Creating and using functions#

Params#

type gcc_jit_param#

A gcc_jit_param represents a parameter to a function.

gcc_jit_param *gcc_jit_context_new_param(gcc_jit_context *ctxt, gcc_jit_location *loc, gcc_jit_type *type, const char *name)#

In preparation for creating a function, create a new parameter of the given type and name.

The parameter type must be non-void.

The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.

Parameters are lvalues, and thus are also rvalues (and objects), so the following upcasts are available:

gcc_jit_lvalue *gcc_jit_param_as_lvalue(gcc_jit_param *param)#

Upcasting from param to lvalue.

gcc_jit_rvalue *gcc_jit_param_as_rvalue(gcc_jit_param *param)#

Upcasting from param to rvalue.

gcc_jit_object *gcc_jit_param_as_object(gcc_jit_param *param)#

Upcasting from param to object.

Functions#

type gcc_jit_function#

A gcc_jit_function represents a function - either one that we’re creating ourselves, or one that we’re referencing.

gcc_jit_function *gcc_jit_context_new_function(gcc_jit_context *ctxt, gcc_jit_location *loc, enum gcc_jit_function_kind kind, gcc_jit_type *return_type, const char *name, int num_params, gcc_jit_param **params, int is_variadic)#

Create a gcc_jit_function with the given name and parameters.

enum gcc_jit_function_kind#

This enum controls the kind of function created, and has the following values:

GCC_JIT_FUNCTION_EXPORTED#

Function is defined by the client code and visible by name outside of the JIT.

This value is required if you want to extract machine code for this function from a gcc_jit_result via gcc_jit_result_get_code().

GCC_JIT_FUNCTION_INTERNAL#

Function is defined by the client code, but is invisible outside of the JIT. Analogous to a “static” function.

GCC_JIT_FUNCTION_IMPORTED#

Function is not defined by the client code; we’re merely referring to it. Analogous to using an “extern” function from a header file.

GCC_JIT_FUNCTION_ALWAYS_INLINE#

Function is only ever inlined into other functions, and is invisible outside of the JIT.

Analogous to prefixing with inline and adding __attribute__((always_inline))

Inlining will only occur when the optimization level is above 0; when optimization is off, this is essentially the same as GCC_JIT_FUNCTION_INTERNAL.

The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.

gcc_jit_function *gcc_jit_context_get_builtin_function(gcc_jit_context *ctxt, const char *name)#

Get the gcc_jit_function for the built-in function with the given name. For example:

gcc_jit_function *fn
  = gcc_jit_context_get_builtin_function (ctxt, "__builtin_memcpy");

Note

Due to technical limitations with how libgccjit interacts with the insides of GCC, not all built-in functions are supported. More precisely, not all types are supported for parameters of built-in functions from libgccjit. Attempts to get a built-in function that uses such a parameter will lead to an error being emitted within the context.

gcc_jit_object *gcc_jit_function_as_object(gcc_jit_function *func)#

Upcasting from function to object.

gcc_jit_param *gcc_jit_function_get_param(gcc_jit_function *func, int index)#

Get the param of the given index (0-based).

void gcc_jit_function_dump_to_dot(gcc_jit_function *func, const char *path)#

Emit the function in graphviz format to the given path.

gcc_jit_lvalue *gcc_jit_function_new_local(gcc_jit_function *func, gcc_jit_location *loc, gcc_jit_type *type, const char *name)#

Create a new local variable within the function, of the given type and name.

The parameter type must be non-void.

The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.

size_t gcc_jit_function_get_param_count(gcc_jit_function *func)#

Get the number of parameters of the function.

gcc_jit_type *gcc_jit_function_get_return_type(gcc_jit_function *func)#

Get the return type of the function.

The API entrypoints relating to getting info about parameters and return types:

were added in LIBGCCJIT_ABI_16; you can test for their presence using

#ifdef LIBGCCJIT_HAVE_REFLECTION
type gcc_jit_case#

Blocks#

type gcc_jit_block#

A gcc_jit_block represents a basic block within a function i.e. a sequence of statements with a single entry point and a single exit point.

The first basic block that you create within a function will be the entrypoint.

