |||
118 | TREE_SIDE_EFFECTS in sync. */ | |||
119 | if (tsi_end_p (i)) | |||
120 | TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 120, __FUNCTION__))->base.side_effects_flag) = 0; | |||
121 | else if (only_debug_stmts_after_p (i)) | |||
122 | TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 122, __FUNCTION__))->base.side_effects_flag) = TREE_SIDE_EFFECTS (tsi_stmt (i))((non_type_check ((tsi_stmt (i)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 122, __FUNCTION__))->base.side_effects_flag); | |||
123 | } | |||
124 | } | |||
125 | ||||
126 | return t; | |||
127 | } | |||
128 | ||||
129 | /* Build a generic statement based on the given type of node and | |||
130 | arguments. Similar to `build_nt', except that we set | |||
131 | EXPR_LOCATION to LOC. */ | |||
132 | /* ??? This should be obsolete with the lineno_stmt productions | |||
133 | in the grammar. */ | |||
134 | ||||
135 | tree | |||
136 | build_stmt (location_t loc, enum tree_code code, ...) | |||
137 | { | |||
138 | tree ret; | |||
139 | int length, i; | |||
140 | va_list p; | |||
141 | bool side_effects; | |||
142 | ||||
143 | /* This function cannot be used to construct variably-sized nodes. */ | |||
144 | gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp)((void)(!(tree_code_type_tmpl <0>::tree_code_type[(int) (code)] != tcc_vl_exp) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 144, __FUNCTION__), 0 : 0)); | |||
145 | ||||
146 | va_start (p, code)__builtin_va_start(p, code); | |||
147 | ||||
148 | ret = make_node (code); | |||
149 | TREE_TYPE (ret)((contains_struct_check ((ret), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 149, __FUNCTION__))->typed.type) = void_type_nodeglobal_trees[TI_VOID_TYPE]; | |||
150 | length = TREE_CODE_LENGTH (code)tree_code_length_tmpl <0>::tree_code_length[(int) (code )]; | |||
151 | SET_EXPR_LOCATION (ret, loc)(expr_check (((ret)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 151, __FUNCTION__))->exp.locus = (loc); | |||
152 | ||||
153 | /* TREE_SIDE_EFFECTS will already be set for statements with | |||
154 | implicit side effects. Here we make sure it is set for other | |||
155 | expressions by checking whether the parameters have side | |||
156 | effects. */ | |||
157 | ||||
158 | side_effects = false; | |||
159 | for (i = 0; i < length; i++) | |||
160 | { | |||
161 | tree t = va_arg (p, tree)__builtin_va_arg(p, tree); | |||
162 | if (t && !TYPE_P (t)(tree_code_type_tmpl <0>::tree_code_type[(int) (((enum tree_code ) (t)->base.code))] == tcc_type)) | |||
163 | side_effects |= TREE_SIDE_EFFECTS (t)((non_type_check ((t), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 163, __FUNCTION__))->base.side_effects_flag); | |||
164 | TREE_OPERAND (ret, i)(*((const_cast<tree*> (tree_operand_check ((ret), (i), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 164, __FUNCTION__))))) = t; | |||
165 | } | |||
166 | ||||
167 | TREE_SIDE_EFFECTS (ret)((non_type_check ((ret), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 167, __FUNCTION__))->base.side_effects_flag) |= side_effects; | |||
168 | ||||
169 | va_end (p)__builtin_va_end(p); | |||
170 | return ret; | |||
171 | } | |||
172 | ||||
173 | /* Build a REALPART_EXPR or IMAGPART_EXPR, according to CODE, from ARG. */ | |||
174 | ||||
175 | tree | |||
176 | build_real_imag_expr (location_t location, enum tree_code code, tree arg) | |||
177 | { | |||
178 | tree ret; | |||
179 | tree arg_type = TREE_TYPE (arg)((contains_struct_check ((arg), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 179, __FUNCTION__))->typed.type); | |||
180 | ||||
181 | gcc_assert (code == REALPART_EXPR || code == IMAGPART_EXPR)((void)(!(code == REALPART_EXPR || code == IMAGPART_EXPR) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 181, __FUNCTION__), 0 : 0)); | |||
182 | ||||
183 | if (TREE_CODE (arg_type)((enum tree_code) (arg_type)->base.code) == COMPLEX_TYPE) | |||
184 | { | |||
185 | ret = build1 (code, TREE_TYPE (TREE_TYPE (arg))((contains_struct_check ((((contains_struct_check ((arg), (TS_TYPED ), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 185, __FUNCTION__))->typed.type)), (TS_TYPED), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 185, __FUNCTION__))->typed.type), arg); | |||
186 | SET_EXPR_LOCATION (ret, location)(expr_check (((ret)), "/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/c-family/c-semantics.cc" , 186, __FUNCTION__))->exp.locus = (location); | |||
187 | } | |||
188 | else if (INTEGRAL_TYPE_P (arg_type)(((enum tree_code) (arg_type)->base.code) == ENUMERAL_TYPE || ((enum tree_code) (arg_type)->base.code) == BOOLEAN_TYPE || ((enum tree_code) (arg_type)->base.code) == INTEGER_TYPE ) || SCALAR_FLOAT_TYPE_P (arg_type)(((enum tree_code) (arg_type)->base.code) == REAL_TYPE)) | |||
189 | { | |||
190 | ret = (code == REALPART_EXPR | |||
191 | ? arg | |||
192 | : omit_one_operand_loc (location, arg_type, | |||
193 | integer_zero_nodeglobal_trees[TI_INTEGER_ZERO], arg)); | |||
194 | } | |||
195 | else | |||
196 | { | |||
197 | error_at (location, "wrong type argument to %s", | |||
198 | code == REALPART_EXPR ? "__real" : "__imag"); | |||
199 | ret = error_mark_nodeglobal_trees[TI_ERROR_MARK]; | |||
200 | } | |||
201 | ||||
202 | return ret; | |||
203 | } |
1 | /* Vector API for GNU compiler. | ||||
2 | Copyright (C) 2004-2023 Free Software Foundation, Inc. | ||||
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> | ||||
4 | Re-implemented in C++ by Diego Novillo <dnovillo@google.com> | ||||
5 | |||||
6 | This file is part of GCC. | ||||
7 | |||||
8 | GCC is free software; you can redistribute it and/or modify it under | ||||
9 | the terms of the GNU General Public License as published by the Free | ||||
10 | Software Foundation; either version 3, or (at your option) any later | ||||
11 | version. | ||||
12 | |||||
13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | ||||
14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||||
15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | ||||
16 | for more details. | ||||
17 | |||||
18 | You should have received a copy of the GNU General Public License | ||||
19 | along with GCC; see the file COPYING3. If not see | ||||
20 | <http://www.gnu.org/licenses/>. */ | ||||
21 | |||||
22 | #ifndef GCC_VEC_H | ||||
23 | #define GCC_VEC_H | ||||
24 | |||||
25 | /* Some gen* file have no ggc support as the header file gtype-desc.h is | ||||
26 | missing. Provide these definitions in case ggc.h has not been included. | ||||
27 | This is not a problem because any code that runs before gengtype is built | ||||
28 | will never need to use GC vectors.*/ | ||||
29 | |||||
30 | extern void ggc_free (void *); | ||||
31 | extern size_t ggc_round_alloc_size (size_t requested_size); | ||||
32 | extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); | ||||
33 | |||||
34 | /* Templated vector type and associated interfaces. | ||||
35 | |||||
36 | The interface functions are typesafe and use inline functions, | ||||
37 | sometimes backed by out-of-line generic functions. The vectors are | ||||
38 | designed to interoperate with the GTY machinery. | ||||
39 | |||||
40 | There are both 'index' and 'iterate' accessors. The index accessor | ||||
41 | is implemented by operator[]. The iterator returns a boolean | ||||
42 | iteration condition and updates the iteration variable passed by | ||||
43 | reference. Because the iterator will be inlined, the address-of | ||||
44 | can be optimized away. | ||||
45 | |||||
46 | Each operation that increases the number of active elements is | ||||
47 | available in 'quick' and 'safe' variants. The former presumes that | ||||
48 | there is sufficient allocated space for the operation to succeed | ||||
49 | (it dies if there is not). The latter will reallocate the | ||||
50 | vector, if needed. Reallocation causes an exponential increase in | ||||
51 | vector size. If you know you will be adding N elements, it would | ||||
52 | be more efficient to use the reserve operation before adding the | ||||
53 | elements with the 'quick' operation. This will ensure there are at | ||||
54 | least as many elements as you ask for, it will exponentially | ||||
55 | increase if there are too few spare slots. If you want reserve a | ||||
56 | specific number of slots, but do not want the exponential increase | ||||
57 | (for instance, you know this is the last allocation), use the | ||||
58 | reserve_exact operation. You can also create a vector of a | ||||
59 | specific size from the get go. | ||||
60 | |||||
61 | You should prefer the push and pop operations, as they append and | ||||
62 | remove from the end of the vector. If you need to remove several | ||||
63 | items in one go, use the truncate operation. The insert and remove | ||||
64 | operations allow you to change elements in the middle of the | ||||
65 | vector. There are two remove operations, one which preserves the | ||||
66 | element ordering 'ordered_remove', and one which does not | ||||
67 | 'unordered_remove'. The latter function copies the end element | ||||
68 | into the removed slot, rather than invoke a memmove operation. The | ||||
69 | 'lower_bound' function will determine where to place an item in the | ||||
70 | array using insert that will maintain sorted order. | ||||
71 | |||||
72 | Vectors are template types with three arguments: the type of the | ||||
73 | elements in the vector, the allocation strategy, and the physical | ||||
74 | layout to use | ||||
75 | |||||
76 | Four allocation strategies are supported: | ||||
77 | |||||
78 | - Heap: allocation is done using malloc/free. This is the | ||||
79 | default allocation strategy. | ||||
80 | |||||
81 | - GC: allocation is done using ggc_alloc/ggc_free. | ||||
82 | |||||
83 | - GC atomic: same as GC with the exception that the elements | ||||
84 | themselves are assumed to be of an atomic type that does | ||||
85 | not need to be garbage collected. This means that marking | ||||
86 | routines do not need to traverse the array marking the | ||||
87 | individual elements. This increases the performance of | ||||
88 | GC activities. | ||||
89 | |||||
90 | Two physical layouts are supported: | ||||
91 | |||||
92 | - Embedded: The vector is structured using the trailing array | ||||
93 | idiom. The last member of the structure is an array of size | ||||
94 | 1. When the vector is initially allocated, a single memory | ||||
95 | block is created to hold the vector's control data and the | ||||
96 | array of elements. These vectors cannot grow without | ||||
97 | reallocation (see discussion on embeddable vectors below). | ||||
98 | |||||
99 | - Space efficient: The vector is structured as a pointer to an | ||||
100 | embedded vector. This is the default layout. It means that | ||||
101 | vectors occupy a single word of storage before initial | ||||
102 | allocation. Vectors are allowed to grow (the internal | ||||
103 | pointer is reallocated but the main vector instance does not | ||||
104 | need to relocate). | ||||
105 | |||||
106 | The type, allocation and layout are specified when the vector is | ||||
107 | declared. | ||||
108 | |||||
109 | If you need to directly manipulate a vector, then the 'address' | ||||
110 | accessor will return the address of the start of the vector. Also | ||||
111 | the 'space' predicate will tell you whether there is spare capacity | ||||
112 | in the vector. You will not normally need to use these two functions. | ||||
113 | |||||
114 | Notes on the different layout strategies | ||||
115 | |||||
116 | * Embeddable vectors (vec<T, A, vl_embed>) | ||||
117 | |||||
118 | These vectors are suitable to be embedded in other data | ||||
119 | structures so that they can be pre-allocated in a contiguous | ||||
120 | memory block. | ||||
121 | |||||
122 | Embeddable vectors are implemented using the trailing array | ||||
123 | idiom, thus they are not resizeable without changing the address | ||||
124 | of the vector object itself. This means you cannot have | ||||
125 | variables or fields of embeddable vector type -- always use a | ||||
126 | pointer to a vector. The one exception is the final field of a | ||||
127 | structure, which could be a vector type. | ||||
128 | |||||
129 | You will have to use the embedded_size & embedded_init calls to | ||||
130 | create such objects, and they will not be resizeable (so the | ||||
131 | 'safe' allocation variants are not available). | ||||
132 | |||||
133 | Properties of embeddable vectors: | ||||
134 | |||||
135 | - The whole vector and control data are allocated in a single | ||||
136 | contiguous block. It uses the trailing-vector idiom, so | ||||
137 | allocation must reserve enough space for all the elements | ||||
138 | in the vector plus its control data. | ||||
139 | - The vector cannot be re-allocated. | ||||
140 | - The vector cannot grow nor shrink. | ||||
141 | - No indirections needed for access/manipulation. | ||||
142 | - It requires 2 words of storage (prior to vector allocation). | ||||
143 | |||||
144 | |||||
145 | * Space efficient vector (vec<T, A, vl_ptr>) | ||||
146 | |||||
147 | These vectors can grow dynamically and are allocated together | ||||
148 | with their control data. They are suited to be included in data | ||||
