Makefile Targets#
These targets are available from the gcc
directory:
all
This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built.
doc
Produce info-formatted documentation and man pages. Essentially it calls
make man
andmake info
.pdf
Produce PDF-formatted documentation.
html
Produce HTML-formatted documentation.
man
Generate man pages.
info
Generate info-formatted pages.
mostlyclean
Delete the files made while building the compiler.
clean
That, and all the other files built by
make all
.distclean
That, and all the files created by configure.
maintainer-clean
Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build GCC.
srcextra
Generates files in the source directory that are not version-controlled but should go into a release tarball.
srcinfo
srcman
Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball.
install
Installs GCC.
uninstall
Deletes installed files, though this is not supported.
check
Run the testsuite. This creates a
testsuite
subdirectory that has various.sum
and.log
files containing the results of the testing. You can run subsets with, for example,make check-gcc
. You can specify specific tests by settingRUNTESTFLAGS
to be the name of the.exp
file, optionally followed by (for some tests) an equals and a file wildcard, like:make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"
Note that running the testsuite may require additional tools be installed, such as Tcl or DejaGnu.
The toplevel tree from which you start GCC compilation is not the GCC directory, but rather a complex Makefile that coordinates the various steps of the build, including bootstrapping the compiler and using the new compiler to build target libraries.
When GCC is configured for a native configuration, the default action
for make is to do a full three-stage bootstrap. This means
that GCC is built three times—once with the native compiler, once with
the native-built compiler it just built, and once with the compiler it
built the second time. In theory, the last two should produce the same
results, which make compare
can check. Each stage is configured
separately and compiled into a separate directory, to minimize problems
due to ABI incompatibilities between the native compiler and GCC.
If you do a change, rebuilding will also start from the first stage and ‘bubble’ up the change through the three stages. Each stage is taken from its build directory (if it had been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for example, continue a bootstrap after fixing a bug which causes the stage2 build to crash. It does not provide as good coverage of the compiler as bootstrapping from scratch, but it ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions by mistake), and avoids spurious bootstrap comparison failuresExcept if the compiler was buggy and miscompiled some of the files that were not modified. In this case, it’s best to use make restrap.
Other targets available from the top level include:
bootstrap-lean
Like
bootstrap
, except that the various stages are removed once they’re no longer needed. This saves disk space.bootstrap2
bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a ‘lean’ bootstrap is approximately independent of the number of stages.
stageN-bubble (N = 1...4, profile, feedback)
Rebuild all the stages up to
N
, with the appropriate flags, ‘bubbling’ the changes as described above.all-stageN (N = 1...4, profile, feedback)
Assuming that stage
N
has already been built, rebuild it with the appropriate flags. This is rarely needed.cleanstrap
Remove everything (
make clean
) and rebuilds (make bootstrap
).compare
Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled.
distclean-stageN (N = 1...4, profile, feedback)
Wipe stage
N
and all the following ones.For example,
make distclean-stage3
wipes stage 3 and all the following ones, so that another make then rebuilds them from scratch. This can be useful if you’re doing changes where ‘bubbling’ the changes as described above is not sufficient, but a full make restrap isn’t necessary either.profiledbootstrap
Builds a compiler with profiling feedback information. In this case, the second and third stages are named
profile
andfeedback
, respectively. For more information, see the installation instructions.restrap
Restart a bootstrap, so that everything that was not built with the system compiler is rebuilt.
stageN-start (N = 1...4, profile, feedback)
For each package that is bootstrapped, rename directories so that, for example,
gcc
points to the stageN
GCC, compiled with the stageN-1
GCCCustomarily, the system compiler is also termed thestage0
GCC..
You will invoke this target if you need to test or debug the stage
N
GCC. If you only need to execute GCC (but you need not runmake
either to rebuild it or to run test suites), you should be able to work directly in thestageN-gcc
directory. This makes it easier to debug multiple stages in parallel.stage
For each package that is bootstrapped, relocate its build directory to indicate its stage. For example, if the
gcc
directory points to the stage2 GCC, after invoking this target it will be renamed tostage2-gcc
.If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set
BOOT_CFLAGS
on the command line when doingmake
.
Usually, the first stage only builds the languages that the compiler
is written in: typically, C and maybe Ada. If you are debugging a
miscompilation of a different stage2 front-end (for example, of the
Fortran front-end), you may want to have front-ends for other languages
in the first stage as well. To do so, set STAGE1_LANGUAGES
on the command line when doing make
.
For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a command like
make stage2-bubble STAGE1_LANGUAGES=c,fortran
Alternatively, you can use per-language targets to build and test languages that are not enabled by default in stage1. For example, make f951 will build a Fortran compiler even in the stage1 build directory.