Each basic block that you create within a function must be terminated, either with a conditional, a jump, a return, or a switch.

It’s legal to have multiple basic blocks that return within one function.

gcc_jit_block *gcc_jit_function_new_block(gcc_jit_function *func, const char *name)#

Create a basic block of the given name. The name may be NULL, but providing meaningful names is often helpful when debugging: it may show up in dumps of the internal representation, and in error messages. It is copied, so the input buffer does not need to outlive the call; you can pass in a pointer to an on-stack buffer, e.g.:

for (pc = 0; pc < fn->fn_num_ops; pc++)
 {
   char buf[16];
   sprintf (buf, "instr%i", pc);
   state.op_blocks[pc] = gcc_jit_function_new_block (state.fn, buf);
 }
gcc_jit_object *gcc_jit_block_as_object(gcc_jit_block *block)#

Upcast from block to object.

gcc_jit_function *gcc_jit_block_get_function(gcc_jit_block *block)#

Which function is this block within?

Statements#

void gcc_jit_block_add_eval(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_rvalue *rvalue)#

Add evaluation of an rvalue, discarding the result (e.g. a function call that “returns” void).

This is equivalent to this C code:

(void)expression;
void gcc_jit_block_add_assignment(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_lvalue *lvalue, gcc_jit_rvalue *rvalue)#

Add evaluation of an rvalue, assigning the result to the given lvalue.

This is roughly equivalent to this C code:

lvalue = rvalue;
void gcc_jit_block_add_assignment_op(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_lvalue *lvalue, enum gcc_jit_binary_op op, gcc_jit_rvalue *rvalue)#

Add evaluation of an rvalue, using the result to modify an lvalue.

This is analogous to “+=” and friends:

lvalue += rvalue;
lvalue *= rvalue;
lvalue /= rvalue;

etc. For example:

/* "i++" */
gcc_jit_block_add_assignment_op (
  loop_body, NULL,
  i,
  GCC_JIT_BINARY_OP_PLUS,
  gcc_jit_context_one (ctxt, int_type));
void gcc_jit_block_add_comment(gcc_jit_block *block, gcc_jit_location *loc, const char *text)#

Add a no-op textual comment to the internal representation of the code. It will be optimized away, but will be visible in the dumps seen via GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE and GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE, and thus may be of use when debugging how your project’s internal representation gets converted to the libgccjit IR.

The parameter text must be non-NULL. It is copied, so the input buffer does not need to outlive the call. For example:

char buf[100];
snprintf (buf, sizeof (buf),
          "op%i: %s",
          pc, opcode_names[op->op_opcode]);
gcc_jit_block_add_comment (block, loc, buf);
void gcc_jit_block_end_with_conditional(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_rvalue *boolval, gcc_jit_block *on_true, gcc_jit_block *on_false)#

Terminate a block by adding evaluation of an rvalue, branching on the result to the appropriate successor block.

This is roughly equivalent to this C code:

if (boolval)
  goto on_true;
else
  goto on_false;

block, boolval, on_true, and on_false must be non-NULL.

void gcc_jit_block_end_with_jump(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_block *target)#

Terminate a block by adding a jump to the given target block.

This is roughly equivalent to this C code:

goto target;
void gcc_jit_block_end_with_return(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_rvalue *rvalue)#

Terminate a block by adding evaluation of an rvalue, returning the value.

This is roughly equivalent to this C code:

return expression;
void gcc_jit_block_end_with_void_return(gcc_jit_block *block, gcc_jit_location *loc)#

Terminate a block by adding a valueless return, for use within a function with “void” return type.

This is equivalent to this C code:

return;
void gcc_jit_block_end_with_switch(gcc_jit_block *block, gcc_jit_location *loc, gcc_jit_rvalue *expr, gcc_jit_block *default_block, int num_cases, gcc_jit_case **cases)#

Terminate a block by adding evalation of an rvalue, then performing a multiway branch.