149 | structures. Prior to initial allocation, they only take a single | ||||
150 | word of storage. | ||||
151 | |||||
152 | These vectors are implemented as a pointer to embeddable vectors. | ||||
153 | The semantics allow for this pointer to be NULL to represent | ||||
154 | empty vectors. This way, empty vectors occupy minimal space in | ||||
155 | the structure containing them. | ||||
156 | |||||
157 | Properties: | ||||
158 | |||||
159 | - The whole vector and control data are allocated in a single | ||||
160 | contiguous block. | ||||
161 | - The whole vector may be re-allocated. | ||||
162 | - Vector data may grow and shrink. | ||||
163 | - Access and manipulation requires a pointer test and | ||||
164 | indirection. | ||||
165 | - It requires 1 word of storage (prior to vector allocation). | ||||
166 | |||||
167 | An example of their use would be, | ||||
168 | |||||
169 | struct my_struct { | ||||
170 | // A space-efficient vector of tree pointers in GC memory. | ||||
171 | vec<tree, va_gc, vl_ptr> v; | ||||
172 | }; | ||||
173 | |||||
174 | struct my_struct *s; | ||||
175 | |||||
176 | if (s->v.length ()) { we have some contents } | ||||
177 | s->v.safe_push (decl); // append some decl onto the end | ||||
178 | for (ix = 0; s->v.iterate (ix, &elt); ix++) | ||||
179 | { do something with elt } | ||||
180 | */ | ||||
181 | |||||
182 | /* Support function for statistics. */ | ||||
183 | extern void dump_vec_loc_statistics (void); | ||||
184 | |||||
185 | /* Hashtable mapping vec addresses to descriptors. */ | ||||
186 | extern htab_t vec_mem_usage_hash; | ||||
187 | |||||
188 | /* Control data for vectors. This contains the number of allocated | ||||
189 | and used slots inside a vector. */ | ||||
190 | |||||
191 | struct vec_prefix | ||||
192 | { | ||||
193 | /* FIXME - These fields should be private, but we need to cater to | ||||
194 | compilers that have stricter notions of PODness for types. */ | ||||
195 | |||||
196 | /* Memory allocation support routines in vec.cc. */ | ||||
197 | void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); | ||||
198 | void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO); | ||||
199 | static unsigned calculate_allocation (vec_prefix *, unsigned, bool); | ||||
200 | static unsigned calculate_allocation_1 (unsigned, unsigned); | ||||
201 | |||||
202 | /* Note that vec_prefix should be a base class for vec, but we use | ||||
203 | offsetof() on vector fields of tree structures (e.g., | ||||
204 | tree_binfo::base_binfos), and offsetof only supports base types. | ||||
205 | |||||
206 | To compensate, we make vec_prefix a field inside vec and make | ||||
207 | vec a friend class of vec_prefix so it can access its fields. */ | ||||
208 | template <typename, typename, typename> friend struct vec; | ||||
209 | |||||
210 | /* The allocator types also need access to our internals. */ | ||||
211 | friend struct va_gc; | ||||
212 | friend struct va_gc_atomic; | ||||
213 | friend struct va_heap; | ||||
214 | |||||
215 | unsigned m_alloc : 31; | ||||
216 | unsigned m_using_auto_storage : 1; | ||||
217 | unsigned m_num; | ||||
218 | }; | ||||
219 | |||||
220 | /* Calculate the number of slots to reserve a vector, making sure that | ||||
221 | RESERVE slots are free. If EXACT grow exactly, otherwise grow | ||||
222 | exponentially. PFX is the control data for the vector. */ | ||||
223 | |||||
224 | inline unsigned | ||||
225 | vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, | ||||
226 | bool exact) | ||||
227 | { | ||||
228 | if (exact
| ||||
229 | return (pfx ? pfx->m_num : 0) + reserve; | ||||
230 | else if (!pfx
| ||||
231 | return MAX (4, reserve)((4) > (reserve) ? (4) : (reserve)); | ||||
232 | return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); | ||||
233 | } | ||||
234 | |||||
235 | template<typename, typename, typename> struct vec; | ||||
236 | |||||
237 | /* Valid vector layouts | ||||
238 | |||||
239 | vl_embed - Embeddable vector that uses the trailing array idiom. | ||||
240 | vl_ptr - Space efficient vector that uses a pointer to an | ||||
241 | embeddable vector. */ | ||||
242 | struct vl_embed { }; | ||||
243 | struct vl_ptr { }; | ||||
244 | |||||
245 | |||||
246 | /* Types of supported allocations | ||||
247 | |||||
248 | va_heap - Allocation uses malloc/free. | ||||
249 | va_gc - Allocation uses ggc_alloc. | ||||
250 | va_gc_atomic - Same as GC, but individual elements of the array | ||||
251 | do not need to be marked during collection. */ | ||||
252 | |||||
253 | /* Allocator type for heap vectors. */ | ||||
254 | struct va_heap | ||||
255 | { | ||||
256 | /* Heap vectors are frequently regular instances, so use the vl_ptr | ||||
257 | layout for them. */ | ||||
258 | typedef vl_ptr default_layout; | ||||
259 | |||||
260 | template<typename T> | ||||
261 | static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool | ||||
262 | CXX_MEM_STAT_INFO); | ||||
263 | |||||
264 | template<typename T> | ||||
265 | static void release (vec<T, va_heap, vl_embed> *&); | ||||
266 | }; | ||||
267 | |||||
268 | |||||
269 | /* Allocator for heap memory. Ensure there are at least RESERVE free | ||||
270 | slots in V. If EXACT is true, grow exactly, else grow | ||||
271 | exponentially. As a special case, if the vector had not been | ||||
272 | allocated and RESERVE is 0, no vector will be created. */ | ||||
273 | |||||
274 | template<typename T> | ||||
275 | inline void | ||||
276 | va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact | ||||
277 | MEM_STAT_DECL) | ||||
278 | { | ||||
279 | size_t elt_size = sizeof (T); | ||||
280 | unsigned alloc | ||||
281 | = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); | ||||
282 | gcc_checking_assert (alloc)((void)(!(alloc) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 282, __FUNCTION__), 0 : 0)); | ||||
283 | |||||
284 | if (GATHER_STATISTICS0 && v) | ||||
285 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), | ||||
286 | v->allocated (), false); | ||||
287 | |||||
288 | size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); | ||||
289 | unsigned nelem = v ? v->length () : 0; | ||||
290 | v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); | ||||
291 | v->embedded_init (alloc, nelem); | ||||
292 | |||||
293 | if (GATHER_STATISTICS0) | ||||
294 | v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT); | ||||
295 | } | ||||
296 | |||||
297 | |||||
298 | #if GCC_VERSION(4 * 1000 + 2) >= 4007 | ||||
299 | #pragma GCC diagnostic push | ||||
300 | #pragma GCC diagnostic ignored "-Wfree-nonheap-object" | ||||
301 | #endif | ||||
302 | |||||
303 | /* Free the heap space allocated for vector V. */ | ||||
304 | |||||
305 | template<typename T> | ||||
306 | void | ||||
307 | va_heap::release (vec<T, va_heap, vl_embed> *&v) | ||||
308 | { | ||||
309 | size_t elt_size = sizeof (T); | ||||
310 | if (v == NULLnullptr) | ||||
311 | return; | ||||
312 | |||||
313 | if (GATHER_STATISTICS0) | ||||
314 | v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), | ||||
315 | v->allocated (), true); | ||||
316 | ::free (v); | ||||
317 | v = NULLnullptr; | ||||
318 | } | ||||
319 | |||||
320 | #if GCC_VERSION(4 * 1000 + 2) >= 4007 | ||||
321 | #pragma GCC diagnostic pop | ||||
322 | #endif | ||||
323 | |||||
324 | /* Allocator type for GC vectors. Notice that we need the structure | ||||
325 | declaration even if GC is not enabled. */ | ||||
326 | |||||
327 | struct va_gc | ||||
328 | { | ||||
329 | /* Use vl_embed as the default layout for GC vectors. Due to GTY | ||||
330 | limitations, GC vectors must always be pointers, so it is more | ||||
331 | efficient to use a pointer to the vl_embed layout, rather than | ||||
332 | using a pointer to a pointer as would be the case with vl_ptr. */ | ||||
333 | typedef vl_embed default_layout; | ||||
334 | |||||
335 | template<typename T, typename A> | ||||
336 | static void reserve (vec<T, A, vl_embed> *&, unsigned, bool | ||||
337 | CXX_MEM_STAT_INFO); | ||||
338 | |||||
339 | template<typename T, typename A> | ||||
340 | static void release (vec<T, A, vl_embed> *&v); | ||||
341 | }; | ||||
342 | |||||
343 | |||||
344 | /* Free GC memory used by V and reset V to NULL. */ | ||||
345 | |||||
346 | template<typename T, typename A> | ||||
347 | inline void | ||||
348 | va_gc::release (vec<T, A, vl_embed> *&v) | ||||
349 | { | ||||
350 | if (v) | ||||
351 | ::ggc_free (v); | ||||
352 | v = NULLnullptr; | ||||
353 | } | ||||
354 | |||||
355 | |||||
356 | /* Allocator for GC memory. Ensure there are at least RESERVE free | ||||
357 | slots in V. If EXACT is true, grow exactly, else grow | ||||
358 | exponentially. As a special case, if the vector had not been | ||||
359 | allocated and RESERVE is 0, no vector will be created. */ | ||||
360 | |||||
361 | template<typename T, typename A> | ||||
362 | void | ||||
363 | va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact | ||||
364 | MEM_STAT_DECL) | ||||
365 | { | ||||
366 | unsigned alloc | ||||
367 | = vec_prefix::calculate_allocation (v
| ||||
368 | if (!alloc) | ||||
369 | { | ||||
370 | ::ggc_free (v); | ||||
371 | v = NULLnullptr; | ||||
372 | return; | ||||
373 | } | ||||
374 | |||||
375 | /* Calculate the amount of space we want. */ | ||||
376 | size_t size = vec<T, A, vl_embed>::embedded_size (alloc); | ||||
377 | |||||
378 | /* Ask the allocator how much space it will really give us. */ | ||||
379 | size = ::ggc_round_alloc_size (size); | ||||
380 | |||||
381 | /* Adjust the number of slots accordingly. */ | ||||
382 | size_t vec_offset = sizeof (vec_prefix); | ||||
383 | size_t elt_size = sizeof (T); | ||||
384 | alloc = (size - vec_offset) / elt_size; | ||||
385 | |||||
386 | /* And finally, recalculate the amount of space we ask for. */ | ||||
387 | size = vec_offset + alloc * elt_size; | ||||
388 | |||||
389 | unsigned nelem = v ? v->length () : 0; | ||||
390 | v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size | ||||
391 | PASS_MEM_STAT)); | ||||
392 | v->embedded_init (alloc, nelem); | ||||
393 | } | ||||
394 | |||||
395 | |||||
396 | /* Allocator type for GC vectors. This is for vectors of types | ||||
397 | atomics w.r.t. collection, so allocation and deallocation is | ||||
398 | completely inherited from va_gc. */ | ||||
399 | struct va_gc_atomic : va_gc | ||||
400 | { | ||||
401 | }; | ||||
402 | |||||
403 | |||||
404 | /* Generic vector template. Default values for A and L indicate the | ||||
405 | most commonly used strategies. | ||||
406 | |||||
407 | FIXME - Ideally, they would all be vl_ptr to encourage using regular | ||||
408 | instances for vectors, but the existing GTY machinery is limited | ||||
409 | in that it can only deal with GC objects that are pointers | ||||
410 | themselves. | ||||
411 | |||||
412 | This means that vector operations that need to deal with | ||||
413 | potentially NULL pointers, must be provided as free | ||||
414 | functions (see the vec_safe_* functions above). */ | ||||
415 | template<typename T, | ||||
416 | typename A = va_heap, | ||||
417 | typename L = typename A::default_layout> | ||||
418 | struct GTY((user)) vec | ||||
419 | { | ||||
420 | }; | ||||
421 | |||||
422 | /* Allow C++11 range-based 'for' to work directly on vec<T>*. */ | ||||
423 | template<typename T, typename A, typename L> | ||||
424 | T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; } | ||||
425 | template<typename T, typename A, typename L> | ||||
426 | T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; } | ||||
427 | template<typename T, typename A, typename L> | ||||
428 | const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; } | ||||
429 | template<typename T, typename A, typename L> | ||||
430 | const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; } | ||||
431 | |||||
432 | /* Generic vec<> debug helpers. | ||||
433 | |||||
434 | These need to be instantiated for each vec<TYPE> used throughout | ||||
435 | the compiler like this: | ||||
436 | |||||
437 | DEFINE_DEBUG_VEC (TYPE) | ||||
438 | |||||
439 | The reason we have a debug_helper() is because GDB can't | ||||
440 | disambiguate a plain call to debug(some_vec), and it must be called | ||||
441 | like debug<TYPE>(some_vec). */ | ||||
442 | |||||
443 | template<typename T> | ||||
444 | void | ||||
445 | debug_helper (vec<T> &ref) | ||||
446 | { | ||||
447 | unsigned i; | ||||
448 | for (i = 0; i < ref.length (); ++i) | ||||
449 | { | ||||
450 | fprintf (stderrstderr, "[%d] = ", i); | ||||
451 | debug_slim (ref[i]); | ||||
452 | fputc ('\n', stderrstderr); | ||||
453 | } | ||||
454 | } | ||||
455 | |||||
456 | /* We need a separate va_gc variant here because default template | ||||
457 | argument for functions cannot be used in c++-98. Once this | ||||
458 | restriction is removed, those variant should be folded with the | ||||
459 | above debug_helper. */ | ||||
460 | |||||
461 | template<typename T> | ||||
462 | void | ||||
463 | debug_helper (vec<T, va_gc> &ref) | ||||
464 | { | ||||
465 | unsigned i; | ||||
466 | for (i = 0; i < ref.length (); ++i) | ||||
467 | { | ||||
468 | fprintf (stderrstderr, "[%d] = ", i); | ||||
469 | debug_slim (ref[i]); | ||||
470 | fputc ('\n', stderrstderr); | ||||
471 | } | ||||
472 | } | ||||
473 | |||||
474 | /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper | ||||
475 | functions for a type T. */ | ||||
