Tutorial part 2: Creating a trivial machine code function#
Consider this C function:
int square (int i)
{
return i * i;
}
How can we construct this at run-time using libgccjit?
First we need to include the relevant header:
#include <libgccjit.h>
All state associated with compilation is associated with a gcc_jit_context*.
Create one using gcc_jit_context_acquire()
:
gcc_jit_context *ctxt;
ctxt = gcc_jit_context_acquire ();
The JIT library has a system of types. It is statically-typed: every
expression is of a specific type, fixed at compile-time. In our example,
all of the expressions are of the C int type, so let’s obtain this from
the context, as a gcc_jit_type*, using
gcc_jit_context_get_type()
:
gcc_jit_type *int_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
gcc_jit_type* is an example of a “contextual” object: every entity in the API is associated with a gcc_jit_context*.
Memory management is easy: all such “contextual” objects are automatically
cleaned up for you when the context is released, using
gcc_jit_context_release()
:
gcc_jit_context_release (ctxt);
so you don’t need to manually track and cleanup all objects, just the contexts.
Although the API is C-based, there is a form of class hierarchy, which looks like this:
+- gcc_jit_object
+- gcc_jit_location
+- gcc_jit_type
+- gcc_jit_struct
+- gcc_jit_field
+- gcc_jit_function
+- gcc_jit_block
+- gcc_jit_rvalue
+- gcc_jit_lvalue
+- gcc_jit_param
There are casting methods for upcasting from subclasses to parent classes.
For example, gcc_jit_type_as_object()
:
gcc_jit_object *obj = gcc_jit_type_as_object (int_type);
One thing you can do with a gcc_jit_object* is
to ask it for a human-readable description, using
gcc_jit_object_get_debug_string()
:
printf ("obj: %s\n", gcc_jit_object_get_debug_string (obj));
giving this text on stdout:
obj: int
This is invaluable when debugging.
Let’s create the function. To do so, we first need to construct
its single parameter, specifying its type and giving it a name,
using gcc_jit_context_new_param()
:
gcc_jit_param *param_i =
gcc_jit_context_new_param (ctxt, NULL, int_type, "i");
Now we can create the function, using
gcc_jit_context_new_function()
:
gcc_jit_function *func =
gcc_jit_context_new_function (ctxt, NULL,
GCC_JIT_FUNCTION_EXPORTED,
int_type,
"square",
1, ¶m_i,
0);
To define the code within the function, we must create basic blocks containing statements.
Every basic block contains a list of statements, eventually terminated by a statement that either returns, or jumps to another basic block.
Our function has no control-flow, so we just need one basic block:
gcc_jit_block *block = gcc_jit_function_new_block (func, NULL);
Our basic block is relatively simple: it immediately terminates by returning the value of an expression.
We can build the expression using gcc_jit_context_new_binary_op()
:
gcc_jit_rvalue *expr =
gcc_jit_context_new_binary_op (
ctxt, NULL,
GCC_JIT_BINARY_OP_MULT, int_type,
gcc_jit_param_as_rvalue (param_i),
gcc_jit_param_as_rvalue (param_i));
A gcc_jit_rvalue* is another example of a
gcc_jit_object* subclass. We can upcast it using
gcc_jit_rvalue_as_object()
and as before print it with
gcc_jit_object_get_debug_string()
.
printf ("expr: %s\n",
gcc_jit_object_get_debug_string (
gcc_jit_rvalue_as_object (expr)));
giving this output:
expr: i * i
Creating the expression in itself doesn’t do anything; we have to add this expression to a statement within the block. In this case, we use it to build a return statement, which terminates the basic block:
gcc_jit_block_end_with_return (block, NULL, expr);
OK, we’ve populated the context. We can now compile it using
gcc_jit_context_compile()
:
gcc_jit_result *result;
result = gcc_jit_context_compile (ctxt);
and get a gcc_jit_result*.
At this point we’re done with the context; we can release it:
gcc_jit_context_release (ctxt);
We can now use gcc_jit_result_get_code()
to look up a specific
machine code routine within the result, in this case, the function we
created above.
void *fn_ptr = gcc_jit_result_get_code (result, "square");
if (!fn_ptr)
{
fprintf (stderr, "NULL fn_ptr");
goto error;
}
We can now cast the pointer to an appropriate function pointer type, and then call it:
typedef int (*fn_type) (int);
fn_type square = (fn_type)fn_ptr;
printf ("result: %d", square (5));
result: 25
Once we’re done with the code, we can release the result:
gcc_jit_result_release (result);
We can’t call square
anymore once we’ve released result
.