This is roughly equivalent to this C code:

switch (expr)
  {
  default:
    goto default_block;

  case C0.min_value ... C0.max_value:
    goto C0.dest_block;

  case C1.min_value ... C1.max_value:
    goto C1.dest_block;

  ...etc...

  case C[N - 1].min_value ... C[N - 1].max_value:
    goto C[N - 1].dest_block;
}

block, expr, default_block and cases must all be non-NULL.

expr must be of the same integer type as all of the min_value and max_value within the cases.

num_cases must be >= 0.

The ranges of the cases must not overlap (or have duplicate values).

The API entrypoints relating to switch statements and cases:

were added in LIBGCCJIT_ABI_3; you can test for their presence using

#ifdef LIBGCCJIT_HAVE_SWITCH_STATEMENTS
type gcc_jit_case#

A gcc_jit_case represents a case within a switch statement, and is created within a particular gcc_jit_context using gcc_jit_context_new_case().

Each case expresses a multivalued range of integer values. You can express single-valued cases by passing in the same value for both min_value and max_value.

gcc_jit_case *gcc_jit_context_new_case(gcc_jit_context *ctxt, gcc_jit_rvalue *min_value, gcc_jit_rvalue *max_value, gcc_jit_block *dest_block)#

Create a new gcc_jit_case instance for use in a switch statement. min_value and max_value must be constants of an integer type, which must match that of the expression of the switch statement.

dest_block must be within the same function as the switch statement.

gcc_jit_object *gcc_jit_case_as_object(gcc_jit_case *case_)#

Upcast from a case to an object.

Here’s an example of creating a switch statement:


void
create_code (gcc_jit_context *ctxt, void *user_data)
{
  /* Let's try to inject the equivalent of:
      int
      test_switch (int x)
      {
	switch (x)
	  {
	  case 0 ... 5:
	     return 3;

	  case 25 ... 27:
	     return 4;

	  case -42 ... -17:
	     return 83;

	  case 40:
	     return 8;

	  default:
	     return 10;
	  }
      }
   */
  gcc_jit_type *t_int =
    gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
  gcc_jit_type *return_type = t_int;
  gcc_jit_param *x =
    gcc_jit_context_new_param (ctxt, NULL, t_int, "x");
  gcc_jit_param *params[1] = {x};
  gcc_jit_function *func =
    gcc_jit_context_new_function (ctxt, NULL,
				  GCC_JIT_FUNCTION_EXPORTED,
				  return_type,
				  "test_switch",
				  1, params, 0);

  gcc_jit_block *b_initial =
    gcc_jit_function_new_block (func, "initial");

  gcc_jit_block *b_default =
    gcc_jit_function_new_block (func, "default");
  gcc_jit_block *b_case_0_5 =
    gcc_jit_function_new_block (func, "case_0_5");
  gcc_jit_block *b_case_25_27 =
    gcc_jit_function_new_block (func, "case_25_27");
  gcc_jit_block *b_case_m42_m17 =
    gcc_jit_function_new_block (func, "case_m42_m17");
  gcc_jit_block *b_case_40 =
    gcc_jit_function_new_block (func, "case_40");

  gcc_jit_case *cases[4] = {
    gcc_jit_context_new_case (
      ctxt,
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 0),
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 5),
      b_case_0_5),
    gcc_jit_context_new_case (
      ctxt,
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 25),
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 27),
      b_case_25_27),
    gcc_jit_context_new_case (
      ctxt,
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, -42),
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, -17),
      b_case_m42_m17),
    gcc_jit_context_new_case (
      ctxt,
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 40),
      gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 40),
      b_case_40)
  };
  gcc_jit_block_end_with_switch (
    b_initial, NULL,
    gcc_jit_param_as_rvalue (x),
    b_default,
    4, cases);

  gcc_jit_block_end_with_return (
    b_case_0_5, NULL,
    gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 3));
  gcc_jit_block_end_with_return (
    b_case_25_27, NULL,
    gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 4));
  gcc_jit_block_end_with_return (
    b_case_m42_m17, NULL,
    gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 83));
  gcc_jit_block_end_with_return (
    b_case_40, NULL,
    gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 8));
  gcc_jit_block_end_with_return (
    b_default, NULL,
    gcc_jit_context_new_rvalue_from_int (ctxt, t_int, 10));
}

See also gcc_jit_extended_asm for entrypoints for adding inline assembler statements to a function.