476 | |||||
477 | #define DEFINE_DEBUG_VEC(T)template void debug_helper (vec<T> &); template void debug_helper (vec<T, va_gc> &); __attribute__ ((__used__ )) void debug (vec<T> &ref) { debug_helper <T> (ref); } __attribute__ ((__used__)) void debug (vec<T> *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n" ); } __attribute__ ((__used__)) void debug (vec<T, va_gc> &ref) { debug_helper <T> (ref); } __attribute__ (( __used__)) void debug (vec<T, va_gc> *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"); } \ | ||||
478 | template void debug_helper (vec<T> &); \ | ||||
479 | template void debug_helper (vec<T, va_gc> &); \ | ||||
480 | /* Define the vec<T> debug functions. */ \ | ||||
481 | DEBUG_FUNCTION__attribute__ ((__used__)) void \ | ||||
482 | debug (vec<T> &ref) \ | ||||
483 | { \ | ||||
484 | debug_helper <T> (ref); \ | ||||
485 | } \ | ||||
486 | DEBUG_FUNCTION__attribute__ ((__used__)) void \ | ||||
487 | debug (vec<T> *ptr) \ | ||||
488 | { \ | ||||
489 | if (ptr) \ | ||||
490 | debug (*ptr); \ | ||||
491 | else \ | ||||
492 | fprintf (stderrstderr, "<nil>\n"); \ | ||||
493 | } \ | ||||
494 | /* Define the vec<T, va_gc> debug functions. */ \ | ||||
495 | DEBUG_FUNCTION__attribute__ ((__used__)) void \ | ||||
496 | debug (vec<T, va_gc> &ref) \ | ||||
497 | { \ | ||||
498 | debug_helper <T> (ref); \ | ||||
499 | } \ | ||||
500 | DEBUG_FUNCTION__attribute__ ((__used__)) void \ | ||||
501 | debug (vec<T, va_gc> *ptr) \ | ||||
502 | { \ | ||||
503 | if (ptr) \ | ||||
504 | debug (*ptr); \ | ||||
505 | else \ | ||||
506 | fprintf (stderrstderr, "<nil>\n"); \ | ||||
507 | } | ||||
508 | |||||
509 | /* Default-construct N elements in DST. */ | ||||
510 | |||||
511 | template <typename T> | ||||
512 | inline void | ||||
513 | vec_default_construct (T *dst, unsigned n) | ||||
514 | { | ||||
515 | #ifdef BROKEN_VALUE_INITIALIZATION | ||||
516 | /* Versions of GCC before 4.4 sometimes leave certain objects | ||||
517 | uninitialized when value initialized, though if the type has | ||||
518 | user defined default ctor, that ctor is invoked. As a workaround | ||||
519 | perform clearing first and then the value initialization, which | ||||
520 | fixes the case when value initialization doesn't initialize due to | ||||
521 | the bugs and should initialize to all zeros, but still allows | ||||
522 | vectors for types with user defined default ctor that initializes | ||||
523 | some or all elements to non-zero. If T has no user defined | ||||
524 | default ctor and some non-static data members have user defined | ||||
525 | default ctors that initialize to non-zero the workaround will | ||||
526 | still not work properly; in that case we just need to provide | ||||
527 | user defined default ctor. */ | ||||
528 | memset (dst, '\0', sizeof (T) * n); | ||||
529 | #endif | ||||
530 | for ( ; n; ++dst, --n) | ||||
531 | ::new (static_cast<void*>(dst)) T (); | ||||
532 | } | ||||
533 | |||||
534 | /* Copy-construct N elements in DST from *SRC. */ | ||||
535 | |||||
536 | template <typename T> | ||||
537 | inline void | ||||
538 | vec_copy_construct (T *dst, const T *src, unsigned n) | ||||
539 | { | ||||
540 | for ( ; n; ++dst, ++src, --n) | ||||
541 | ::new (static_cast<void*>(dst)) T (*src); | ||||
542 | } | ||||
543 | |||||
544 | /* Type to provide zero-initialized values for vec<T, A, L>. This is | ||||
545 | used to provide nil initializers for vec instances. Since vec must | ||||
546 | be a trivially copyable type that can be copied by memcpy and zeroed | ||||
547 | out by memset, it must have defaulted default and copy ctor and copy | ||||
548 | assignment. To initialize a vec either use value initialization | ||||
549 | (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't | ||||
550 | needed for file-scope and function-local static vectors, which are | ||||
551 | zero-initialized by default. */ | ||||
552 | struct vnull { }; | ||||
553 | constexpr vnull vNULL{ }; | ||||
554 | |||||
555 | |||||
556 | /* Embeddable vector. These vectors are suitable to be embedded | ||||
557 | in other data structures so that they can be pre-allocated in a | ||||
558 | contiguous memory block. | ||||
559 | |||||
560 | Embeddable vectors are implemented using the trailing array idiom, | ||||
561 | thus they are not resizeable without changing the address of the | ||||
562 | vector object itself. This means you cannot have variables or | ||||
563 | fields of embeddable vector type -- always use a pointer to a | ||||
564 | vector. The one exception is the final field of a structure, which | ||||
565 | could be a vector type. | ||||
566 | |||||
567 | You will have to use the embedded_size & embedded_init calls to | ||||
568 | create such objects, and they will not be resizeable (so the 'safe' | ||||
569 | allocation variants are not available). | ||||
570 | |||||
571 | Properties: | ||||
572 | |||||
573 | - The whole vector and control data are allocated in a single | ||||
574 | contiguous block. It uses the trailing-vector idiom, so | ||||
575 | allocation must reserve enough space for all the elements | ||||
576 | in the vector plus its control data. | ||||
577 | - The vector cannot be re-allocated. | ||||
578 | - The vector cannot grow nor shrink. | ||||
579 | - No indirections needed for access/manipulation. | ||||
580 | - It requires 2 words of storage (prior to vector allocation). */ | ||||
581 | |||||
582 | template<typename T, typename A> | ||||
583 | struct GTY((user)) vec<T, A, vl_embed> | ||||
584 | { | ||||
585 | public: | ||||
586 | unsigned allocated (void) const { return m_vecpfx.m_alloc; } | ||||
587 | unsigned length (void) const { return m_vecpfx.m_num; } | ||||
588 | bool is_empty (void) const { return m_vecpfx.m_num == 0; } | ||||
589 | T *address (void) { return reinterpret_cast <T *> (this + 1); } | ||||
590 | const T *address (void) const | ||||
591 | { return reinterpret_cast <const T *> (this + 1); } | ||||
592 | T *begin () { return address (); } | ||||
593 | const T *begin () const { return address (); } | ||||
594 | T *end () { return address () + length (); } | ||||
595 | const T *end () const { return address () + length (); } | ||||
596 | const T &operator[] (unsigned) const; | ||||
597 | T &operator[] (unsigned); | ||||
598 | T &last (void); | ||||
599 | bool space (unsigned) const; | ||||
600 | bool iterate (unsigned, T *) const; | ||||
601 | bool iterate (unsigned, T **) const; | ||||
602 | vec *copy (ALONE_CXX_MEM_STAT_INFO) const; | ||||
603 | void splice (const vec &); | ||||
604 | void splice (const vec *src); | ||||
605 | T *quick_push (const T &); | ||||
606 | T &pop (void); | ||||
607 | void truncate (unsigned); | ||||
608 | void quick_insert (unsigned, const T &); | ||||
609 | void ordered_remove (unsigned); | ||||
610 | void unordered_remove (unsigned); | ||||
611 | void block_remove (unsigned, unsigned); | ||||
612 | void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *)); | ||||
613 | void sort (int (*) (const void *, const void *, void *), void *); | ||||
614 | void stablesort (int (*) (const void *, const void *, void *), void *); | ||||
615 | T *bsearch (const void *key, int (*compar) (const void *, const void *)); | ||||
616 | T *bsearch (const void *key, | ||||
617 | int (*compar)(const void *, const void *, void *), void *); | ||||
618 | unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const; | ||||
619 | bool contains (const T &search) const; | ||||
620 | static size_t embedded_size (unsigned); | ||||
621 | void embedded_init (unsigned, unsigned = 0, unsigned = 0); | ||||
622 | void quick_grow (unsigned len); | ||||
623 | void quick_grow_cleared (unsigned len); | ||||
624 | |||||
625 | /* vec class can access our internal data and functions. */ | ||||
626 | template <typename, typename, typename> friend struct vec; | ||||
627 | |||||
628 | /* The allocator types also need access to our internals. */ | ||||
629 | friend struct va_gc; | ||||
630 | friend struct va_gc_atomic; | ||||
631 | friend struct va_heap; | ||||
632 | |||||
633 | /* FIXME - This field should be private, but we need to cater to | ||||
634 | compilers that have stricter notions of PODness for types. */ | ||||
635 | /* Align m_vecpfx to simplify address (). */ | ||||
636 | alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx; | ||||
637 | }; | ||||
638 | |||||
639 | |||||
640 | /* Convenience wrapper functions to use when dealing with pointers to | ||||
641 | embedded vectors. Some functionality for these vectors must be | ||||
642 | provided via free functions for these reasons: | ||||
643 | |||||
644 | 1- The pointer may be NULL (e.g., before initial allocation). | ||||
645 | |||||
646 | 2- When the vector needs to grow, it must be reallocated, so | ||||
647 | the pointer will change its value. | ||||
648 | |||||
649 | Because of limitations with the current GC machinery, all vectors | ||||
650 | in GC memory *must* be pointers. */ | ||||
651 | |||||
652 | |||||
653 | /* If V contains no room for NELEMS elements, return false. Otherwise, | ||||
654 | return true. */ | ||||
655 | template<typename T, typename A> | ||||
656 | inline bool | ||||
657 | vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) | ||||
658 | { | ||||
659 | return v ? v->space (nelems) : nelems == 0; | ||||
660 | } | ||||
661 | |||||
662 | |||||
663 | /* If V is NULL, return 0. Otherwise, return V->length(). */ | ||||
664 | template<typename T, typename A> | ||||
665 | inline unsigned | ||||
666 | vec_safe_length (const vec<T, A, vl_embed> *v) | ||||
667 | { | ||||
668 | return v ? v->length () : 0; | ||||
669 | } | ||||
670 | |||||
671 | |||||
672 | /* If V is NULL, return NULL. Otherwise, return V->address(). */ | ||||
673 | template<typename T, typename A> | ||||
674 | inline T * | ||||
675 | vec_safe_address (vec<T, A, vl_embed> *v) | ||||
676 | { | ||||
677 | return v ? v->address () : NULLnullptr; | ||||
678 | } | ||||
679 | |||||
680 | |||||
681 | /* If V is NULL, return true. Otherwise, return V->is_empty(). */ | ||||
682 | template<typename T, typename A> | ||||
683 | inline bool | ||||
684 | vec_safe_is_empty (vec<T, A, vl_embed> *v) | ||||
685 | { | ||||
686 | return v ? v->is_empty () : true; | ||||
687 | } | ||||
688 | |||||
689 | /* If V does not have space for NELEMS elements, call | ||||
690 | V->reserve(NELEMS, EXACT). */ | ||||
691 | template<typename T, typename A> | ||||
692 | inline bool | ||||
693 | vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false | ||||
694 | CXX_MEM_STAT_INFO) | ||||
695 | { | ||||
696 | bool extend = nelems
| ||||
697 | if (extend
| ||||
698 | A::reserve (v, nelems, exact PASS_MEM_STAT); | ||||
699 | return extend; | ||||
700 | } | ||||
701 | |||||
702 | template<typename T, typename A> | ||||
703 | inline bool | ||||
704 | vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems | ||||
705 | CXX_MEM_STAT_INFO) | ||||
706 | { | ||||
707 | return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); | ||||
708 | } | ||||
709 | |||||
710 | |||||
711 | /* Allocate GC memory for V with space for NELEMS slots. If NELEMS | ||||
712 | is 0, V is initialized to NULL. */ | ||||
713 | |||||
714 | template<typename T, typename A> | ||||
715 | inline void | ||||
716 | vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) | ||||
717 | { | ||||
718 | v = NULLnullptr; | ||||
719 | vec_safe_reserve (v, nelems, false PASS_MEM_STAT); | ||||
720 | } | ||||
721 | |||||
722 | |||||
723 | /* Free the GC memory allocated by vector V and set it to NULL. */ | ||||
724 | |||||
725 | template<typename T, typename A> | ||||
726 | inline void | ||||
727 | vec_free (vec<T, A, vl_embed> *&v) | ||||
728 | { | ||||
729 | A::release (v); | ||||
730 | } | ||||
731 | |||||
732 | |||||
733 | /* Grow V to length LEN. Allocate it, if necessary. */ | ||||
734 | template<typename T, typename A> | ||||
735 | inline void | ||||
736 | vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len, | ||||
737 | bool exact = false CXX_MEM_STAT_INFO) | ||||
738 | { | ||||
739 | unsigned oldlen = vec_safe_length (v); | ||||
740 | gcc_checking_assert (len >= oldlen)((void)(!(len >= oldlen) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 740, __FUNCTION__), 0 : 0)); | ||||
741 | vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT); | ||||
742 | v->quick_grow (len); | ||||
743 | } | ||||
744 | |||||
745 | |||||
746 | /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ | ||||
747 | template<typename T, typename A> | ||||
748 | inline void | ||||
749 | vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len, | ||||
750 | bool exact = false CXX_MEM_STAT_INFO) | ||||
751 | { | ||||
752 | unsigned oldlen = vec_safe_length (v); | ||||
753 | vec_safe_grow (v, len, exact PASS_MEM_STAT); | ||||
754 | vec_default_construct (v->address () + oldlen, len - oldlen); | ||||
755 | } | ||||
756 | |||||
757 | |||||
758 | /* Assume V is not NULL. */ | ||||
759 | |||||
760 | template<typename T> | ||||
761 | inline void | ||||
762 | vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v, | ||||
763 | unsigned len, bool exact = false CXX_MEM_STAT_INFO) | ||||
764 | { | ||||
765 | v->safe_grow_cleared (len, exact PASS_MEM_STAT); | ||||
766 | } | ||||
767 | |||||
768 | /* If V does not have space for NELEMS elements, call | ||||