Error-handling#
Various kinds of errors are possible when using the API, such as mismatched types in an assignment. You can only compile and get code from a context if no errors occur.
Errors are printed on stderr; they typically contain the name of the API entrypoint where the error occurred, and pertinent information on the problem:
./buggy-program: error: gcc_jit_block_add_assignment: mismatching types: assignment to i (type: int) from "hello world" (type: const char *)
The API is designed to cope with errors without crashing, so you can get away with having a single error-handling check in your code:
void *fn_ptr = gcc_jit_result_get_code (result, "square");
if (!fn_ptr)
{
fprintf (stderr, "NULL fn_ptr");
goto error;
}
For more information, see the error-handling guide within the Topic eference.
Options#
To get more information on what’s going on, you can set debugging flags
on the context using gcc_jit_context_set_bool_option()
.
Setting GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE
will dump a
C-like representation to stderr when you compile (GCC’s “GIMPLE”
representation):
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
1);
result = gcc_jit_context_compile (ctxt);
square (signed int i)
{
signed int D.260;
entry:
D.260 = i * i;
return D.260;
}
We can see the generated machine code in assembler form (on stderr) by
setting GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE
on the context
before compiling:
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
1);
result = gcc_jit_context_compile (ctxt);
.file "fake.c"
.text
.globl square
.type square, @function
square:
.LFB6:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl %edi, -4(%rbp)
.L14:
movl -4(%rbp), %eax
imull -4(%rbp), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE6:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2)"
.section .note.GNU-stack,"",@progbits
By default, no optimizations are performed, the equivalent of GCC’s
-O0 option. We can turn things up to e.g. -O3 by calling
gcc_jit_context_set_int_option()
with
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL
:
gcc_jit_context_set_int_option (
ctxt,
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
3);
.file "fake.c"
.text
.p2align 4,,15
.globl square
.type square, @function
square:
.LFB7:
.cfi_startproc
.L16:
movl %edi, %eax
imull %edi, %eax
ret
.cfi_endproc
.LFE7:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2)"
.section .note.GNU-stack,"",@progbits
Naturally this has only a small effect on such a trivial function.
Full example#
Here’s what the above looks like as a complete program:
/* Usage example for libgccjit.so Copyright (C) 2014-2022 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include <libgccjit.h> #include <stdlib.h> #include <stdio.h> void create_code (gcc_jit_context *ctxt) { /* Let's try to inject the equivalent of: int square (int i) { return i * i; } */ gcc_jit_type *int_type = gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT); gcc_jit_param *param_i = gcc_jit_context_new_param (ctxt, NULL, int_type, "i"); gcc_jit_function *func = gcc_jit_context_new_function (ctxt, NULL, GCC_JIT_FUNCTION_EXPORTED, int_type, "square", 1, ¶m_i, 0); gcc_jit_block *block = gcc_jit_function_new_block (func, NULL); gcc_jit_rvalue *expr = gcc_jit_context_new_binary_op ( ctxt, NULL, GCC_JIT_BINARY_OP_MULT, int_type, gcc_jit_param_as_rvalue (param_i), gcc_jit_param_as_rvalue (param_i)); gcc_jit_block_end_with_return (block, NULL, expr); } int main (int argc, char **argv) { gcc_jit_context *ctxt = NULL; gcc_jit_result *result = NULL; /* Get a "context" object for working with the library. */ ctxt = gcc_jit_context_acquire (); if (!ctxt) { fprintf (stderr, "NULL ctxt"); goto error; } /* Set some options on the context. Let's see the code being generated, in assembler form. */ gcc_jit_context_set_bool_option ( ctxt, GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE, 0); /* Populate the context. */ create_code (ctxt); /* Compile the code. */ result = gcc_jit_context_compile (ctxt); if (!result) { fprintf (stderr, "NULL result"); goto error; } /* We're done with the context; we can release it: */ gcc_jit_context_release (ctxt); ctxt = NULL; /* Extract the generated code from "result". */ void *fn_ptr = gcc_jit_result_get_code (result, "square"); if (!fn_ptr) { fprintf (stderr, "NULL fn_ptr"); goto error; } typedef int (*fn_type) (int); fn_type square = (fn_type)fn_ptr; printf ("result: %d\n", square (5)); error: if (ctxt) gcc_jit_context_release (ctxt); if (result) gcc_jit_result_release (result); return 0; }
Building and running it:
$ gcc \
tut02-square.c \
-o tut02-square \
-lgccjit
# Run the built program:
$ ./tut02-square
result: 25