Vague Linkage#

There are several constructs in C++ that require space in the object file but are not clearly tied to a single translation unit. We say that these constructs have ‘vague linkage’. Typically such constructs are emitted wherever they are needed, though sometimes we can be more clever.

Inline Functions

Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can usually be inlined, but sometimes an out-of-line copy is necessary, if the address of the function is taken or if inlining fails. In general, we emit an out-of-line copy in all translation units where one is needed. As an exception, we only emit inline virtual functions with the vtable, since it always requires a copy.

Local static variables and string constants used in an inline function are also considered to have vague linkage, since they must be shared between all inlined and out-of-line instances of the function.

VTables

C++ virtual functions are implemented in most compilers using a lookup table, known as a vtable. The vtable contains pointers to the virtual functions provided by a class, and each object of the class contains a pointer to its vtable (or vtables, in some multiple-inheritance situations). If the class declares any non-inline, non-pure virtual functions, the first one is chosen as the ‘key method’ for the class, and the vtable is only emitted in the translation unit where the key method is defined.

Note

If the chosen key method is later defined as inline, the vtable is still emitted in every translation unit that defines it. Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there.

type_info objects

C++ requires information about types to be written out in order to implement dynamic_cast, typeid and exception handling. For polymorphic classes (classes with virtual functions), the type_info object is written out along with the vtable so that dynamic_cast can determine the dynamic type of a class object at run time. For all other types, we write out the type_info object when it is used: when applying typeid to an expression, throwing an object, or referring to a type in a catch clause or exception specification.

Template Instantiations

Most everything in this section also applies to template instantiations, but there are other options as well. See Where’s the Template?.

When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of these constructs will be discarded at link time. This is known as COMDAT support.

On targets that don’t support COMDAT, but do support weak symbols, GCC uses them. This way one copy overrides all the others, but the unused copies still take up space in the executable.

For targets that do not support either COMDAT or weak symbols, most entities with vague linkage are emitted as local symbols to avoid duplicate definition errors from the linker. This does not happen for local statics in inlines, however, as having multiple copies almost certainly breaks things.

See C++ Interface and Implementation Pragmas, for another way to control placement of these constructs.