769 | V->reserve(NELEMS, EXACT). */ | ||||
770 | |||||
771 | template<typename T> | ||||
772 | inline bool | ||||
773 | vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false | ||||
774 | CXX_MEM_STAT_INFO) | ||||
775 | { | ||||
776 | return v->reserve (nelems, exact); | ||||
777 | } | ||||
778 | |||||
779 | |||||
780 | /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ | ||||
781 | template<typename T, typename A> | ||||
782 | inline bool | ||||
783 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) | ||||
784 | { | ||||
785 | if (v) | ||||
786 | return v->iterate (ix, ptr); | ||||
787 | else | ||||
788 | { | ||||
789 | *ptr = 0; | ||||
790 | return false; | ||||
791 | } | ||||
792 | } | ||||
793 | |||||
794 | template<typename T, typename A> | ||||
795 | inline bool | ||||
796 | vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) | ||||
797 | { | ||||
798 | if (v) | ||||
799 | return v->iterate (ix, ptr); | ||||
800 | else | ||||
801 | { | ||||
802 | *ptr = 0; | ||||
803 | return false; | ||||
804 | } | ||||
805 | } | ||||
806 | |||||
807 | |||||
808 | /* If V has no room for one more element, reallocate it. Then call | ||||
809 | V->quick_push(OBJ). */ | ||||
810 | template<typename T, typename A> | ||||
811 | inline T * | ||||
812 | vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) | ||||
813 | { | ||||
814 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); | ||||
815 | return v->quick_push (obj); | ||||
| |||||
816 | } | ||||
817 | |||||
818 | |||||
819 | /* if V has no room for one more element, reallocate it. Then call | ||||
820 | V->quick_insert(IX, OBJ). */ | ||||
821 | template<typename T, typename A> | ||||
822 | inline void | ||||
823 | vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj | ||||
824 | CXX_MEM_STAT_INFO) | ||||
825 | { | ||||
826 | vec_safe_reserve (v, 1, false PASS_MEM_STAT); | ||||
827 | v->quick_insert (ix, obj); | ||||
828 | } | ||||
829 | |||||
830 | |||||
831 | /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ | ||||
832 | template<typename T, typename A> | ||||
833 | inline void | ||||
834 | vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) | ||||
835 | { | ||||
836 | if (v) | ||||
837 | v->truncate (size); | ||||
838 | } | ||||
839 | |||||
840 | |||||
841 | /* If SRC is not NULL, return a pointer to a copy of it. */ | ||||
842 | template<typename T, typename A> | ||||
843 | inline vec<T, A, vl_embed> * | ||||
844 | vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) | ||||
845 | { | ||||
846 | return src ? src->copy (ALONE_PASS_MEM_STAT) : NULLnullptr; | ||||
847 | } | ||||
848 | |||||
849 | /* Copy the elements from SRC to the end of DST as if by memcpy. | ||||
850 | Reallocate DST, if necessary. */ | ||||
851 | template<typename T, typename A> | ||||
852 | inline void | ||||
853 | vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src | ||||
854 | CXX_MEM_STAT_INFO) | ||||
855 | { | ||||
856 | unsigned src_len = vec_safe_length (src); | ||||
857 | if (src_len) | ||||
858 | { | ||||
859 | vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len | ||||
860 | PASS_MEM_STAT); | ||||
861 | dst->splice (*src); | ||||
862 | } | ||||
863 | } | ||||
864 | |||||
865 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the | ||||
866 | size of the vector and so should be used with care. */ | ||||
867 | |||||
868 | template<typename T, typename A> | ||||
869 | inline bool | ||||
870 | vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) | ||||
871 | { | ||||
872 | return v ? v->contains (search) : false; | ||||
873 | } | ||||
874 | |||||
875 | /* Index into vector. Return the IX'th element. IX must be in the | ||||
876 | domain of the vector. */ | ||||
877 | |||||
878 | template<typename T, typename A> | ||||
879 | inline const T & | ||||
880 | vec<T, A, vl_embed>::operator[] (unsigned ix) const | ||||
881 | { | ||||
882 | gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 882, __FUNCTION__), 0 : 0)); | ||||
883 | return address ()[ix]; | ||||
884 | } | ||||
885 | |||||
886 | template<typename T, typename A> | ||||
887 | inline T & | ||||
888 | vec<T, A, vl_embed>::operator[] (unsigned ix) | ||||
889 | { | ||||
890 | gcc_checking_assert (ix < m_vecpfx.m_num)((void)(!(ix < m_vecpfx.m_num) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 890, __FUNCTION__), 0 : 0)); | ||||
891 | return address ()[ix]; | ||||
892 | } | ||||
893 | |||||
894 | |||||
895 | /* Get the final element of the vector, which must not be empty. */ | ||||
896 | |||||
897 | template<typename T, typename A> | ||||
898 | inline T & | ||||
899 | vec<T, A, vl_embed>::last (void) | ||||
900 | { | ||||
901 | gcc_checking_assert (m_vecpfx.m_num > 0)((void)(!(m_vecpfx.m_num > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 901, __FUNCTION__), 0 : 0)); | ||||
902 | return (*this)[m_vecpfx.m_num - 1]; | ||||
903 | } | ||||
904 | |||||
905 | |||||
906 | /* If this vector has space for NELEMS additional entries, return | ||||
907 | true. You usually only need to use this if you are doing your | ||||
908 | own vector reallocation, for instance on an embedded vector. This | ||||
909 | returns true in exactly the same circumstances that vec::reserve | ||||
910 | will. */ | ||||
911 | |||||
912 | template<typename T, typename A> | ||||
913 | inline bool | ||||
914 | vec<T, A, vl_embed>::space (unsigned nelems) const | ||||
915 | { | ||||
916 | return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; | ||||
917 | } | ||||
918 | |||||
919 | |||||
920 | /* Return iteration condition and update *PTR to (a copy of) the IX'th | ||||
921 | element of this vector. Use this to iterate over the elements of a | ||||
922 | vector as follows, | ||||
923 | |||||
924 | for (ix = 0; v->iterate (ix, &val); ix++) | ||||
925 | continue; */ | ||||
926 | |||||
927 | template<typename T, typename A> | ||||
928 | inline bool | ||||
929 | vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const | ||||
930 | { | ||||
931 | if (ix < m_vecpfx.m_num) | ||||
932 | { | ||||
933 | *ptr = address ()[ix]; | ||||
934 | return true; | ||||
935 | } | ||||
936 | else | ||||
937 | { | ||||
938 | *ptr = 0; | ||||
939 | return false; | ||||
940 | } | ||||
941 | } | ||||
942 | |||||
943 | |||||
944 | /* Return iteration condition and update *PTR to point to the | ||||
945 | IX'th element of this vector. Use this to iterate over the | ||||
946 | elements of a vector as follows, | ||||
947 | |||||
948 | for (ix = 0; v->iterate (ix, &ptr); ix++) | ||||
949 | continue; | ||||
950 | |||||
951 | This variant is for vectors of objects. */ | ||||
952 | |||||
953 | template<typename T, typename A> | ||||
954 | inline bool | ||||
955 | vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const | ||||
956 | { | ||||
957 | if (ix < m_vecpfx.m_num) | ||||
958 | { | ||||
959 | *ptr = CONST_CAST (T *, &address ()[ix])(const_cast<T *> ((&address ()[ix]))); | ||||
960 | return true; | ||||
961 | } | ||||
962 | else | ||||
963 | { | ||||
964 | *ptr = 0; | ||||
965 | return false; | ||||
966 | } | ||||
967 | } | ||||
968 | |||||
969 | |||||
970 | /* Return a pointer to a copy of this vector. */ | ||||
971 | |||||
972 | template<typename T, typename A> | ||||
973 | inline vec<T, A, vl_embed> * | ||||
974 | vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECLvoid) const | ||||
975 | { | ||||
976 | vec<T, A, vl_embed> *new_vec = NULLnullptr; | ||||
977 | unsigned len = length (); | ||||
978 | if (len) | ||||
979 | { | ||||
980 | vec_alloc (new_vec, len PASS_MEM_STAT); | ||||
981 | new_vec->embedded_init (len, len); | ||||
982 | vec_copy_construct (new_vec->address (), address (), len); | ||||
983 | } | ||||
984 | return new_vec; | ||||
985 | } | ||||
986 | |||||
987 | |||||
988 | /* Copy the elements from SRC to the end of this vector as if by memcpy. | ||||
989 | The vector must have sufficient headroom available. */ | ||||
990 | |||||
991 | template<typename T, typename A> | ||||
992 | inline void | ||||
993 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) | ||||
994 | { | ||||
995 | unsigned len = src.length (); | ||||
996 | if (len) | ||||
997 | { | ||||
998 | gcc_checking_assert (space (len))((void)(!(space (len)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 998, __FUNCTION__), 0 : 0)); | ||||
999 | vec_copy_construct (end (), src.address (), len); | ||||
1000 | m_vecpfx.m_num += len; | ||||
1001 | } | ||||
1002 | } | ||||
1003 | |||||
1004 | template<typename T, typename A> | ||||
1005 | inline void | ||||
1006 | vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) | ||||
1007 | { | ||||
1008 | if (src) | ||||
1009 | splice (*src); | ||||
1010 | } | ||||
1011 | |||||
1012 | |||||
1013 | /* Push OBJ (a new element) onto the end of the vector. There must be | ||||
1014 | sufficient space in the vector. Return a pointer to the slot | ||||
1015 | where OBJ was inserted. */ | ||||
1016 | |||||
1017 | template<typename T, typename A> | ||||
1018 | inline T * | ||||
1019 | vec<T, A, vl_embed>::quick_push (const T &obj) | ||||
1020 | { | ||||
1021 | gcc_checking_assert (space (1))((void)(!(space (1)) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1021, __FUNCTION__), 0 : 0)); | ||||
1022 | T *slot = &address ()[m_vecpfx.m_num++]; | ||||
1023 | *slot = obj; | ||||
1024 | return slot; | ||||
1025 | } | ||||
1026 | |||||
1027 | |||||
1028 | /* Pop and return the last element off the end of the vector. */ | ||||
1029 | |||||
1030 | template<typename T, typename A> | ||||
1031 | inline T & | ||||
1032 | vec<T, A, vl_embed>::pop (void) | ||||
1033 | { | ||||
1034 | gcc_checking_assert (length () > 0)((void)(!(length () > 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1034, __FUNCTION__), 0 : 0)); | ||||
1035 | return address ()[--m_vecpfx.m_num]; | ||||
1036 | } | ||||
1037 | |||||
1038 | |||||
1039 | /* Set the length of the vector to SIZE. The new length must be less | ||||
1040 | than or equal to the current length. This is an O(1) operation. */ | ||||
1041 | |||||
1042 | template<typename T, typename A> | ||||
1043 | inline void | ||||
1044 | vec<T, A, vl_embed>::truncate (unsigned size) | ||||
1045 | { | ||||
1046 | gcc_checking_assert (length () >= size)((void)(!(length () >= size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1046, __FUNCTION__), 0 : 0)); | ||||
1047 | m_vecpfx.m_num = size; | ||||
1048 | } | ||||
1049 | |||||
1050 | |||||
1051 | /* Insert an element, OBJ, at the IXth position of this vector. There | ||||
1052 | must be sufficient space. */ | ||||
1053 | |||||
1054 | template<typename T, typename A> | ||||
1055 | inline void | ||||
1056 | vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) | ||||
1057 | { | ||||
1058 | gcc_checking_assert (length () < allocated ())((void)(!(length () < allocated ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1058, __FUNCTION__), 0 : 0)); | ||||
1059 | gcc_checking_assert (ix <= length ())((void)(!(ix <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1059, __FUNCTION__), 0 : 0)); | ||||
1060 | T *slot = &address ()[ix]; | ||||
1061 | memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); | ||||
1062 | *slot = obj; | ||||
1063 | } | ||||
1064 | |||||
1065 | |||||
1066 | /* Remove an element from the IXth position of this vector. Ordering of | ||||
1067 | remaining elements is preserved. This is an O(N) operation due to | ||||
1068 | memmove. */ | ||||
1069 | |||||
1070 | template<typename T, typename A> | ||||
1071 | inline void | ||||
1072 | vec<T, A, vl_embed>::ordered_remove (unsigned ix) | ||||
1073 | { | ||||
1074 | gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1074, __FUNCTION__), 0 : 0)); | ||||
1075 | T *slot = &address ()[ix]; | ||||
1076 | memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); | ||||
1077 | } | ||||
1078 | |||||
1079 | |||||
1080 | /* Remove elements in [START, END) from VEC for which COND holds. Ordering of | ||||
1081 | remaining elements is preserved. This is an O(N) operation. */ | ||||
1082 | |||||
1083 | #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \{ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index = (start); read_index < (end); ++read_index) { elem_ptr = &(vec)[read_index]; bool remove_p = (cond); if (remove_p ) continue; if (read_index != write_index) (vec)[write_index] = (vec)[read_index]; write_index++; } if (read_index - write_index > 0) (vec).block_remove (write_index, read_index - write_index ); } | ||||
1084 | elem_ptr, start, end, cond){ ((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1084, __FUNCTION__), 0 : 0)); for (read_index = write_index = (start); read_index < (end); ++read_index) { elem_ptr = &(vec)[read_index]; bool remove_p = (cond); if (remove_p ) continue; if (read_index != write_index) (vec)[write_index] = (vec)[read_index]; write_index++; } if (read_index - write_index > 0) (vec).block_remove (write_index, read_index - write_index ); } \ | ||||
1085 | { \ | ||||
1086 | gcc_assert ((end) <= (vec).length ())((void)(!((end) <= (vec).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1086, __FUNCTION__), 0 : 0)); \ | ||||
1087 | for (read_index = write_index = (start); read_index < (end); \ | ||||
1088 | ++read_index) \ | ||||
1089 | { \ | ||||
1090 | elem_ptr = &(vec)[read_index]; \ | ||||
1091 | bool remove_p = (cond); \ | ||||
1092 | if (remove_p) \ | ||||
