RISC-V Options#
These command-line options are defined for RISC-V targets:
- -mbranch-cost=n#
Set the cost of branches to roughly
ninstructions.
- -mplt, -mno-plt#
When generating PIC code, do or don’t allow the use of PLTs. Ignored for non-PIC. The default is
-mplt.
- -mabi=ABI-string#
Specify integer and floating-point calling convention.
ABI-stringcontains two parts: the size of integer types and the registers used for floating-point types. For example-march=rv64ifd -mabi=lp64dmeans thatlongand pointers are 64-bit (implicitly definingintto be 32-bit), and that floating-point values up to 64 bits wide are passed in F registers. Contrast this with-march=rv64ifd -mabi=lp64f, which still allows the compiler to generate code that uses the F and D extensions but only allows floating-point values up to 32 bits long to be passed in registers; or-march=rv64ifd -mabi=lp64, in which no floating-point arguments will be passed in registers.The default for this argument is system dependent, users who want a specific calling convention should specify one explicitly. The valid calling conventions are:
ilp32,ilp32f,ilp32d,lp64,lp64f, andlp64d. Some calling conventions are impossible to implement on some ISAs: for example,-march=rv32if -mabi=ilp32dis invalid because the ABI requires 64-bit values be passed in F registers, but F registers are only 32 bits wide. There is also theilp32eABI that can only be used with therv32earchitecture. This ABI is not well specified at present, and is subject to change.
- -mfdiv, -mno-fdiv#
Do or don’t use hardware floating-point divide and square root instructions. This requires the F or D extensions for floating-point registers. The default is to use them if the specified architecture has these instructions.
- -mdiv, -mno-div#
Do or don’t use hardware instructions for integer division. This requires the M extension. The default is to use them if the specified architecture has these instructions.
- -misa-spec=ISA-spec-string#
Specify the version of the RISC-V Unprivileged (formerly User-Level) ISA specification to produce code conforming to. The possibilities for
ISA-spec-stringare:2.2Produce code conforming to version 2.2.
20190608Produce code conforming to version 20190608.
20191213Produce code conforming to version 20191213.
The default is
-misa-spec=20191213unless GCC has been configured with--with-isa-spec=specifying a different default version.
- -march=ISA-string#
Generate code for given RISC-V ISA (e.g.
rv64im). ISA strings must be lower-case. Examples includerv64i,rv32g,rv32e, andrv32imaf.When
-march=is not specified, use the setting from-mcpu.If both
-marchand-mcpu=are not specified, the default for this argument is system dependent, users who want a specific architecture extensions should specify one explicitly.
- -mcpu=processor-string#
Use architecture of and optimize the output for the given processor, specified by particular CPU name. Permissible values for this option are:
sifive-e20,sifive-e21,sifive-e24,sifive-e31,sifive-e34,sifive-e76,sifive-s21,sifive-s51,sifive-s54,sifive-s76,sifive-u54, andsifive-u74.
- -mtune=processor-string#
Optimize the output for the given processor, specified by microarchitecture or particular CPU name. Permissible values for this option are:
rocket,sifive-3-series,sifive-5-series,sifive-7-series,thead-c906,size, and all valid options for-mcpu=.When
-mtune=is not specified, use the setting from-mcpu, the default isrocketif both are not specified.The
sizechoice is not intended for use by end-users. This is used when-Osis specified. It overrides the instruction cost info provided by-mtune=, but does not override the pipeline info. This helps reduce code size while still giving good performance.
- -mpreferred-stack-boundary=num#
Attempt to keep the stack boundary aligned to a 2 raised to
numbyte boundary. If-mpreferred-stack-boundaryis not specified, the default is 4 (16 bytes or 128-bits).Warning
If you use this switch, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules.
- -msmall-data-limit=n#
Put global and static data smaller than
nbytes into a special section (on some targets).
- -msave-restore, -mno-save-restore#
Do or don’t use smaller but slower prologue and epilogue code that uses library function calls. The default is to use fast inline prologues and epilogues.
- -mshorten-memrefs, -mno-shorten-memrefs#
Do or do not attempt to make more use of compressed load/store instructions by replacing a load/store of ‘base register + large offset’ with a new load/store of ‘new base + small offset’. If the new base gets stored in a compressed register, then the new load/store can be compressed. Currently targets 32-bit integer load/stores only.
- -mstrict-align, -mno-strict-align#
Do not or do generate unaligned memory accesses. The default is set depending on whether the processor we are optimizing for supports fast unaligned access or not.
- -mcmodel=medlow#
Generate code for the medium-low code model. The program and its statically defined symbols must lie within a single 2 GiB address range and must lie between absolute addresses -2 GiB and +2 GiB. Programs can be statically or dynamically linked. This is the default code model.
- -mcmodel=medany#
Generate code for the medium-any code model. The program and its statically defined symbols must be within any single 2 GiB address range. Programs can be statically or dynamically linked.
- -mexplicit-relocs, -mno-exlicit-relocs#
Use or do not use assembler relocation operators when dealing with symbolic addresses. The alternative is to use assembler macros instead, which may limit optimization.
- -mrelax, -mno-relax#
Take advantage of linker relaxations to reduce the number of instructions required to materialize symbol addresses. The default is to take advantage of linker relaxations.
- -mriscv-attribute, -mno-riscv-attribute#
Emit (do not emit) RISC-V attribute to record extra information into ELF objects. This feature requires at least binutils 2.32.
- -mcsr-check, -mno-csr-check#
Enables or disables the CSR checking.
- -malign-data=type#
Control how GCC aligns variables and constants of array, structure, or union types. Supported values for
typearexlenwhich uses x register width as the alignment value, andnaturalwhich uses natural alignment.xlenis the default.
- -mbig-endian#
Generate big-endian code. This is the default when GCC is configured for a
riscv64be-*-*orriscv32be-*-*target.
- -mlittle-endian#
Generate little-endian code. This is the default when GCC is configured for a
riscv64-*-*orriscv32-*-*but not ariscv64be-*-*orriscv32be-*-*target.
- -mstack-protector-guard=guard#
Generate stack protection code using canary at
guard. Supported locations areglobalfor a global canary ortlsfor per-thread canary in the TLS block.With the latter choice the options
-mstack-protector-guard-reg=regand-mstack-protector-guard-offset=offsetfurthermore specify which register to use as base register for reading the canary, and from what offset from that base register. There is no default register or offset as this is entirely for use within the Linux kernel.