1093 | continue; \ | ||||
1094 | \ | ||||
1095 | if (read_index != write_index) \ | ||||
1096 | (vec)[write_index] = (vec)[read_index]; \ | ||||
1097 | \ | ||||
1098 | write_index++; \ | ||||
1099 | } \ | ||||
1100 | \ | ||||
1101 | if (read_index - write_index > 0) \ | ||||
1102 | (vec).block_remove (write_index, read_index - write_index); \ | ||||
1103 | } | ||||
1104 | |||||
1105 | |||||
1106 | /* Remove elements from VEC for which COND holds. Ordering of remaining | ||||
1107 | elements is preserved. This is an O(N) operation. */ | ||||
1108 | |||||
1109 | #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index = (0); read_index < ((vec).length ()); ++read_index) { elem_ptr = &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p ) continue; if (read_index != write_index) ((vec))[write_index ] = ((vec))[read_index]; write_index++; } if (read_index - write_index > 0) ((vec)).block_remove (write_index, read_index - write_index ); } | ||||
1110 | cond){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1110, __FUNCTION__), 0 : 0)); for (read_index = write_index = (0); read_index < ((vec).length ()); ++read_index) { elem_ptr = &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p ) continue; if (read_index != write_index) ((vec))[write_index ] = ((vec))[read_index]; write_index++; } if (read_index - write_index > 0) ((vec)).block_remove (write_index, read_index - write_index ); } \ | ||||
1111 | VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \{ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index = (0); read_index < ((vec).length ()); ++read_index) { elem_ptr = &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p ) continue; if (read_index != write_index) ((vec))[write_index ] = ((vec))[read_index]; write_index++; } if (read_index - write_index > 0) ((vec)).block_remove (write_index, read_index - write_index ); } | ||||
1112 | elem_ptr, 0, (vec).length (), (cond)){ ((void)(!(((vec).length ()) <= ((vec)).length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1112, __FUNCTION__), 0 : 0)); for (read_index = write_index = (0); read_index < ((vec).length ()); ++read_index) { elem_ptr = &((vec))[read_index]; bool remove_p = ((cond)); if (remove_p ) continue; if (read_index != write_index) ((vec))[write_index ] = ((vec))[read_index]; write_index++; } if (read_index - write_index > 0) ((vec)).block_remove (write_index, read_index - write_index ); } | ||||
1113 | |||||
1114 | /* Remove an element from the IXth position of this vector. Ordering of | ||||
1115 | remaining elements is destroyed. This is an O(1) operation. */ | ||||
1116 | |||||
1117 | template<typename T, typename A> | ||||
1118 | inline void | ||||
1119 | vec<T, A, vl_embed>::unordered_remove (unsigned ix) | ||||
1120 | { | ||||
1121 | gcc_checking_assert (ix < length ())((void)(!(ix < length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1121, __FUNCTION__), 0 : 0)); | ||||
1122 | T *p = address (); | ||||
1123 | p[ix] = p[--m_vecpfx.m_num]; | ||||
1124 | } | ||||
1125 | |||||
1126 | |||||
1127 | /* Remove LEN elements starting at the IXth. Ordering is retained. | ||||
1128 | This is an O(N) operation due to memmove. */ | ||||
1129 | |||||
1130 | template<typename T, typename A> | ||||
1131 | inline void | ||||
1132 | vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) | ||||
1133 | { | ||||
1134 | gcc_checking_assert (ix + len <= length ())((void)(!(ix + len <= length ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1134, __FUNCTION__), 0 : 0)); | ||||
1135 | T *slot = &address ()[ix]; | ||||
1136 | m_vecpfx.m_num -= len; | ||||
1137 | memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); | ||||
1138 | } | ||||
1139 | |||||
1140 | |||||
1141 | /* Sort the contents of this vector with qsort. CMP is the comparison | ||||
1142 | function to pass to qsort. */ | ||||
1143 | |||||
1144 | template<typename T, typename A> | ||||
1145 | inline void | ||||
1146 | vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *)) | ||||
1147 | { | ||||
1148 | if (length () > 1) | ||||
1149 | gcc_qsort (address (), length (), sizeof (T), cmp); | ||||
1150 | } | ||||
1151 | |||||
1152 | /* Sort the contents of this vector with qsort. CMP is the comparison | ||||
1153 | function to pass to qsort. */ | ||||
1154 | |||||
1155 | template<typename T, typename A> | ||||
1156 | inline void | ||||
1157 | vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *), | ||||
1158 | void *data) | ||||
1159 | { | ||||
1160 | if (length () > 1) | ||||
1161 | gcc_sort_r (address (), length (), sizeof (T), cmp, data); | ||||
1162 | } | ||||
1163 | |||||
1164 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the | ||||
1165 | comparison function to pass to qsort. */ | ||||
1166 | |||||
1167 | template<typename T, typename A> | ||||
1168 | inline void | ||||
1169 | vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *, | ||||
1170 | void *), void *data) | ||||
1171 | { | ||||
1172 | if (length () > 1) | ||||
1173 | gcc_stablesort_r (address (), length (), sizeof (T), cmp, data); | ||||
1174 | } | ||||
1175 | |||||
1176 | /* Search the contents of the sorted vector with a binary search. | ||||
1177 | CMP is the comparison function to pass to bsearch. */ | ||||
1178 | |||||
1179 | template<typename T, typename A> | ||||
1180 | inline T * | ||||
1181 | vec<T, A, vl_embed>::bsearch (const void *key, | ||||
1182 | int (*compar) (const void *, const void *)) | ||||
1183 | { | ||||
1184 | const void *base = this->address (); | ||||
1185 | size_t nmemb = this->length (); | ||||
1186 | size_t size = sizeof (T); | ||||
1187 | /* The following is a copy of glibc stdlib-bsearch.h. */ | ||||
1188 | size_t l, u, idx; | ||||
1189 | const void *p; | ||||
1190 | int comparison; | ||||
1191 | |||||
1192 | l = 0; | ||||
1193 | u = nmemb; | ||||
1194 | while (l < u) | ||||
1195 | { | ||||
1196 | idx = (l + u) / 2; | ||||
1197 | p = (const void *) (((const char *) base) + (idx * size)); | ||||
1198 | comparison = (*compar) (key, p); | ||||
1199 | if (comparison < 0) | ||||
1200 | u = idx; | ||||
1201 | else if (comparison > 0) | ||||
1202 | l = idx + 1; | ||||
1203 | else | ||||
1204 | return (T *)const_cast<void *>(p); | ||||
1205 | } | ||||
1206 | |||||
1207 | return NULLnullptr; | ||||
1208 | } | ||||
1209 | |||||
1210 | /* Search the contents of the sorted vector with a binary search. | ||||
1211 | CMP is the comparison function to pass to bsearch. */ | ||||
1212 | |||||
1213 | template<typename T, typename A> | ||||
1214 | inline T * | ||||
1215 | vec<T, A, vl_embed>::bsearch (const void *key, | ||||
1216 | int (*compar) (const void *, const void *, | ||||
1217 | void *), void *data) | ||||
1218 | { | ||||
1219 | const void *base = this->address (); | ||||
1220 | size_t nmemb = this->length (); | ||||
1221 | size_t size = sizeof (T); | ||||
1222 | /* The following is a copy of glibc stdlib-bsearch.h. */ | ||||
1223 | size_t l, u, idx; | ||||
1224 | const void *p; | ||||
1225 | int comparison; | ||||
1226 | |||||
1227 | l = 0; | ||||
1228 | u = nmemb; | ||||
1229 | while (l < u) | ||||
1230 | { | ||||
1231 | idx = (l + u) / 2; | ||||
1232 | p = (const void *) (((const char *) base) + (idx * size)); | ||||
1233 | comparison = (*compar) (key, p, data); | ||||
1234 | if (comparison < 0) | ||||
1235 | u = idx; | ||||
1236 | else if (comparison > 0) | ||||
1237 | l = idx + 1; | ||||
1238 | else | ||||
1239 | return (T *)const_cast<void *>(p); | ||||
1240 | } | ||||
1241 | |||||
1242 | return NULLnullptr; | ||||
1243 | } | ||||
1244 | |||||
1245 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the | ||||
1246 | size of the vector and so should be used with care. */ | ||||
1247 | |||||
1248 | template<typename T, typename A> | ||||
1249 | inline bool | ||||
1250 | vec<T, A, vl_embed>::contains (const T &search) const | ||||
1251 | { | ||||
1252 | unsigned int len = length (); | ||||
1253 | const T *p = address (); | ||||
1254 | for (unsigned int i = 0; i < len; i++) | ||||
1255 | { | ||||
1256 | const T *slot = &p[i]; | ||||
1257 | if (*slot == search) | ||||
1258 | return true; | ||||
1259 | } | ||||
1260 | |||||
1261 | return false; | ||||
1262 | } | ||||
1263 | |||||
1264 | /* Find and return the first position in which OBJ could be inserted | ||||
1265 | without changing the ordering of this vector. LESSTHAN is a | ||||
1266 | function that returns true if the first argument is strictly less | ||||
1267 | than the second. */ | ||||
1268 | |||||
1269 | template<typename T, typename A> | ||||
1270 | unsigned | ||||
1271 | vec<T, A, vl_embed>::lower_bound (const T &obj, | ||||
1272 | bool (*lessthan)(const T &, const T &)) | ||||
1273 | const | ||||
1274 | { | ||||
1275 | unsigned int len = length (); | ||||
1276 | unsigned int half, middle; | ||||
1277 | unsigned int first = 0; | ||||
1278 | while (len > 0) | ||||
1279 | { | ||||
1280 | half = len / 2; | ||||
1281 | middle = first; | ||||
1282 | middle += half; | ||||
1283 | const T &middle_elem = address ()[middle]; | ||||
1284 | if (lessthan (middle_elem, obj)) | ||||
1285 | { | ||||
1286 | first = middle; | ||||
1287 | ++first; | ||||
1288 | len = len - half - 1; | ||||
1289 | } | ||||
1290 | else | ||||
1291 | len = half; | ||||
1292 | } | ||||
1293 | return first; | ||||
1294 | } | ||||
1295 | |||||
1296 | |||||
1297 | /* Return the number of bytes needed to embed an instance of an | ||||
1298 | embeddable vec inside another data structure. | ||||
1299 | |||||
1300 | Use these methods to determine the required size and initialization | ||||
1301 | of a vector V of type T embedded within another structure (as the | ||||
1302 | final member): | ||||
1303 | |||||
1304 | size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); | ||||
1305 | void v->embedded_init (unsigned alloc, unsigned num); | ||||
1306 | |||||
1307 | These allow the caller to perform the memory allocation. */ | ||||
1308 | |||||
1309 | template<typename T, typename A> | ||||
1310 | inline size_t | ||||
1311 | vec<T, A, vl_embed>::embedded_size (unsigned alloc) | ||||
1312 | { | ||||
1313 | struct alignas (T) U { char data[sizeof (T)]; }; | ||||
1314 | typedef vec<U, A, vl_embed> vec_embedded; | ||||
1315 | typedef typename std::conditional<std::is_standard_layout<T>::value, | ||||
1316 | vec, vec_embedded>::type vec_stdlayout; | ||||
1317 | static_assert (sizeof (vec_stdlayout) == sizeof (vec), ""); | ||||
1318 | static_assert (alignof (vec_stdlayout) == alignof (vec), ""); | ||||
1319 | return sizeof (vec_stdlayout) + alloc * sizeof (T); | ||||
1320 | } | ||||
1321 | |||||
1322 | |||||
1323 | /* Initialize the vector to contain room for ALLOC elements and | ||||
1324 | NUM active elements. */ | ||||
1325 | |||||
1326 | template<typename T, typename A> | ||||
1327 | inline void | ||||
1328 | vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) | ||||
1329 | { | ||||
1330 | m_vecpfx.m_alloc = alloc; | ||||
1331 | m_vecpfx.m_using_auto_storage = aut; | ||||
1332 | m_vecpfx.m_num = num; | ||||
1333 | } | ||||
1334 | |||||
1335 | |||||
1336 | /* Grow the vector to a specific length. LEN must be as long or longer than | ||||
1337 | the current length. The new elements are uninitialized. */ | ||||
1338 | |||||
1339 | template<typename T, typename A> | ||||
1340 | inline void | ||||
1341 | vec<T, A, vl_embed>::quick_grow (unsigned len) | ||||
1342 | { | ||||
1343 | gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc)((void)(!(length () <= len && len <= m_vecpfx.m_alloc ) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1343, __FUNCTION__), 0 : 0)); | ||||
1344 | m_vecpfx.m_num = len; | ||||
1345 | } | ||||
1346 | |||||
1347 | |||||
1348 | /* Grow the vector to a specific length. LEN must be as long or longer than | ||||
1349 | the current length. The new elements are initialized to zero. */ | ||||
1350 | |||||
1351 | template<typename T, typename A> | ||||
1352 | inline void | ||||
1353 | vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) | ||||
1354 | { | ||||
1355 | unsigned oldlen = length (); | ||||
1356 | size_t growby = len - oldlen; | ||||
1357 | quick_grow (len); | ||||
1358 | if (growby != 0) | ||||
1359 | vec_default_construct (address () + oldlen, growby); | ||||
1360 | } | ||||
1361 | |||||
1362 | /* Garbage collection support for vec<T, A, vl_embed>. */ | ||||
1363 | |||||
1364 | template<typename T> | ||||
1365 | void | ||||
1366 | gt_ggc_mx (vec<T, va_gc> *v) | ||||
1367 | { | ||||
1368 | extern void gt_ggc_mx (T &); | ||||
1369 | for (unsigned i = 0; i < v->length (); i++) | ||||
1370 | gt_ggc_mx ((*v)[i]); | ||||
1371 | } | ||||
1372 | |||||
1373 | template<typename T> | ||||
1374 | void | ||||
1375 | gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED__attribute__ ((__unused__))) | ||||
1376 | { | ||||
1377 | /* Nothing to do. Vectors of atomic types wrt GC do not need to | ||||
1378 | be traversed. */ | ||||
1379 | } | ||||
1380 | |||||
1381 | |||||
1382 | /* PCH support for vec<T, A, vl_embed>. */ | ||||
1383 | |||||
1384 | template<typename T, typename A> | ||||
1385 | void | ||||
1386 | gt_pch_nx (vec<T, A, vl_embed> *v) | ||||
1387 | { | ||||
1388 | extern void gt_pch_nx (T &); | ||||
1389 | for (unsigned i = 0; i < v->length (); i++) | ||||
1390 | gt_pch_nx ((*v)[i]); | ||||
1391 | } | ||||
1392 | |||||
1393 | template<typename T, typename A> | ||||
1394 | void | ||||
1395 | gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) | ||||
1396 | { | ||||
1397 | for (unsigned i = 0; i < v->length (); i++) | ||||
1398 | op (&((*v)[i]), NULLnullptr, cookie); | ||||
1399 | } | ||||
1400 | |||||
1401 | template<typename T, typename A> | ||||
1402 | void | ||||
1403 | gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) | ||||
1404 | { | ||||
1405 | extern void gt_pch_nx (T *, gt_pointer_operator, void *); | ||||
1406 | for (unsigned i = 0; i < v->length (); i++) | ||||
1407 | gt_pch_nx (&((*v)[i]), op, cookie); | ||||
1408 | } | ||||
1409 | |||||
1410 | |||||
1411 | /* Space efficient vector. These vectors can grow dynamically and are | ||||
1412 | allocated together with their control data. They are suited to be | ||||
1413 | included in data structures. Prior to initial allocation, they | ||||
1414 | only take a single word of storage. | ||||
1415 | |||||
1416 | These vectors are implemented as a pointer to an embeddable vector. | ||||
1417 | The semantics allow for this pointer to be NULL to represent empty | ||||
1418 | vectors. This way, empty vectors occupy minimal space in the | ||||
1419 | structure containing them. | ||||
1420 | |||||
1421 | Properties: | ||||
1422 | |||||
1423 | - The whole vector and control data are allocated in a single | ||||
1424 | contiguous block. | ||||
1425 | - The whole vector may be re-allocated. | ||||
1426 | - Vector data may grow and shrink. | ||||
1427 | - Access and manipulation requires a pointer test and | ||||
1428 | indirection. | ||||
1429 | - It requires 1 word of storage (prior to vector allocation). | ||||
1430 | |||||
1431 | |||||
1432 | Limitations: | ||||
1433 | |||||
1434 | These vectors must be PODs because they are stored in unions. | ||||
1435 | (http://en.wikipedia.org/wiki/Plain_old_data_structures). | ||||
1436 | As long as we use C++03, we cannot have constructors nor | ||||
1437 | destructors in classes that are stored in unions. */ | ||||
1438 | |||||
1439 | template<typename T, size_t N = 0> | ||||
1440 | class auto_vec; | ||||
1441 | |||||
1442 | template<typename T> | ||||
1443 | struct vec<T, va_heap, vl_ptr> | ||||
1444 | { | ||||
1445 | public: | ||||
1446 | /* Default ctors to ensure triviality. Use value-initialization | ||||
1447 | (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized | ||||
1448 | instance. */ | ||||
1449 | vec () = default; | ||||
1450 | vec (const vec &) = default; | ||||
1451 | /* Initialization from the generic vNULL. */ | ||||
1452 | vec (vnull): m_vec () { } | ||||
1453 | /* Same as default ctor: vec storage must be released manually. */ | ||||
1454 | ~vec () = default; | ||||
1455 | |||||
1456 | /* Defaulted same as copy ctor. */ | ||||
1457 | vec& operator= (const vec &) = default; | ||||
1458 | |||||
1459 | /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec() | ||||
1460 | instead. */ | ||||
1461 | template <size_t N> | ||||
1462 | vec (auto_vec<T, N> &) = delete; | ||||
1463 | |||||
1464 | template <size_t N> | ||||
1465 | void operator= (auto_vec<T, N> &) = delete; | ||||
1466 | |||||
1467 | /* Memory allocation and deallocation for the embedded vector. | ||||
1468 | Needed because we cannot have proper ctors/dtors defined. */ | ||||
1469 | void create (unsigned nelems CXX_MEM_STAT_INFO); | ||||
1470 | void release (void); | ||||
1471 | |||||
1472 | /* Vector operations. */ | ||||
1473 | bool exists (void) const | ||||
1474 | { return m_vec != NULLnullptr; } | ||||
1475 | |||||
1476 | bool is_empty (void) const | ||||
1477 | { return m_vec ? m_vec->is_empty () : true; } | ||||
1478 | |||||
1479 | unsigned allocated (void) const | ||||
1480 | { return m_vec ? m_vec->allocated () : 0; } | ||||
1481 | |||||
1482 | unsigned length (void) const | ||||
1483 | { return m_vec ? m_vec->length () : 0; } | ||||
1484 | |||||
1485 | T *address (void) | ||||
1486 | { return m_vec ? m_vec->address () : NULLnullptr; } | ||||
1487 | |||||
1488 | const T *address (void) const | ||||
1489 | { return m_vec ? m_vec->address () : NULLnullptr; } | ||||
1490 | |||||
1491 | T *begin () { return address (); } | ||||
1492 | const T *begin () const { return address (); } | ||||
1493 | T *end () { return begin () + length (); } | ||||
1494 | const T *end () const { return begin () + length (); } | ||||
1495 | const T &operator[] (unsigned ix) const | ||||
1496 | { return (*m_vec)[ix]; } | ||||
1497 | |||||
1498 | bool operator!=(const vec &other) const | ||||
1499 | { return !(*this == other); } | ||||
1500 | |||||
1501 | bool operator==(const vec &other) const | ||||
1502 | { return address () == other.address (); } | ||||
1503 | |||||
1504 | T &operator[] (unsigned ix) | ||||
1505 | { return (*m_vec)[ix]; } | ||||
1506 | |||||
1507 | T &last (void) | ||||
1508 | { return m_vec->last (); } | ||||
1509 | |||||
1510 | bool space (int nelems) const | ||||
1511 | { return m_vec ? m_vec->space (nelems) : nelems == 0; } | ||||
1512 | |||||
1513 | bool iterate (unsigned ix, T *p) const; | ||||
1514 | bool iterate (unsigned ix, T **p) const; | ||||
1515 | vec copy (ALONE_CXX_MEM_STAT_INFO) const; | ||||
1516 | bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); | ||||
1517 | bool reserve_exact (unsigned CXX_MEM_STAT_INFO); | ||||
1518 | void splice (const vec &); | ||||
1519 | void safe_splice (const vec & CXX_MEM_STAT_INFO); | ||||
1520 | T *quick_push (const T &); | ||||
1521 | T *safe_push (const T &CXX_MEM_STAT_INFO); | ||||
1522 | T &pop (void); | ||||
1523 | void truncate (unsigned); | ||||
1524 | void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO); | ||||
1525 | void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO); | ||||
1526 | void quick_grow (unsigned); | ||||
1527 | void quick_grow_cleared (unsigned); | ||||
1528 | void quick_insert (unsigned, const T &); | ||||
1529 | void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); | ||||
1530 | void ordered_remove (unsigned); | ||||
1531 | void unordered_remove (unsigned); | ||||
1532 | void block_remove (unsigned, unsigned); | ||||
1533 | void qsort (int (*) (const void *, const void *))qsort (int (*) (const void *, const void *)); | ||||
1534 | void sort (int (*) (const void *, const void *, void *), void *); | ||||
1535 | void stablesort (int (*) (const void *, const void *, void *), void *); | ||||
1536 | T *bsearch (const void *key, int (*compar)(const void *, const void *)); | ||||
1537 | T *bsearch (const void *key, | ||||
1538 | int (*compar)(const void *, const void *, void *), void *); | ||||
1539 | unsigned lower_bound (T, bool (*)(const T &, const T &)) const; | ||||
1540 | bool contains (const T &search) const; | ||||
1541 | void reverse (void); | ||||
1542 | |||||
1543 | bool using_auto_storage () const; | ||||
1544 | |||||
1545 | /* FIXME - This field should be private, but we need to cater to | ||||
1546 | compilers that have stricter notions of PODness for types. */ | ||||
1547 | vec<T, va_heap, vl_embed> *m_vec; | ||||
1548 | }; | ||||
1549 | |||||
1550 | |||||
1551 | /* auto_vec is a subclass of vec that automatically manages creating and | ||||
1552 | releasing the internal vector. If N is non zero then it has N elements of | ||||
1553 | internal storage. The default is no internal storage, and you probably only | ||||
1554 | want to ask for internal storage for vectors on the stack because if the | ||||
1555 | size of the vector is larger than the internal storage that space is wasted. | ||||
1556 | */ | ||||
1557 | template<typename T, size_t N /* = 0 */> | ||||
1558 | class auto_vec : public vec<T, va_heap> | ||||
1559 | { | ||||
1560 | public: | ||||
1561 | auto_vec () | ||||
1562 | { | ||||
1563 | m_auto.embedded_init (N, 0, 1); | ||||
1564 | /* ??? Instead of initializing m_vec from &m_auto directly use an | ||||
1565 | expression that avoids refering to a specific member of 'this' | ||||
1566 | to derail the -Wstringop-overflow diagnostic code, avoiding | ||||
1567 | the impression that data accesses are supposed to be to the | ||||
1568 | m_auto member storage. */ | ||||
1569 | size_t off = (char *) &m_auto - (char *) this; | ||||
1570 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); | ||||
1571 | } | ||||
1572 | |||||
1573 | auto_vec (size_t s CXX_MEM_STAT_INFO) | ||||
1574 | { | ||||
1575 | if (s > N) | ||||
1576 | { | ||||
1577 | this->create (s PASS_MEM_STAT); | ||||
1578 | return; | ||||
1579 | } | ||||
1580 | |||||
1581 | m_auto.embedded_init (N, 0, 1); | ||||
1582 | /* ??? See above. */ | ||||
1583 | size_t off = (char *) &m_auto - (char *) this; | ||||
1584 | this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off); | ||||
1585 | } | ||||
1586 | |||||
1587 | ~auto_vec () | ||||
1588 | { | ||||
1589 | this->release (); | ||||
1590 | } | ||||
1591 | |||||
1592 | /* Explicitly convert to the base class. There is no conversion | ||||
1593 | from a const auto_vec because a copy of the returned vec can | ||||
1594 | be used to modify *THIS. | ||||
1595 | This is a legacy function not to be used in new code. */ | ||||
1596 | vec<T, va_heap> to_vec_legacy () { | ||||
1597 | return *static_cast<vec<T, va_heap> *>(this); | ||||
1598 | } | ||||
1599 | |||||
1600 | private: | ||||
1601 | vec<T, va_heap, vl_embed> m_auto; | ||||
1602 | unsigned char m_data[sizeof (T) * N]; | ||||
1603 | }; | ||||
1604 | |||||
1605 | /* auto_vec is a sub class of vec whose storage is released when it is | ||||
1606 | destroyed. */ | ||||
1607 | template<typename T> | ||||
1608 | class auto_vec<T, 0> : public vec<T, va_heap> | ||||
1609 | { | ||||
1610 | public: | ||||
1611 | auto_vec () { this->m_vec = NULLnullptr; } | ||||
1612 | auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); } | ||||
1613 | ~auto_vec () { this->release (); } | ||||
1614 | |||||
1615 | auto_vec (vec<T, va_heap>&& r) | ||||
1616 | { | ||||
1617 | gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1617, __FUNCTION__), 0 : 0)); | ||||
1618 | this->m_vec = r.m_vec; | ||||
1619 | r.m_vec = NULLnullptr; | ||||
1620 | } | ||||
1621 | |||||
1622 | auto_vec (auto_vec<T> &&r) | ||||
1623 | { | ||||
1624 | gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1624, __FUNCTION__), 0 : 0)); | ||||
1625 | this->m_vec = r.m_vec; | ||||
1626 | r.m_vec = NULLnullptr; | ||||
1627 | } | ||||
1628 | |||||
1629 | auto_vec& operator= (vec<T, va_heap>&& r) | ||||
1630 | { | ||||
1631 | if (this == &r) | ||||
1632 | return *this; | ||||
1633 | |||||
1634 | gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1634, __FUNCTION__), 0 : 0)); | ||||
1635 | this->release (); | ||||
1636 | this->m_vec = r.m_vec; | ||||
1637 | r.m_vec = NULLnullptr; | ||||
1638 | return *this; | ||||
1639 | } | ||||
1640 | |||||
1641 | auto_vec& operator= (auto_vec<T> &&r) | ||||
1642 | { | ||||
1643 | if (this == &r) | ||||
1644 | return *this; | ||||
1645 | |||||
1646 | gcc_assert (!r.using_auto_storage ())((void)(!(!r.using_auto_storage ()) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 1646, __FUNCTION__), 0 : 0)); | ||||
1647 | this->release (); | ||||
1648 | this->m_vec = r.m_vec; | ||||
1649 | r.m_vec = NULLnullptr; | ||||
1650 | return *this; | ||||
1651 | } | ||||
1652 | |||||
1653 | /* Explicitly convert to the base class. There is no conversion | ||||
1654 | from a const auto_vec because a copy of the returned vec can | ||||
1655 | be used to modify *THIS. | ||||
1656 | This is a legacy function not to be used in new code. */ | ||||
1657 | vec<T, va_heap> to_vec_legacy () { | ||||
1658 | return *static_cast<vec<T, va_heap> *>(this); | ||||
1659 | } | ||||
1660 | |||||
1661 | // You probably don't want to copy a vector, so these are deleted to prevent | ||||
1662 | // unintentional use. If you really need a copy of the vectors contents you | ||||
1663 | // can use copy (). | ||||
1664 | auto_vec(const auto_vec &) = delete; | ||||
1665 | auto_vec &operator= (const auto_vec &) = delete; | ||||
1666 | }; | ||||
1667 | |||||
1668 | |||||
1669 | /* Allocate heap memory for pointer V and create the internal vector | ||||
1670 | with space for NELEMS elements. If NELEMS is 0, the internal | ||||
1671 | vector is initialized to empty. */ | ||||
1672 | |||||
1673 | template<typename T> | ||||
1674 | inline void | ||||
1675 | vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) | ||||
1676 | { | ||||
1677 | v = new vec<T>; | ||||
1678 | v->create (nelems PASS_MEM_STAT); | ||||
1679 | } | ||||
1680 | |||||
1681 | |||||
1682 | /* A subclass of auto_vec <char *> that frees all of its elements on | ||||
1683 | deletion. */ | ||||
1684 | |||||
1685 | class auto_string_vec : public auto_vec <char *> | ||||
1686 | { | ||||
1687 | public: | ||||
1688 | ~auto_string_vec (); | ||||
1689 | }; | ||||
1690 | |||||
1691 | /* A subclass of auto_vec <T *> that deletes all of its elements on | ||||
1692 | destruction. | ||||
1693 | |||||
1694 | This is a crude way for a vec to "own" the objects it points to | ||||
1695 | and clean up automatically. | ||||
1696 | |||||
1697 | For example, no attempt is made to delete elements when an item | ||||
1698 | within the vec is overwritten. | ||||
1699 | |||||
1700 | We can't rely on gnu::unique_ptr within a container, | ||||
1701 | since we can't rely on move semantics in C++98. */ | ||||
1702 | |||||
1703 | template <typename T> | ||||
1704 | class auto_delete_vec : public auto_vec <T *> | ||||
1705 | { | ||||
1706 | public: | ||||
1707 | auto_delete_vec () {} | ||||
1708 | auto_delete_vec (size_t s) : auto_vec <T *> (s) {} | ||||
1709 | |||||
1710 | ~auto_delete_vec (); | ||||
1711 | |||||
1712 | private: | ||||
1713 | DISABLE_COPY_AND_ASSIGN(auto_delete_vec)auto_delete_vec (const auto_delete_vec&) = delete; void operator = (const auto_delete_vec &) = delete; | ||||
1714 | }; | ||||
1715 | |||||
1716 | /* Conditionally allocate heap memory for VEC and its internal vector. */ | ||||
1717 | |||||
1718 | template<typename T> | ||||
1719 | inline void | ||||
1720 | vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) | ||||
1721 | { | ||||
1722 | if (!vec) | ||||
1723 | vec_alloc (vec, nelems PASS_MEM_STAT); | ||||
1724 | } | ||||
1725 | |||||
1726 | |||||
1727 | /* Free the heap memory allocated by vector V and set it to NULL. */ | ||||
1728 | |||||
1729 | template<typename T> | ||||
1730 | inline void | ||||
1731 | vec_free (vec<T> *&v) | ||||
1732 | { | ||||
1733 | if (v == NULLnullptr) | ||||
1734 | return; | ||||
1735 | |||||
1736 | v->release (); | ||||
1737 | delete v; | ||||
1738 | v = NULLnullptr; | ||||
1739 | } | ||||
1740 | |||||
1741 | |||||
1742 | /* Return iteration condition and update PTR to point to the IX'th | ||||
1743 | element of this vector. Use this to iterate over the elements of a | ||||
1744 | vector as follows, | ||||
1745 | |||||
1746 | for (ix = 0; v.iterate (ix, &ptr); ix++) | ||||
1747 | continue; */ | ||||
1748 | |||||
1749 | template<typename T> | ||||
1750 | inline bool | ||||
1751 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const | ||||
1752 | { | ||||
1753 | if (m_vec) | ||||
1754 | return m_vec->iterate (ix, ptr); | ||||
1755 | else | ||||
1756 | { | ||||
1757 | *ptr = 0; | ||||
1758 | return false; | ||||
1759 | } | ||||
1760 | } | ||||
1761 | |||||
1762 | |||||
1763 | /* Return iteration condition and update *PTR to point to the | ||||
1764 | IX'th element of this vector. Use this to iterate over the | ||||
1765 | elements of a vector as follows, | ||||
1766 | |||||
1767 | for (ix = 0; v->iterate (ix, &ptr); ix++) | ||||
1768 | continue; | ||||
1769 | |||||
1770 | This variant is for vectors of objects. */ | ||||
1771 | |||||
1772 | template<typename T> | ||||
1773 | inline bool | ||||
1774 | vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const | ||||
1775 | { | ||||
1776 | if (m_vec) | ||||
1777 | return m_vec->iterate (ix, ptr); | ||||
1778 | else | ||||
1779 | { | ||||
1780 | *ptr = 0; | ||||
1781 | return false; | ||||
1782 | } | ||||
1783 | } | ||||
1784 | |||||
1785 | |||||
1786 | /* Convenience macro for forward iteration. */ | ||||
1787 | #define FOR_EACH_VEC_ELT(V, I, P)for (I = 0; (V).iterate ((I), &(P)); ++(I)) \ | ||||
1788 | for (I = 0; (V).iterate ((I), &(P)); ++(I)) | ||||
1789 | |||||
1790 | #define FOR_EACH_VEC_SAFE_ELT(V, I, P)for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) \ | ||||
1791 | for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) | ||||
1792 | |||||
1793 | /* Likewise, but start from FROM rather than 0. */ | ||||
1794 | #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) \ | ||||
1795 | for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) | ||||
1796 | |||||
1797 | /* Convenience macro for reverse iteration. */ | ||||
1798 | #define FOR_EACH_VEC_ELT_REVERSE(V, I, P)for (I = (V).length () - 1; (V).iterate ((I), &(P)); (I)-- ) \ | ||||
1799 | for (I = (V).length () - 1; \ | ||||
1800 | (V).iterate ((I), &(P)); \ | ||||
1801 | (I)--) | ||||
1802 | |||||
1803 | #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)for (I = vec_safe_length (V) - 1; vec_safe_iterate ((V), (I), &(P)); (I)--) \ | ||||
1804 | for (I = vec_safe_length (V) - 1; \ | ||||
1805 | vec_safe_iterate ((V), (I), &(P)); \ | ||||
1806 | (I)--) | ||||
1807 | |||||
1808 | /* auto_string_vec's dtor, freeing all contained strings, automatically | ||||
1809 | chaining up to ~auto_vec <char *>, which frees the internal buffer. */ | ||||
1810 | |||||
1811 | inline | ||||
1812 | auto_string_vec::~auto_string_vec () | ||||
1813 | { | ||||
1814 | int i; | ||||
1815 | char *str; | ||||
1816 | FOR_EACH_VEC_ELT (*this, i, str)for (i = 0; (*this).iterate ((i), &(str)); ++(i)) | ||||
1817 | free (str); | ||||
1818 | } | ||||
1819 | |||||
1820 | /* auto_delete_vec's dtor, deleting all contained items, automatically | ||||
1821 | chaining up to ~auto_vec <T*>, which frees the internal buffer. */ | ||||
1822 | |||||
1823 | template <typename T> | ||||
1824 | inline | ||||
1825 | auto_delete_vec<T>::~auto_delete_vec () | ||||
1826 | { | ||||
1827 | int i; | ||||
1828 | T *item; | ||||
1829 | FOR_EACH_VEC_ELT (*this, i, item)for (i = 0; (*this).iterate ((i), &(item)); ++(i)) | ||||
1830 | delete item; | ||||
1831 | } | ||||
1832 | |||||
1833 | |||||
1834 | /* Return a copy of this vector. */ | ||||
1835 | |||||
1836 | template<typename T> | ||||
1837 | inline vec<T, va_heap, vl_ptr> | ||||
1838 | vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECLvoid) const | ||||
1839 | { | ||||
1840 | vec<T, va_heap, vl_ptr> new_vec{ }; | ||||
1841 | if (length ()) | ||||
1842 | new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT); | ||||
1843 | return new_vec; | ||||
1844 | } | ||||
1845 | |||||
1846 | |||||
1847 | /* Ensure that the vector has at least RESERVE slots available (if | ||||
1848 | EXACT is false), or exactly RESERVE slots available (if EXACT is | ||||
1849 | true). | ||||
1850 | |||||
1851 | This may create additional headroom if EXACT is false. | ||||
1852 | |||||
1853 | Note that this can cause the embedded vector to be reallocated. | ||||
1854 | Returns true iff reallocation actually occurred. */ | ||||
1855 | |||||
1856 | template<typename T> | ||||
1857 | inline bool | ||||
1858 | vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) | ||||
1859 | { | ||||
1860 | if (space (nelems)) | ||||
1861 | return false; | ||||
1862 | |||||
1863 | /* For now play a game with va_heap::reserve to hide our auto storage if any, | ||||
1864 | this is necessary because it doesn't have enough information to know the | ||||
1865 | embedded vector is in auto storage, and so should not be freed. */ | ||||
1866 | vec<T, va_heap, vl_embed> *oldvec = m_vec; | ||||
1867 | unsigned int oldsize = 0; | ||||
1868 | bool handle_auto_vec = m_vec && using_auto_storage (); | ||||
1869 | if (handle_auto_vec) | ||||
1870 | { | ||||
1871 | m_vec = NULLnullptr; | ||||
1872 | oldsize = oldvec->length (); | ||||
1873 | nelems += oldsize; | ||||
1874 | } | ||||
1875 | |||||
1876 | va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); | ||||
1877 | if (handle_auto_vec) | ||||
1878 | { | ||||
1879 | vec_copy_construct (m_vec->address (), oldvec->address (), oldsize); | ||||
1880 | m_vec->m_vecpfx.m_num = oldsize; | ||||
1881 | } | ||||
1882 | |||||
1883 | return true; | ||||
1884 | } | ||||
1885 | |||||
1886 | |||||
1887 | /* Ensure that this vector has exactly NELEMS slots available. This | ||||
1888 | will not create additional headroom. Note this can cause the | ||||
1889 | embedded vector to be reallocated. Returns true iff reallocation | ||||
1890 | actually occurred. */ | ||||
1891 | |||||
1892 | template<typename T> | ||||
1893 | inline bool | ||||
1894 | vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) | ||||
1895 | { | ||||
1896 | return reserve (nelems, true PASS_MEM_STAT); | ||||
1897 | } | ||||
1898 | |||||
1899 | |||||
1900 | /* Create the internal vector and reserve NELEMS for it. This is | ||||
1901 | exactly like vec::reserve, but the internal vector is | ||||
1902 | unconditionally allocated from scratch. The old one, if it | ||||
1903 | existed, is lost. */ | ||||
1904 | |||||
1905 | template<typename T> | ||||
1906 | inline void | ||||
1907 | vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) | ||||
1908 | { | ||||
1909 | m_vec = NULLnullptr; | ||||
1910 | if (nelems > 0) | ||||
1911 | reserve_exact (nelems PASS_MEM_STAT); | ||||
1912 | } | ||||
1913 | |||||
1914 | |||||
1915 | /* Free the memory occupied by the embedded vector. */ | ||||
1916 | |||||
1917 | template<typename T> | ||||
1918 | inline void | ||||
1919 | vec<T, va_heap, vl_ptr>::release (void) | ||||
1920 | { | ||||
1921 | if (!m_vec) | ||||
1922 | return; | ||||
1923 | |||||
1924 | if (using_auto_storage ()) | ||||
1925 | { | ||||
1926 | m_vec->m_vecpfx.m_num = 0; | ||||
1927 | return; | ||||
1928 | } | ||||
1929 | |||||
1930 | va_heap::release (m_vec); | ||||
1931 | } | ||||
1932 | |||||
1933 | /* Copy the elements from SRC to the end of this vector as if by memcpy. | ||||
1934 | SRC and this vector must be allocated with the same memory | ||||
1935 | allocation mechanism. This vector is assumed to have sufficient | ||||
1936 | headroom available. */ | ||||
1937 | |||||
1938 | template<typename T> | ||||
1939 | inline void | ||||
1940 | vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) | ||||
1941 | { | ||||
1942 | if (src.length ()) | ||||
1943 | m_vec->splice (*(src.m_vec)); | ||||
1944 | } | ||||
1945 | |||||
1946 | |||||
1947 | /* Copy the elements in SRC to the end of this vector as if by memcpy. | ||||
1948 | SRC and this vector must be allocated with the same mechanism. | ||||
1949 | If there is not enough headroom in this vector, it will be reallocated | ||||
1950 | as needed. */ | ||||
1951 | |||||
1952 | template<typename T> | ||||
1953 | inline void | ||||
1954 | vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src | ||||
1955 | MEM_STAT_DECL) | ||||
1956 | { | ||||
1957 | if (src.length ()) | ||||
1958 | { | ||||
1959 | reserve_exact (src.length ()); | ||||
1960 | splice (src); | ||||
1961 | } | ||||
1962 | } | ||||
1963 | |||||
1964 | |||||
1965 | /* Push OBJ (a new element) onto the end of the vector. There must be | ||||
1966 | sufficient space in the vector. Return a pointer to the slot | ||||
1967 | where OBJ was inserted. */ | ||||
1968 | |||||
1969 | template<typename T> | ||||
1970 | inline T * | ||||
1971 | vec<T, va_heap, vl_ptr>::quick_push (const T &obj) | ||||
1972 | { | ||||
1973 | return m_vec->quick_push (obj); | ||||
1974 | } | ||||
1975 | |||||
1976 | |||||
1977 | /* Push a new element OBJ onto the end of this vector. Reallocates | ||||
1978 | the embedded vector, if needed. Return a pointer to the slot where | ||||
1979 | OBJ was inserted. */ | ||||
1980 | |||||
1981 | template<typename T> | ||||
1982 | inline T * | ||||
1983 | vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) | ||||
1984 | { | ||||
1985 | reserve (1, false PASS_MEM_STAT); | ||||
1986 | return quick_push (obj); | ||||
1987 | } | ||||
1988 | |||||
1989 | |||||
1990 | /* Pop and return the last element off the end of the vector. */ | ||||
1991 | |||||
1992 | template<typename T> | ||||
1993 | inline T & | ||||
1994 | vec<T, va_heap, vl_ptr>::pop (void) | ||||
1995 | { | ||||
1996 | return m_vec->pop (); | ||||
1997 | } | ||||
1998 | |||||
1999 | |||||
2000 | /* Set the length of the vector to LEN. The new length must be less | ||||
2001 | than or equal to the current length. This is an O(1) operation. */ | ||||
2002 | |||||
2003 | template<typename T> | ||||
2004 | inline void | ||||
2005 | vec<T, va_heap, vl_ptr>::truncate (unsigned size) | ||||
2006 | { | ||||
2007 | if (m_vec) | ||||
2008 | m_vec->truncate (size); | ||||
2009 | else | ||||
2010 | gcc_checking_assert (size == 0)((void)(!(size == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2010, __FUNCTION__), 0 : 0)); | ||||
2011 | } | ||||
2012 | |||||
2013 | |||||
2014 | /* Grow the vector to a specific length. LEN must be as long or | ||||
2015 | longer than the current length. The new elements are | ||||
2016 | uninitialized. Reallocate the internal vector, if needed. */ | ||||
2017 | |||||
2018 | template<typename T> | ||||
2019 | inline void | ||||
2020 | vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL) | ||||
2021 | { | ||||
2022 | unsigned oldlen = length (); | ||||
2023 | gcc_checking_assert (oldlen <= len)((void)(!(oldlen <= len) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2023, __FUNCTION__), 0 : 0)); | ||||
2024 | reserve (len - oldlen, exact PASS_MEM_STAT); | ||||
2025 | if (m_vec) | ||||
2026 | m_vec->quick_grow (len); | ||||
2027 | else | ||||
2028 | gcc_checking_assert (len == 0)((void)(!(len == 0) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2028, __FUNCTION__), 0 : 0)); | ||||
2029 | } | ||||
2030 | |||||
2031 | |||||
2032 | /* Grow the embedded vector to a specific length. LEN must be as | ||||
2033 | long or longer than the current length. The new elements are | ||||
2034 | initialized to zero. Reallocate the internal vector, if needed. */ | ||||
2035 | |||||
2036 | template<typename T> | ||||
2037 | inline void | ||||
2038 | vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact | ||||
2039 | MEM_STAT_DECL) | ||||
2040 | { | ||||
2041 | unsigned oldlen = length (); | ||||
2042 | size_t growby = len - oldlen; | ||||
2043 | safe_grow (len, exact PASS_MEM_STAT); | ||||
2044 | if (growby != 0) | ||||
2045 | vec_default_construct (address () + oldlen, growby); | ||||
2046 | } | ||||
2047 | |||||
2048 | |||||
2049 | /* Same as vec::safe_grow but without reallocation of the internal vector. | ||||
2050 | If the vector cannot be extended, a runtime assertion will be triggered. */ | ||||
2051 | |||||
2052 | template<typename T> | ||||
2053 | inline void | ||||
2054 | vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) | ||||
2055 | { | ||||
2056 | gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2056, __FUNCTION__), 0 : 0)); | ||||
2057 | m_vec->quick_grow (len); | ||||
2058 | } | ||||
2059 | |||||
2060 | |||||
2061 | /* Same as vec::quick_grow_cleared but without reallocation of the | ||||
2062 | internal vector. If the vector cannot be extended, a runtime | ||||
2063 | assertion will be triggered. */ | ||||
2064 | |||||
2065 | template<typename T> | ||||
2066 | inline void | ||||
2067 | vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) | ||||
2068 | { | ||||
2069 | gcc_checking_assert (m_vec)((void)(!(m_vec) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2069, __FUNCTION__), 0 : 0)); | ||||
2070 | m_vec->quick_grow_cleared (len); | ||||
2071 | } | ||||
2072 | |||||
2073 | |||||
2074 | /* Insert an element, OBJ, at the IXth position of this vector. There | ||||
2075 | must be sufficient space. */ | ||||
2076 | |||||
2077 | template<typename T> | ||||
2078 | inline void | ||||
2079 | vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) | ||||
2080 | { | ||||
2081 | m_vec->quick_insert (ix, obj); | ||||
2082 | } | ||||
2083 | |||||
2084 | |||||
2085 | /* Insert an element, OBJ, at the IXth position of the vector. | ||||
2086 | Reallocate the embedded vector, if necessary. */ | ||||
2087 | |||||
2088 | template<typename T> | ||||
2089 | inline void | ||||
2090 | vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) | ||||
2091 | { | ||||
2092 | reserve (1, false PASS_MEM_STAT); | ||||
2093 | quick_insert (ix, obj); | ||||
2094 | } | ||||
2095 | |||||
2096 | |||||
2097 | /* Remove an element from the IXth position of this vector. Ordering of | ||||
2098 | remaining elements is preserved. This is an O(N) operation due to | ||||
2099 | a memmove. */ | ||||
2100 | |||||
2101 | template<typename T> | ||||
2102 | inline void | ||||
2103 | vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) | ||||
2104 | { | ||||
2105 | m_vec->ordered_remove (ix); | ||||
2106 | } | ||||
2107 | |||||
2108 | |||||
2109 | /* Remove an element from the IXth position of this vector. Ordering | ||||
2110 | of remaining elements is destroyed. This is an O(1) operation. */ | ||||
2111 | |||||
2112 | template<typename T> | ||||
2113 | inline void | ||||
2114 | vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) | ||||
2115 | { | ||||
2116 | m_vec->unordered_remove (ix); | ||||
2117 | } | ||||
2118 | |||||
2119 | |||||
2120 | /* Remove LEN elements starting at the IXth. Ordering is retained. | ||||
2121 | This is an O(N) operation due to memmove. */ | ||||
2122 | |||||
2123 | template<typename T> | ||||
2124 | inline void | ||||
2125 | vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) | ||||
2126 | { | ||||
2127 | m_vec->block_remove (ix, len); | ||||
2128 | } | ||||
2129 | |||||
2130 | |||||
2131 | /* Sort the contents of this vector with qsort. CMP is the comparison | ||||
2132 | function to pass to qsort. */ | ||||
2133 | |||||
2134 | template<typename T> | ||||
2135 | inline void | ||||
2136 | vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))qsort (int (*cmp) (const void *, const void *)) | ||||
2137 | { | ||||
2138 | if (m_vec) | ||||
2139 | m_vec->qsort (cmp)qsort (cmp); | ||||
2140 | } | ||||
2141 | |||||
2142 | /* Sort the contents of this vector with qsort. CMP is the comparison | ||||
2143 | function to pass to qsort. */ | ||||
2144 | |||||
2145 | template<typename T> | ||||
2146 | inline void | ||||
2147 | vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *, | ||||
2148 | void *), void *data) | ||||
2149 | { | ||||
2150 | if (m_vec) | ||||
2151 | m_vec->sort (cmp, data); | ||||
2152 | } | ||||
2153 | |||||
2154 | /* Sort the contents of this vector with gcc_stablesort_r. CMP is the | ||||
2155 | comparison function to pass to qsort. */ | ||||
2156 | |||||
2157 | template<typename T> | ||||
2158 | inline void | ||||
2159 | vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *, | ||||
2160 | void *), void *data) | ||||
2161 | { | ||||
2162 | if (m_vec) | ||||
2163 | m_vec->stablesort (cmp, data); | ||||
2164 | } | ||||
2165 | |||||
2166 | /* Search the contents of the sorted vector with a binary search. | ||||
2167 | CMP is the comparison function to pass to bsearch. */ | ||||
2168 | |||||
2169 | template<typename T> | ||||
2170 | inline T * | ||||
2171 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, | ||||
2172 | int (*cmp) (const void *, const void *)) | ||||
2173 | { | ||||
2174 | if (m_vec) | ||||
2175 | return m_vec->bsearch (key, cmp); | ||||
2176 | return NULLnullptr; | ||||
2177 | } | ||||
2178 | |||||
2179 | /* Search the contents of the sorted vector with a binary search. | ||||
2180 | CMP is the comparison function to pass to bsearch. */ | ||||
2181 | |||||
2182 | template<typename T> | ||||
2183 | inline T * | ||||
2184 | vec<T, va_heap, vl_ptr>::bsearch (const void *key, | ||||
2185 | int (*cmp) (const void *, const void *, | ||||
2186 | void *), void *data) | ||||
2187 | { | ||||
2188 | if (m_vec) | ||||
2189 | return m_vec->bsearch (key, cmp, data); | ||||
2190 | return NULLnullptr; | ||||
2191 | } | ||||
2192 | |||||
2193 | |||||
2194 | /* Find and return the first position in which OBJ could be inserted | ||||
2195 | without changing the ordering of this vector. LESSTHAN is a | ||||
2196 | function that returns true if the first argument is strictly less | ||||
2197 | than the second. */ | ||||
2198 | |||||
2199 | template<typename T> | ||||
2200 | inline unsigned | ||||
2201 | vec<T, va_heap, vl_ptr>::lower_bound (T obj, | ||||
2202 | bool (*lessthan)(const T &, const T &)) | ||||
2203 | const | ||||
2204 | { | ||||
2205 | return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; | ||||
2206 | } | ||||
2207 | |||||
2208 | /* Return true if SEARCH is an element of V. Note that this is O(N) in the | ||||
2209 | size of the vector and so should be used with care. */ | ||||
2210 | |||||
2211 | template<typename T> | ||||
2212 | inline bool | ||||
2213 | vec<T, va_heap, vl_ptr>::contains (const T &search) const | ||||
2214 | { | ||||
2215 | return m_vec ? m_vec->contains (search) : false; | ||||
2216 | } | ||||
2217 | |||||
2218 | /* Reverse content of the vector. */ | ||||
2219 | |||||
2220 | template<typename T> | ||||
2221 | inline void | ||||
2222 | vec<T, va_heap, vl_ptr>::reverse (void) | ||||
2223 | { | ||||
2224 | unsigned l = length (); | ||||
2225 | T *ptr = address (); | ||||
2226 | |||||
2227 | for (unsigned i = 0; i < l / 2; i++) | ||||
2228 | std::swap (ptr[i], ptr[l - i - 1]); | ||||
2229 | } | ||||
2230 | |||||
2231 | template<typename T> | ||||
2232 | inline bool | ||||
2233 | vec<T, va_heap, vl_ptr>::using_auto_storage () const | ||||
2234 | { | ||||
2235 | return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false; | ||||
2236 | } | ||||
2237 | |||||
2238 | /* Release VEC and call release of all element vectors. */ | ||||
2239 | |||||
2240 | template<typename T> | ||||
2241 | inline void | ||||
2242 | release_vec_vec (vec<vec<T> > &vec) | ||||
2243 | { | ||||
2244 | for (unsigned i = 0; i < vec.length (); i++) | ||||
2245 | vec[i].release (); | ||||
2246 | |||||
2247 | vec.release (); | ||||
2248 | } | ||||
2249 | |||||
2250 | // Provide a subset of the std::span functionality. (We can't use std::span | ||||
2251 | // itself because it's a C++20 feature.) | ||||
2252 | // | ||||
2253 | // In addition, provide an invalid value that is distinct from all valid | ||||
2254 | // sequences (including the empty sequence). This can be used to return | ||||
2255 | // failure without having to use std::optional. | ||||
2256 | // | ||||
2257 | // There is no operator bool because it would be ambiguous whether it is | ||||
2258 | // testing for a valid value or an empty sequence. | ||||
2259 | template<typename T> | ||||
2260 | class array_slice | ||||
2261 | { | ||||
2262 | template<typename OtherT> friend class array_slice; | ||||
2263 | |||||
2264 | public: | ||||
2265 | using value_type = T; | ||||
2266 | using iterator = T *; | ||||
2267 | using const_iterator = const T *; | ||||
2268 | |||||
2269 | array_slice () : m_base (nullptr), m_size (0) {} | ||||
2270 | |||||
2271 | template<typename OtherT> | ||||
2272 | array_slice (array_slice<OtherT> other) | ||||
2273 | : m_base (other.m_base), m_size (other.m_size) {} | ||||
2274 | |||||
2275 | array_slice (iterator base, unsigned int size) | ||||
2276 | : m_base (base), m_size (size) {} | ||||
2277 | |||||
2278 | template<size_t N> | ||||
2279 | array_slice (T (&array)[N]) : m_base (array), m_size (N) {} | ||||
2280 | |||||
2281 | template<typename OtherT> | ||||
2282 | array_slice (const vec<OtherT> &v) | ||||
2283 | : m_base (v.address ()), m_size (v.length ()) {} | ||||
2284 | |||||
2285 | template<typename OtherT> | ||||
2286 | array_slice (vec<OtherT> &v) | ||||
2287 | : m_base (v.address ()), m_size (v.length ()) {} | ||||
2288 | |||||
2289 | template<typename OtherT> | ||||
2290 | array_slice (const vec<OtherT, va_gc> *v) | ||||
2291 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} | ||||
2292 | |||||
2293 | template<typename OtherT> | ||||
2294 | array_slice (vec<OtherT, va_gc> *v) | ||||
2295 | : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {} | ||||
2296 | |||||
2297 | iterator begin () { return m_base; } | ||||
2298 | iterator end () { return m_base + m_size; } | ||||
2299 | |||||
2300 | const_iterator begin () const { return m_base; } | ||||
2301 | const_iterator end () const { return m_base + m_size; } | ||||
2302 | |||||
2303 | value_type &front (); | ||||
2304 | value_type &back (); | ||||
2305 | value_type &operator[] (unsigned int i); | ||||
2306 | |||||
2307 | const value_type &front () const; | ||||
2308 | const value_type &back () const; | ||||
2309 | const value_type &operator[] (unsigned int i) const; | ||||
2310 | |||||
2311 | size_t size () const { return m_size; } | ||||
2312 | size_t size_bytes () const { return m_size * sizeof (T); } | ||||
2313 | bool empty () const { return m_size == 0; } | ||||
2314 | |||||
2315 | // An invalid array_slice that represents a failed operation. This is | ||||
2316 | // distinct from an empty slice, which is a valid result in some contexts. | ||||
2317 | static array_slice invalid () { return { nullptr, ~0U }; } | ||||
2318 | |||||
2319 | // True if the array is valid, false if it is an array like INVALID. | ||||
2320 | bool is_valid () const { return m_base || m_size == 0; } | ||||
2321 | |||||
2322 | private: | ||||
2323 | iterator m_base; | ||||
2324 | unsigned int m_size; | ||||
2325 | }; | ||||
2326 | |||||
2327 | template<typename T> | ||||
2328 | inline typename array_slice<T>::value_type & | ||||
2329 | array_slice<T>::front () | ||||
2330 | { | ||||
2331 | gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2331, __FUNCTION__), 0 : 0)); | ||||
2332 | return m_base[0]; | ||||
2333 | } | ||||
2334 | |||||
2335 | template<typename T> | ||||
2336 | inline const typename array_slice<T>::value_type & | ||||
2337 | array_slice<T>::front () const | ||||
2338 | { | ||||
2339 | gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2339, __FUNCTION__), 0 : 0)); | ||||
2340 | return m_base[0]; | ||||
2341 | } | ||||
2342 | |||||
2343 | template<typename T> | ||||
2344 | inline typename array_slice<T>::value_type & | ||||
2345 | array_slice<T>::back () | ||||
2346 | { | ||||
2347 | gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2347, __FUNCTION__), 0 : 0)); | ||||
2348 | return m_base[m_size - 1]; | ||||
2349 | } | ||||
2350 | |||||
2351 | template<typename T> | ||||
2352 | inline const typename array_slice<T>::value_type & | ||||
2353 | array_slice<T>::back () const | ||||
2354 | { | ||||
2355 | gcc_checking_assert (m_size)((void)(!(m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2355, __FUNCTION__), 0 : 0)); | ||||
2356 | return m_base[m_size - 1]; | ||||
2357 | } | ||||
2358 | |||||
2359 | template<typename T> | ||||
2360 | inline typename array_slice<T>::value_type & | ||||
2361 | array_slice<T>::operator[] (unsigned int i) | ||||
2362 | { | ||||
2363 | gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2363, __FUNCTION__), 0 : 0)); | ||||
2364 | return m_base[i]; | ||||
2365 | } | ||||
2366 | |||||
2367 | template<typename T> | ||||
2368 | inline const typename array_slice<T>::value_type & | ||||
2369 | array_slice<T>::operator[] (unsigned int i) const | ||||
2370 | { | ||||
2371 | gcc_checking_assert (i < m_size)((void)(!(i < m_size) ? fancy_abort ("/buildworker/marxinbox-gcc-clang-static-analyzer/build/gcc/vec.h" , 2371, __FUNCTION__), 0 : 0)); | ||||
2372 | return m_base[i]; | ||||
2373 | } | ||||
2374 | |||||
2375 | template<typename T> | ||||
2376 | array_slice<T> | ||||
2377 | make_array_slice (T *base, unsigned int size) | ||||
2378 | { | ||||
2379 | return array_slice<T> (base, size); | ||||
2380 | } | ||||
2381 | |||||
2382 | #if (GCC_VERSION(4 * 1000 + 2) >= 3000) | ||||
2383 | # pragma GCC poison m_vec m_vecpfx m_vecdata | ||||
2384 | #endif | ||||
2385 | |||||
2386 | #endif // GCC_VEC_H |